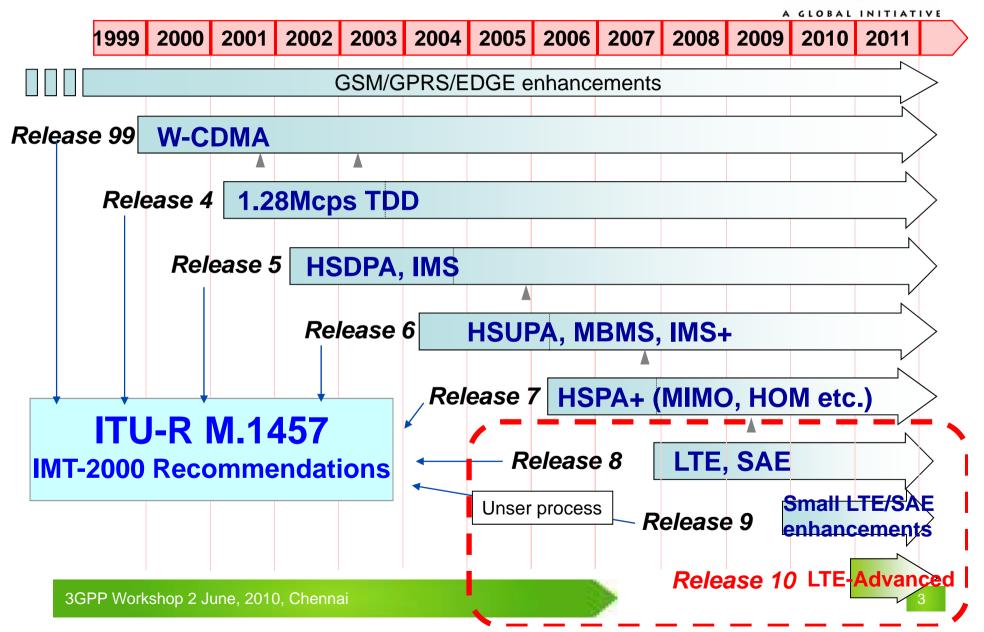


LTE Radio Physical Layer

Tetsushi Abe, NTT DOCOMO
Vice-Chairman 3GPP TSG RAN WG1

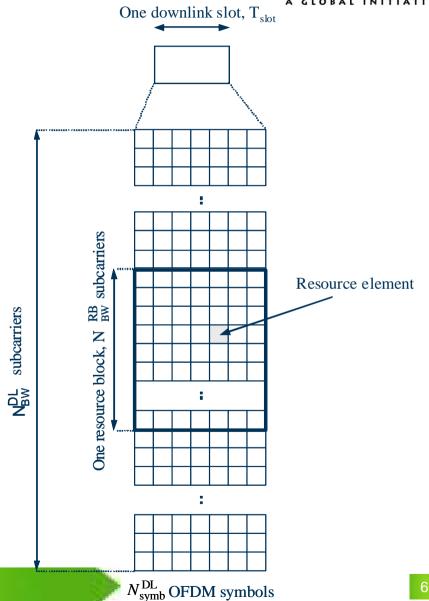
A GLOBAL INITIATIVE


Contents

- ล Introduction
- Downlink Aspects for LTE Release 8
- **NOTICE** Uplink Aspects for LTE Release 8
- Enhancements for LTE-Advanced (Release 10 and beyond)

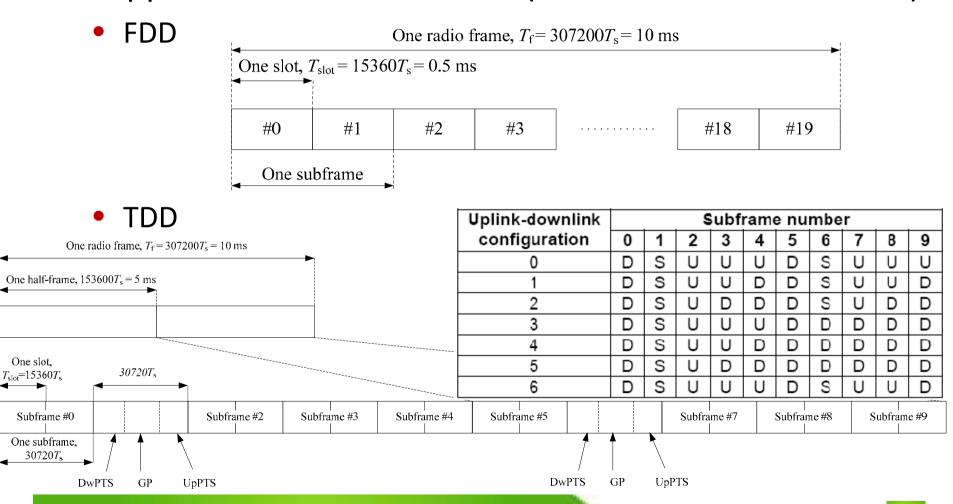
Releases of 3GPP specifications

- TS 36.201 E-UTRA Physical layer: General description.
- TS 36.211 E-UTRA Physical channels and modulation.
- TS 36.212 E-UTRA Multiplexing and channel coding.
- TS 36.213 E-UTRA Physical layer procedures.
- TS 36.214 E-UTRA Physical layer Measurements
- The latest version of the specifications can be downloaded from:
 - http://www.3gpp.org/ftp/Specs/


LTE Release 8 Major Parameters

Access Scheme	DL	OFDMA	
	UL	SC-FDMA	
Bandwidth		1.4, 3, 5, 10, 15, 20 MHz	
Minimum TTI		1 ms	
Sub-carrier spacing		15 kHz	
Cyclic prefix length	Short	4.7 μs	
	Long	16.7 μs	
Modulation		QPSK, 16QAM, 64QAM	
Spatial multiplexing		Single layer for UL per UE	
		Up to 4 layers for DL per UE	
		MU-MIMO supported for UL and DL	

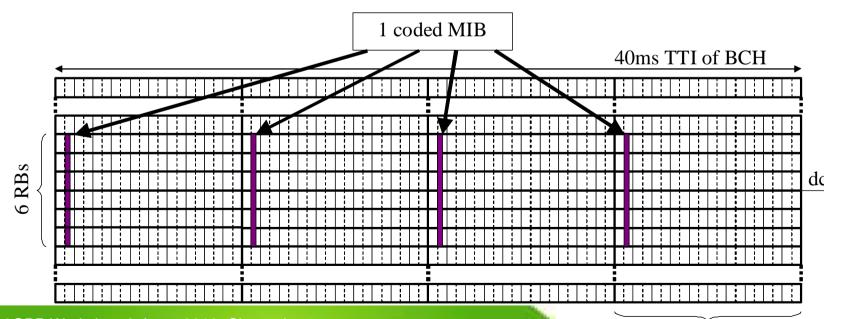
Transmission Resource structure


- Basic unit of resource is the Physical Resource Block (PRB)
- ↑ 12 sub-carriers x 0.5 ms
- Allocated in pairs (in time domain)
- ↑ 1 sub-carrier x 1 symbol = 1 resource element (RE)
- Spatial domain measured in "layers"

One radio interface, 2 frame structures

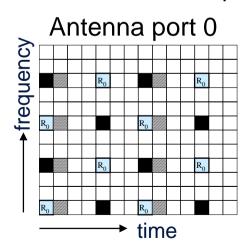
Supports both FDD and TDD (two RITs within one SRIT)

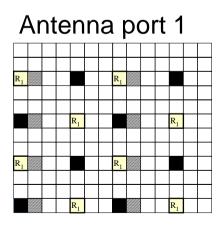
Contents

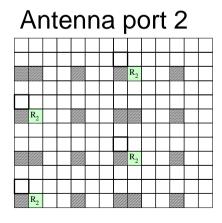


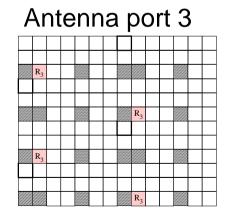
- **ntroduction**
- Downlink Aspects for LTE Release 8
- **NOTICE** Uplink Aspects for LTE Release 8
- Enhancements for LTE-Advanced (Release 10 and beyond)

Cell acquisition signalling

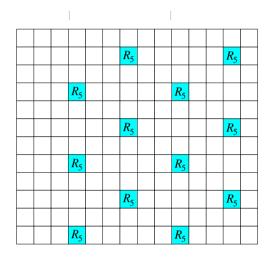

- Synchronisation signals in subframes 0 and 5 of each 10 ms radio frame
 - Used in initial cell search
- n Physical broadcast channel (PBCH) in subframe 0 of each radio frame
 - Carries the Master Information Block (MIB)
 - Includes indication of system bandwidth
 - Robust design for cell-wide coverage:
 - Low rate, QPSK, robust channel coding (1/3-rate tail-biting convolutional code with repetition), 40 ms TTI
 - CRC indicates number of transmit antennas

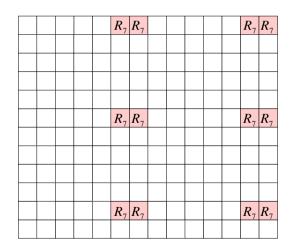


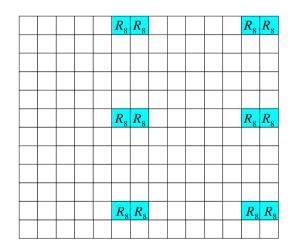

35P


Reference Signals (RS)

- In Rel-8, cell-specific RS are provided for 1, 2 or 4 antenna ports
 - Pattern designed for effective channel estimation
 - Sparse diamond pattern supports frequency-selective channels and highmobility with low overhead
 - Up to 6 cell-specific frequency shifts are configurable
 - Power-boosting may be applied on the REs used for RS
 - QPSK sequence with low PAPR

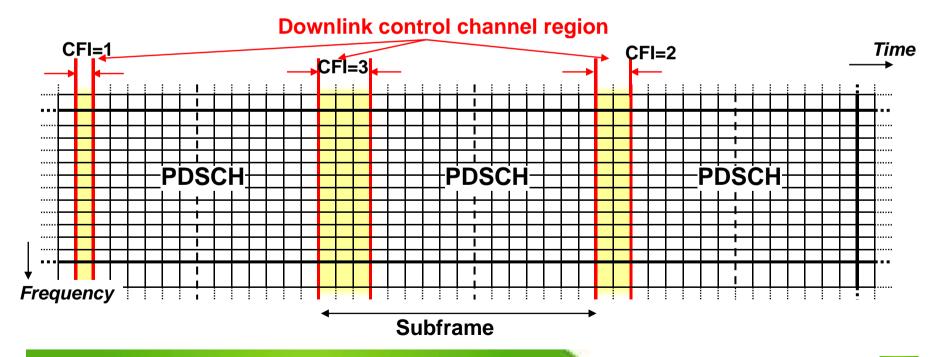



n Rel-8:


 UE-specific (precoded) RS may be provided in data transmissions to specific UEs

n Rel-9:

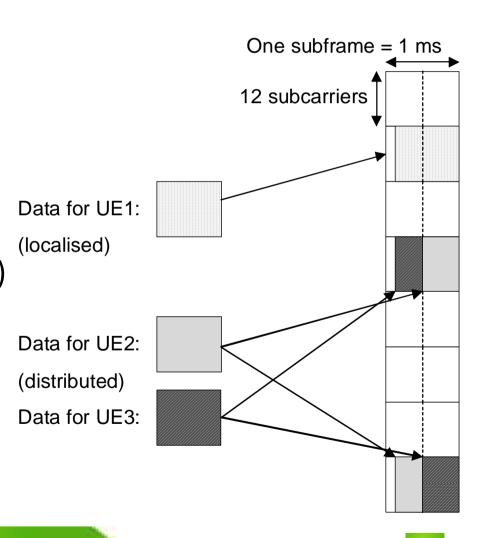
- UE-specific RS extended to dual-layer transmission
- CDM between RS of the two layers



35P

Downlink Channel Structure

- Flexible control design to avoid unnecessary overhead
 - Control region is first 1-3 OFDM symbols in each subframe (2-4 in narrow bandwidths)
 - Control region size (CFI: control channel format indicator) is dynamically variable
- Data transmission on Physical Downlink Shared Channel (PDSCH)


Downlink control signaling

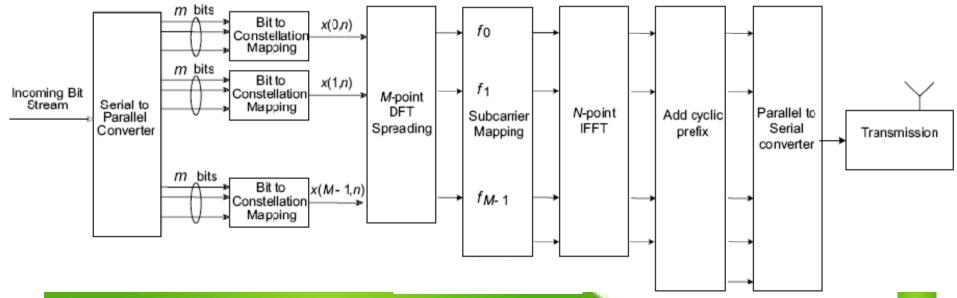
- Physical Control Format Indicator Channel (PCFICH) indicates the control region size (CFI)
 - Located in first OFDM symbol of each subframe
 - PCFICH is designed to be robust
 - 16 QPSK symbols transmitted with full frequency diversity
- Physical Downlink Control Channel (PDCCH) carries Downlink Control Information (DCI) messages:
 - downlink resource assignments
 - uplink resource grants
 - uplink power control commands
- Physical Hybrid ARQ Indicator Channel (PHICH) carries ACK/NACK for UL data transmissions

- PDSCH carries user data, broadcast system information, paging messages
- Transmission resources are assigned dynamically by PDCCH
 - Localised (suitable for frequency domain scheduling) or
 - distributed (suitable for maximising frequency diversity)

PDSCH transmission modes

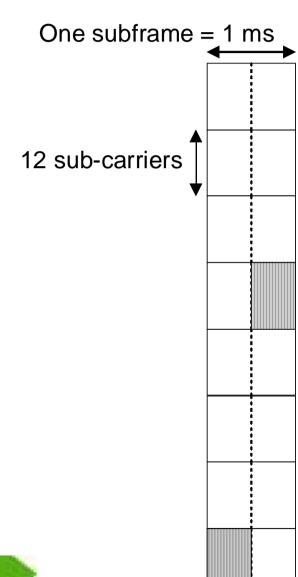
- ♠ In Rel-9, each UE is configured in one of 8 "transmission modes" for PDSCH reception:
 - Mode 1: Single antenna port, port 0
 - Mode 2: Transmit diversity
 - Mode 3: Large-delay CDD
 - Mode 4: Closed-loop spatial multiplexing
 - Mode 5: MU-MIMO
 - Mode 6: Closed-loop spatial multiplexing, single layer
 - Mode 7: Single antenna port, UE-specific RS (port 5)
 - Mode 8 (new in Rel-9): Single or dual-layer transmission with UEspecific RS (ports 7 and/or 8)
- (in each case, transmit diversity is also available as a fallback)

Contents



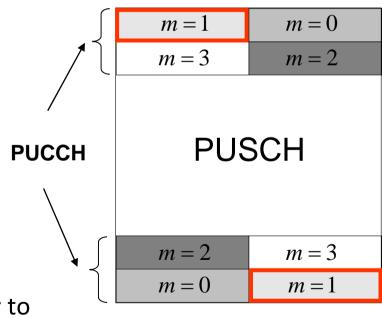
- **1** Introduction
- Downlink Aspects for LTE Release 8
- → Uplink Aspects for LTE Release 8
- Enhancements for LTE-Advanced (Release 10 and beyond)

Uplink multiple access: SC-FDMA


- Same parameterisation as downlink
- ♠ DFT precoding to ensure low PAPR / cubic metric
- Cyclic prefix facilitates frequency-domain equalisation at eNodeB

UL transmission resource allocation

- Same structure of PRBs in frequency domain as downlink
- ক Contiguous PRB allocation to keep single carrier property
- Possibility to configure frequency hopping to increase frequency diversity
- Number of allocated PRBs for a given user in a given subframe is in multiples of 2, 3 and 5 for low-complexity DFT implementation



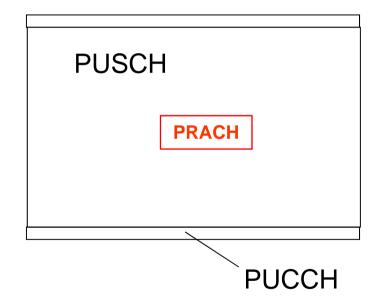
- Zadoff Chu sequences
- Demodulation RS (DM RS)
 - Same bandwidth as control / data transmission
- ♠ Sounding RS (SRS)
 - Supports:
 - UL frequency-domain scheduling
 - Channel sounding for downlink transmissions, especially for TDD
 - Located In last symbol of a subframe
 - Can be configured by network
 - Uses interleaving in frequency domain (alternate subcarriers) to provide additional support for multiple users transmitting SRS in the same bandwidth

35P

Uplink channel structure

- Data transmissions on Physical Uplink Shared Channel (PUSCH)
 - In centre of uplink bandwidth
 - Minimises out-of-band emissions from wide-bandwidth data transmissions
 - 1 transport block per TTI
 - Same channel coding / rate matching as PDSCH
 - Modulation QPSK, 16QAM, 64QAM
- When PUSCH is transmitted, any control signalling is multiplexed with data to maintain single carrier structure
- When no PUSCH, control signalling is on Physical Uplink Control Channel (PUCCH)
 - Usually at edges of system bandwidth
 - PUCCH hops from one side of the carrier to the other to maximise frequency diversity

One subframe-

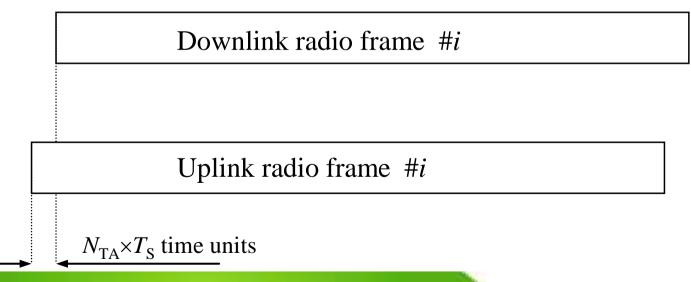


- **♦ ACK/NACK** for PDSCH transmissions
- → Scheduling Request (SR)
- Channel Quality Information feedback can be periodic on PUCCH or aperiodic on PUSCH
 - CQI indicates an index of a Modulation / Coding Scheme (MCS) that could be received on PDSCH with BLER ≤ 0.1
 - PMI indicates preferred precoding matrix for PDSCH
 - RI indicates number of useful transmission layers for PDSCH

3GP

Random Access Channel (RACH)

- **NACH** procedure begins with a preamble (PRACH)
- PRACH resources assigned by eNB within PUSCH region
- ♠ PRACH preamble fits into 6 PRBs
 - Sufficient for timing estimation
 - Invariant with bandwidth for low complexity
 - Zadoff Chu sequence
 - Excellent correlation properties
 - Zero correlation zone for different cyclic shifts
 - Flat frequency spectrum
 - Different sequences provided first by different cyclic shifts, then by different root sequences



Multiple PRACH formats suitable for different cell sizes

35P

Timing Advance

- Uplink transmission orthogonality between users is maintained by timing advance
- Set initially during Random Access Procedure
- Updated as necessary subsequently
- → Supports at least 100 km cell range
 - Greater ranges are up to the implementation

Uplink Power Control

- Controls uplink power spectral density
 - Total uplink transmit power scales linearly with transmitted bandwidth
- Fractional power control can compensate for all or part of path loss
 - Allows trade-off between intra-cell fairness and inter-cell interference
- MCS-specific offsets may be applied
- Closed-loop power control commands can fine-tune the power setting
 - Carried on PDCCH
 - Individual commands in UL resource grants
 - Group commands for groups of UEs
- Separate power control for PUCCH and PUSCH

UL Multi-Antenna transmission

♠ Rel-8/9 supports:

- Switched antenna diversity
 - Closed-loop antenna switching supported by CRC masking on PBCH
- MU-MIMO
 - Different cyclic shifts of DM RS can be allocated to different UEs

Contents

- **1** Introduction
- Downlink Aspects for LTE Release 8
- **1** Uplink Aspects for LTE Release 8
- ♠ Enhancements for LTE-Advanced (Release 10 and beyond)

Note that discussion on Rel-10 features described in the following slides are still on going at 3GPP and the specifications are not yet finalized.

System Performance Requirements for LTE-Advanced

n Peak data rate

 1 Gbps data rate will be achieved by 4-by-4 MIMO and transmission bandwidth wider than approximately 70 MHz

n Peak spectrum efficiency

- DL: Rel. 8 LTE satisfies IMT-Advanced requirement
- UL: Need to double from Release 8 to satisfy IMT-Advanced requirement

		Rel. 8 LTE	LTE-Advanced	IMT-Advanced
Peak data rate	DL	300 Mbps	1 Gbps	1 Gbps ^(*)
	UL	75 Mbps	500 Mbps	
Peak spectrum efficiency [bps/Hz]	DL	15	30	15
	UL	3.75	15	6.75

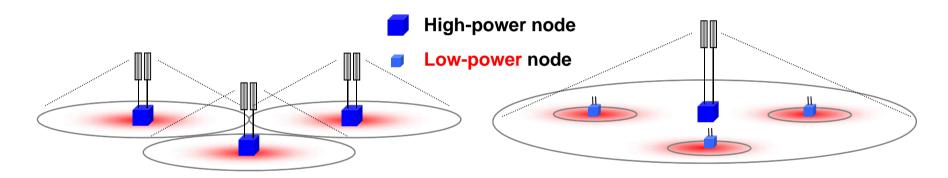
^{*&}quot;100 Mbps for high mobility and 1 Gbps for low mobility" is one of the key features as written in Circular Letter (CL)

System Performance Requirements for LTE-Advanced (cont'd)

- Capacity and cell-edge user throughput
 - Target for LTE-Advanced was set considering gain of 1.4 to 1.6 from Release 8 LTE performance

		Ant. Config.	Rel. 8 LTE*1	LTE-Advanced*2	IMT-Advanced*3
[bps/Hz/cell]	DL	2-by-2	1.69	2.4	_
		4-by-2	1.87 x1.4	2.6	2.2
		4-by-4	2.67	3.7	_
	UL	1-by-2	0.74	1.2	_
		2-by-4	_	2.0	1.4
throughput [bps/Hz/cell/use r]	DL	2-by-2	0.05	0.07	-
		4-by-2	0.06	0.09	0.06
		4-by-4	0.08	0.12	-
	UL	1-by-2	0.024	0.04	-
		2-by-4	-	0.07	0.03

^{*1} See TR25.912(Case 1 scenario)


^{*2} See TR36.913(Case 1 scenario)

^{*3} See ITU-R M.2135(Base Coverage Urban scenario)

36 P

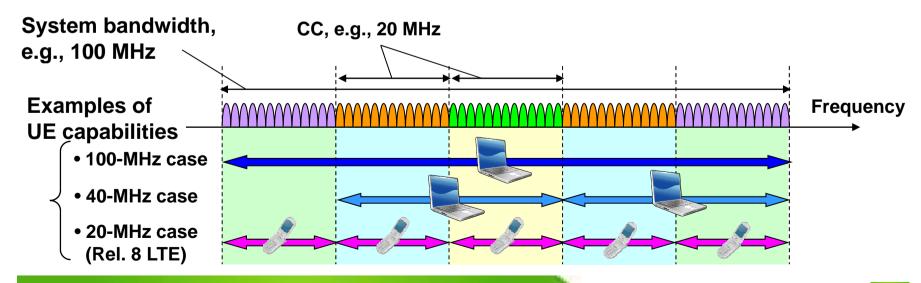
Deployment scenarios for LTE-Advanced

→ Target deployment scenarios for LTE-Advanced cover both homogeneous and heterogeneous networks.

Homogeneous network deployment

Heterogeneous network network

♠ Evaluation models for each deployment scenario in 3GPP is shown in TR36.814 ver.9.0.0 (Annex therein)

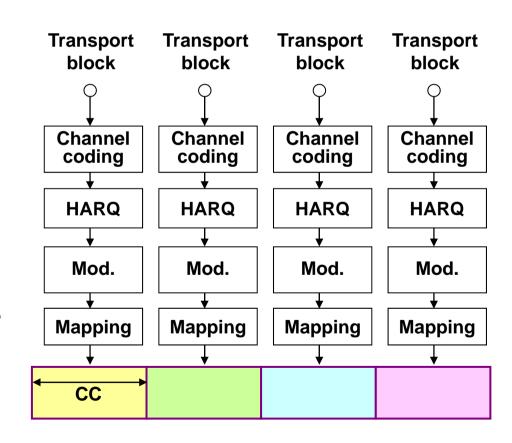


- Carrier aggregation for LTE
- Enhanced multi-antenna downlink transmission for LTE
- Uplink multiple antenna transmission for LTE
- **n** Relays for LTE
- ♠ Enhanced ICIC for non-CA (carrier aggregation) based deployment of heterogeneous networks
- Network positioning support for LTE

Carrier Aggregation (CA)

- Wider bandwidth transmission using carrier aggregation for both DL and UL
- The system bandwidth up to, e.g., 100 MHz, comprises multiple basic frequency blocks called component carriers (CCs)
 - → Satisfy requirements for peak data rate
- Teach CC can be configured in a backward compatible way with Rel-8 LTE
 - → Maintain backward compatibility with Rel-8 LTE
- ♠ Carrier aggregation supports both contiguous and non-contiguous spectrum, and asymmetric bandwidth for FDD
 - → Achieve flexible spectrum usage

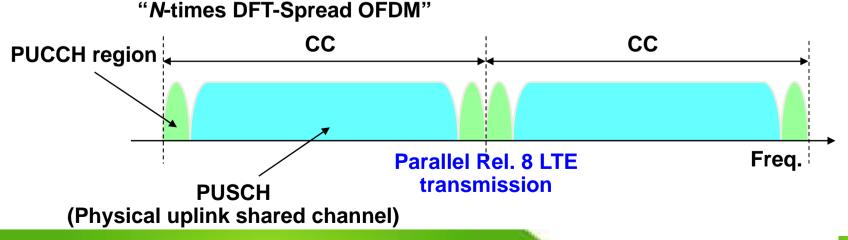
Downlink Multiple Access Scheme



Downlink: OFDMA with component carrier (CC) based structure

- → Priority given to reusing Rel. 8 specification for low-cost and fast development
- One transport block is mapped within one CC
- Parallel-type transmission over multiple CCs

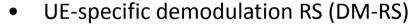
- Good affinity to Rel. 8 LTE specifications
- → PDCCH in one CC can schedule
 PDSCH in another CC



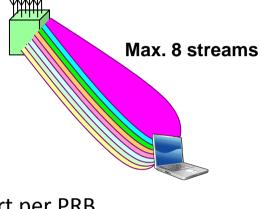
Uplink Multiple Access Scheme

Uplink: N-times DFT-Spread OFDM

- Achieve wider bandwidth by adopting parallel multi-CC transmission
 - → Satisfy requirements for peak data rate while maintaining backward compatibility
 - → Low-cost and fast development by reusing Rel. 8 specification
- Nill also support non-contiguous resource allocation
 - Enhanced flexibility and efficiency of resource allocation
- Simultaneous PUCCH and PUSCH transmission will be supported.
- Independent power control will be provided per CC


Enhanced Downlink Multi-antenna Transmission

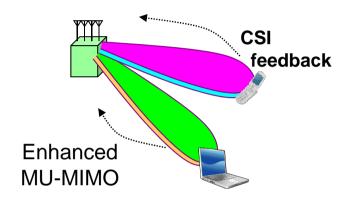
- Extension up to 8-layer transmission
 - Increased from 4 layers in Rel-8/9
 - → Satisfy the requirement for peak spectrum efficiency, i.e., 30 bps/Hz



- Channel state information RS (CSI-RS)
 - For downlink channel sounding
 - Sparse, low overhead (configurable)
 - ✓ Density: 1 resource element (RE) per antenna port per PRB

UE-specific DM-RS can be precoded, supporting non-codebook-based precoding,

- → applied 1-8-layer transmission, and enhanced multi-user beamforming, such as zero forcing (ZF)
- DM RS pattern for higher numbers of layers is extended from 2-layer format for transmission mode 8 in Rel-9



Enhanced Downlink Multi-antenna Transmission (Cont'd)

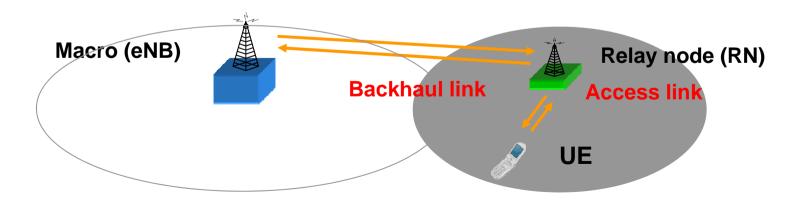
Enhanced Multi-user (MU) MIMO

- MU-MIMO dimensionality
 - Maximum spatial 4 layers
 - Maximum 2 layers per user

- ♠ CSI feedback enhancement using two matrix (W1, W2) feedback frame work is now being studied
 - W1 targets wideband/long-term channel properties
 - W2 targets frequency-selective/short-term time channel properties
 - Matrix multiplication is used.

Enhanced Uplink Multi-antenna Transmission

- UL transmit diversity for PUCCH to improve robustness in cell-edge
 - Orthogonal resource transmit diversity is supported for PUCCH format 1 (Scheduling request) 1a/1b (HARQ-Ack) when UE has two Tx antennas
 - ✓ the same modulation symbol from the uplink channel is transmitted from two
 antenna ports, on two separate orthogonal resources.
- SU-MIMO up to 4-stream transmission to satisfy the requirement for peak spectrum efficiency, i.e., 15 bps/Hz
 - Closed-loop codebook based precoding supported


SU-MIMO up to 4 streams

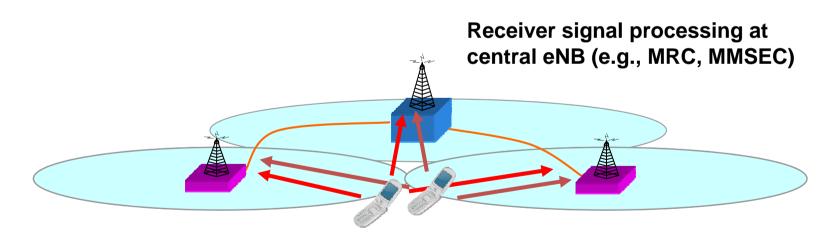
Relaying for LTE

Relay design target for Rel-10 is coverage extension

- → Supports cell deployments in areas where wired backhaul is not available or very expensive
- → "Type 1" relay
 - Inband relaying: same carrier frequency for backhaul and access links
 - Time division multiplexing of backaul and access links
 - Relay node (RN) creates a separate cell distinct from the donor cell
 - UE receives/transmits control signals for scheduling and HARQ from/to RN
 - RN appears as a Rel-8 LTE eNB to Rel-8 LTE UEs
- → "Type 1a" relay
 - Outband relaying: different carrier frequency for backhaul from access link

Conclusions

- LTE-Advanced is a very flexible and advanced system
 - Built on the established capabilities of the LTE Rel-8 and Rel-9 physical layer
 - Further enhancements to exploit spectrum availability and advanced multi-antenna techniques



Backup slides

CoMP Reception in Uplink

- CoMP reception scheme in uplink
 - Physical uplink shared channel (PUSCH) is received at multiple cells
 - Scheduling is coordinated among the cells
 - → Improve especially cell-edge user throughput
 - Note that CoMP reception in uplink is an implementation matter and does not require any change to radio interface

Multipoint reception

Category		1	2	3	4	5	
Peak rate Mbps	DL	10	50	100	150	300	
	UL	5	25	50	50	75	
Capability for physical functionalities							
RF bandwidth		20MHz					
Modulation	DL	QPSK, 16QAM, 64QAM					
	UL	QPSK, 16QAM				QPSK,	
						16QAM,	
						64QAM	
Multi-antenna							
2 Rx diversity		Assumed in performance requirements.					
2x2 MIMO		Not supported		Mandatory			
4x4 MIMO		Not supported				Mandatory	

Details of PDSCH transmission modes (1)

↑ Mode 2:

- SFBC for 2 antenna ports
- SFBC / FSTD for 4 antenna ports

↑ Mode 3:

- Large delay CDD increases frequency selectivity
- Allows open-loop spatial multiplexing
- Up to rank 2 without closed loop precoding feedback from UE

↑ Mode 4:

- Precoding using specified codebook for the relevant number of antenna ports
- Supports up to 4 layers
 - Max 2 codewords to limit signalling overhead
- Closed-loop precoding feedback from UE
- Used precoding matrix is indicated to UE on PDCCH

Details of PDSCH transmission modes (2)

₱ Mode 5:

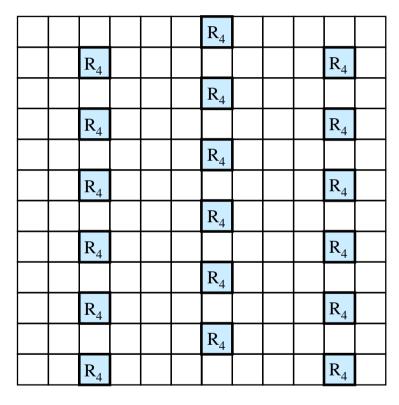
- Rank 1 MU-MIMO
- Based on same precoding codebooks and feedback as Mode 4
- PDCCH indicates power offset for PDSCH

↑ Mode 6:

Based on mode 4 but for single-layer only

Mode 7:

- UE-specific RS
- Suitable for UE-specific beamforming, e.g. based on angle of arrival (no closed-loop precoding feedback from UE)


Mode 8:

- Dual-layer UE-specific RS
- Closed-loop precoding feedback may or may not be used
- Supports dual-layer SU-MIMO and single-layer MU-MIMO

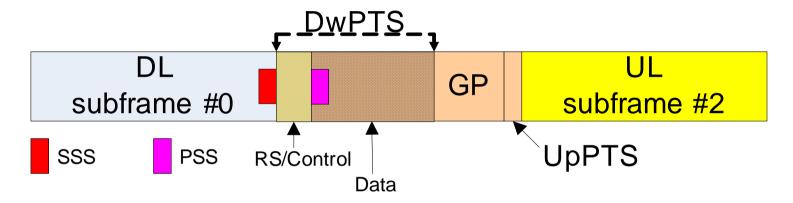
MBMS

- Supports Single-Frequency
 Network operation for high
 performance: "MBSFN"
 subframes
 - Physical Multicast Channel (PMCH) is used instead of PDSCH
 - Special RS pattern with higher density in frequency domain supports longer "delay spread" from multi-cell transmission

even-numbered slots odd-numbered slots

Antenna port 4

Contents



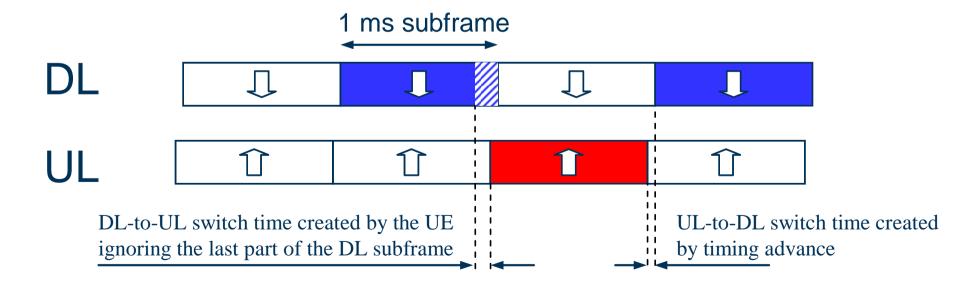
- **1** Introduction
- Downlink Aspects
- **1** Uplink Aspects
- ล Specific support for TDD
- Specific support for half-duplex FDD
- → UE categories in Rel-8
- Enhancements for LTE-Advanced

TDD operation

♠ Special timeslot for downlink-uplink switching:

- UpPTS can transmit special short PRACH format or SRS
- TDD operation is also supported by:
 - An increased number of HARQ processes
 - ACK/NACK bundling / multiplexing configurations to enable control signalling to be transmitted

Contents


- **1** Introduction
- Downlink Aspects
- **1** Uplink Aspects
- ♠ Specific support for TDD
- ক Specific support for half-duplex FDD
- → UE categories in Rel-8
- Enhancements for LTE-Advanced

36P

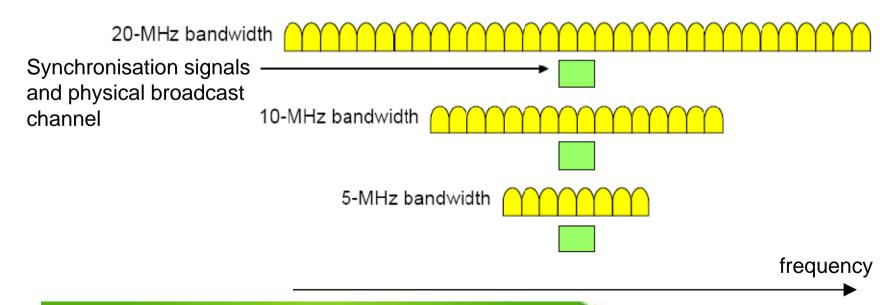
Half-duplex FDD operation

- Trom UE perspective, UL and DL do not overlap in time
- Tor DL-UL switching time, UE ignores end of DL subframe
- Tor UL-DL switching time, additional timing advance offset can be applied to the UL transmissions

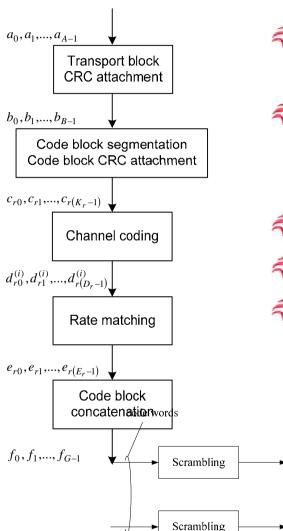
Orthogonal Multiple Access Schemes

n Downlink: OFDMA

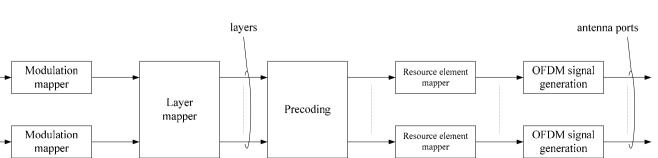
- High spectral efficiency
- Robust against frequency-selectivity / multi-path interference
 - Inter-symbol interference contained within cyclic prefix
- Supports flexible bandwidth deployment
- Facilitates frequency-domain scheduling
- Well suited to advanced MIMO techniques


1 Uplink: SC-FDMA

- Based on OFDMA with DFT precoding
- Common structure of transmission resources compared to downlink
- Cyclic prefix supports frequency-domain equalization
- Low Cubic Metric for efficient transmitter design

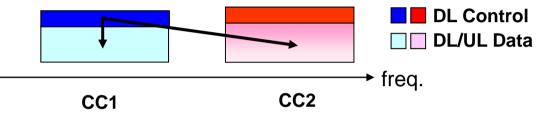

Low complexity cell acquisition

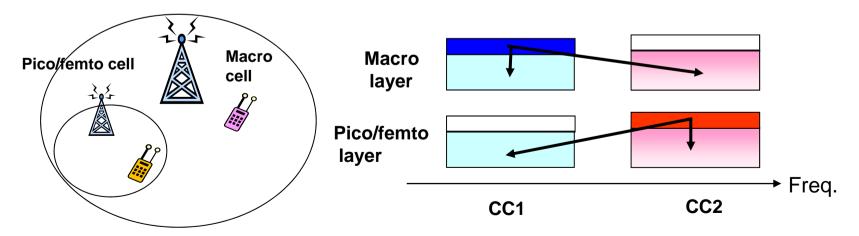
- Synchronisation signals and broadcast channel:
 - Fixed bandwidth
 - Centrally located
 - Allows straightforward bandwidth-agnostic cell-search



PDSCH physical layer processing

- ♠ Each TTI, 1 or 2 transport blocks are processed from MAC layer
- Channel coding is based on 1/3 rate turbo code with trellis termination to approach Shannon capacity
- Circular buffer rate matching
- Nodulation QPSK, 16QAM, 64QAM
- Layer mapping and precoding for support of multi-antenna transmission




Cross-carrier scheduling for CA

Carrier indicator field (CIF) can be semistatically configured to enable cross carrier UL and DL assignments

Example:
Use PDCCH in CC1 to
schedule PDSCH in CC2

Possible application is control channel inter-cell interference coordination (ICIC) on heterogeneous networks

Control channel design for relay

- **R-PDCCH" is designed to dynamically or semipersistently assign resources for the downlink backhaul
 data (corresponding to the "R-PDSCH and R-PUSCH"
 physical channel).
 - DL grants are always transmitted in the first slot of a subframe
 - If a DL grant is transmitted in the first PRB of a given PRB pair, then an UL grant may be transmitted in the second PRB of the PRB pair
 - Possibility to transmit data in the 2nd slot of a R-PDCCH PRB pair
 - UL grants are only transmitted in the second slot
 - No data transmission in the first slot
 - Ongoing discussions on interleaving.
 - Only Rank 1 is supported for R-PDCCH for a given RN