

 Rec. ITU-T M.3020 (07/2011revision 2016) i

Recommendation ITU-T M.3020

Management interface specification methodology

Summary

Recommendation ITU-T M.3020 describes the management interface specification methodology

(MISM). It describes the process to derive interface specifications based on user requirements,

analysis and design (RAD). Guidelines are given on RAD using unified modelling language (UML)

notation; however, other interface specification techniques are not precluded. The guidelines for

using UML are described at a high level in this ITU-T Recommendation.

History

Edition Recommendation Approval Study Group

1.0 ITU-T M.3020 1992-10-05

2.0 ITU-T M.3020 1995-07-27 4

3.0 ITU-T M.3020 2000-02-04 4

4.0 ITU-T M.3020 2007-07-22 4

5.0 ITU-T M.3020 2008-07-29 4

6.0 ITU-T M.3020 2009-05-14 2

7.0 ITU-T M.3020 2010-09-06 2

8.0 ITU-T M.3020 2011-07-14 2

9.0 ITU-T M.3020 2016-xx-yy 2

ii Rec. ITU-T M.3020 (07/2011revision 2016)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,

establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on

these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some

other obligatory language such as "must" and the negative equivalents are used to express requirements. The

use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may

involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,

validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others

outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers

are cautioned that this may not represent the latest information and are therefore strongly urged to consult the

TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the

prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T M.3020 (07/2011revision 2016) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations .. 3

5 Conventions .. 4

6 Requirements for methodology and notational support .. 4

7 Methodology ... 5

7.1 General considerations ... 5

7.2 Application and structure of the methodology ... 5

7.3 Detailed methodology .. 5

8 Management interface specifications ... 8

9 Traceability in MISM process .. 8

10 Documentation structure ... 8

Annex A – Requirements ... 9

A.1 Conventions .. 9

A.2 Requirements template ... 12

A.3 Simplified requirements template ... 14

Annex B – Analysis ... 16

B.1 Conventions .. 17

B.2 Analysis template ... 19

B.3 IOC properties and inheritance ... 28

Annex C – MISM UML repertoire .. 30

C.1 Introduction .. 30

C.2 Basic model elements ... 30

C.3 Stereotypes ... 33

C.4 Association classes ... 40

C.5 Abstract class .. 40

C.6 Application of <<InformationObjectClass>> and <SupportIOC>> 41

Annex D – Design .. 42

Annex E – Information type definitions – type repertoire ... 43

E.1 Basic types .. 43

E.2 Enumerated type ... 43

E.3 Complex types .. 43

E.4 Useful types .. 43

E.5 Keywords .. 44

iv Rec. ITU-T M.3020 (07/2011revision 2016)

 Page

Annex F – Guidelines on IOC properties, inheritance and entity import 45

F.1 IOC property ... 45

F.2 Inheritance .. 46

F.3 Entity (interface, IOC and attribute) import ... 46

Appendix I – Requirements example ... 47

Appendix II – Analysis example .. 50

Appendix III – Comparison with Recommendation ITU-T Z.601 .. 58

Appendix IV – Issues for further study .. 59

IV.1 SOA .. 59

IV.2 UML ... 59

IV.3 Visibility ... 59

IV.4 Type definitions .. 59

Appendix V – Additional UML usage samples ... 60

V.1 Proxy class .. 60

Appendix VI – Guidelines on requirements numbering .. 62

Bibliography... 63

 Rec. ITU-T M.3020 (07/2011revision 2016) 1

Recommendation ITU-T M.3020

Management interface specification methodology

1 Scope

This Recommendation describes the management interface specification methodology (MISM). It

describes the process to derive machine-machine interface specifications based on user

requirements, analysis and design (RAD). Guidelines are given on RAD using unified modelling

language (UML) notation; however, other interface specification techniques are not precluded. The

guidelines for using UML are described in this Recommendation. An interface specification

addresses management service(s) defined in [ITU-T M.3200] and/or supporting the management

processes defined in [ITU-T M.3050.x] series. Such a specification may support part of or one or

more management services. The management services comprise of management functions. These

functions may reference those defined in [ITU-T M.3400] or the processes defined in

[ITU-T M.3050.x] series, specialized to suit a specific managed area, or new functions may be

identified as appropriate.

The methodology is applicable to both the traditional manager/agent style of management interfaces

[ITU-T M.3010] and the service oriented architecture (SOA) principles adopted for the

management architecture of next generation networks [ITU-T M.3060].

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published. The reference to a document within

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T M.3010] Recommendation ITU-T M.3010 (2000), Principles for a telecommunications

management network.

[ITU-T M.3050.x] Recommendation ITU-T M.3050.x (2007), enhanced Telecom Operations

Map (eTOM).

[ITU-T M.3060] Recommendation ITU-T M.3060/Y.2401 (2006), Principles for the

management of next generation networks.

[ITU-T M.3200] Recommendation ITU-T M.3200 (1997), TMN management services and

telecommunications managed areas: Overview.

[ITU-T M.3400] Recommendation ITU-T M.3400 (2000), TMN management functions.

[ITU-T Q.812] Recommendation ITU-T Q.812 (2004), Upper layer protocol profiles for the Q

and X interfaces.

[ITU-T X.520] Recommendation ITU-T X.520 (10/2012) | ISO/IEC 9594-6, Information

technology – Open Systems Interconnection – The Directory: Selected attribute

types

[ITU-T X.680] Recommendation ITU-T X.680 (2008) | ISO/IEC 8824-1:2008, Information

technology – Abstract Syntax Notation One (ASN.1): Specification of basic

notation.

2 Rec. ITU-T M.3020 (07/2011revision 2016)

[ITU-T X.681] Recommendation ITU-T X.681 (2008) | ISO/IEC 8824-2:2008, Information

technology – Abstract Syntax Notation One (ASN.1): Information object

specification.

[ITU-T X.722] Recommendation ITU-T X.722 (1992) | ISO/IEC 10165-4:1992, Information

technology – Open Systems Interconnection – Structure of management

information: Guidelines for the definition of managed objects.

[ITU-T Z.100] Recommendation ITU-T Z.100 (2007), Specification and Description

Language (SDL).

[OMG UML-I] ISO/IEC 19505-1:2012 – Information technology -- Object Management

Group Unified Modeling Language (OMG UML) -- Part 1: Infrastructure

[OMG UML-S] ISO/IEC 19505-2:2012 – Information technology -- Object Management

Group Unified Modeling Language (OMG UML) -- Part 2: Superstructure

[OMG UML] OMG: Unified Modelling Language Specification, Version 1.5.

A list of non-normative references can be found in the Bibliography.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

 Rec. ITU-T M.3020 (07/2011revision 2016) 3

3.1.1 activity diagram [OMG UML-S]

3.1.2 actor [OMG UML-S]

3.1.3 association [OMG UML-S]

3.1.4 class [OMG UML-S]

3.1.5 classifier [OMG UML-S]

3.1.6 composition [OMG UML-S]

3.1.7 distinguished name [ITU-T X.520]

3.1.8 management function set [ITU-T M.3010]

3.1.9 management service [ITU-T M.3010]

3.1.10 modelElement [OMG UML-S]

3.1.11 name [ITU-T X.520]

3.1.12 reference point [ITU-T M.3010]

This Recommendation uses the following terms from [OMG UML]:

– activity diagram;

– actor;

– association;

– class;

– class diagram;

– classifier;

– collaboration diagram;

3.1.13 sequence diagram [OMG UML-S]– composition;

– modelElement;

– sequence diagram;

– state diagram;

3.1.14 state diagram [OMG UML-S]

3.1.15 stereotype [OMG UML-S]

3.1.16 use case [OMG UML-S]

3.1.17 user [ITU-T M.3010]

– stereotype;

– use case.

This Recommendation uses the following term from [ITU-T M.3060]:

– reference point.[M1]

4 Rec. ITU-T M.3020 (07/2011revision 2016)

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 agent: Encapsulates a well-defined subset of management functionality. It interacts with

managers using a management interface. From the manager's perspective, the agent behaviour is

only visible via the management interface.

NOTE – Considered equivalent to IRPAgent [b-3GPP TS 32.150].

3.2.2 information object class: Describes the information that can be passed/used in

management interfaces and is modelled using the stereotype "Class" in the UML meta-model. For a

formal definition of information object class and its structure of specification, see Annex B.

3.2.3 information service: Describes the information related to the entities (either network

resources or support objects) to be managed and the way that the information may be managed for a

certain functional area. Information services are defined for all IRPs.

NOTE – Considered identical to the definition of information service found in [b-3GPP TS 32.150].

3.2.4 information type: Specification of the type of input parameters of operations.

3.2.5 integration reference point: An architectural concept that is described by a set of

specifications for the definition of a certain aspect of the management interface, comprising a

requirements specification, an information service specification, and one or more solution set

specifications.

NOTE – Considered identical to the definition of IRP found in [b-3GPP TS 32.150].

3.2.6 Lower Camel Case: It is the practice of writing compound words in which the words are

joined without spaces. Initial letter of all except the first word shall be capitalized. Examples:

‘managedNodeIdentity’ and ‘minorDetails’ are the LCC for “managed node identity” and “minor

details” respectively.

3.2.76 management goals: High-level objectives of a user in performing management activities.

3.2.87 management interface: The realization of management capabilities between a manager

and an agent, allowing a single manager to use multiple agents and a single agent to support

multiple managers.

NOTE – Q, C2B/B2B and Itf-N (3GPP) are examples of management interfaces.

3.2.98 management role: Defines the activities that are expected of the operational staff or

systems that perform telecommunications management. Management roles are defined independent

of other components, i.e., telecommunications resources and management functions.

3.2.109 management scenario: A management scenario is an example of management interactions

from a management service.

3.2.110 manager: Models a user of agent(s) and it interacts directly with the agent(s) using

management interfaces.

Since the manager represents an agent user, it gives a clear picture of what the agent is supposed to

do. From the agent perspective, the manager behaviour is only visible via the management

interface.

NOTE – Considered equivalent to IRPManager [b-3GPP TS 32.150].

3.2.121 matching information: Specification of the type of a parameter (possibly reference to IOC

or attribute of IOC).

3.2.132 naming attribute: It is a class attribute of type name that holds the class instance identifier.

NOTE – The term “naming attribute” is used to denote any attribute for naming of type name.

 Rec. ITU-T M.3020 (07/2011revision 2016) 5

3.2.14 protocol-neutral specification: Defines the management interfaces in support of

management capabilities without concern for the protocol and information representation implied or

required by, e.g., CORBA and XML.

3.2.153 protocol-specific specification: Defines the management interfaces in support of

management capabilities for one specific choice of management technology (e.g., CORBA).

NOTE – Considered equivalent to solution set [b-3GPP TS 32.150].

3.2.164 telecommunications resources: Telecommunications resources are physical or logical

entities requiring management, using management services.

3.2.17 Upper Camel Case: It is the Lower Camel Case except that the first letter is capitalised.

Examples: ‘ManagedNodeIdentity’ and ‘MinorDetails’ are the UCC for “managed node identity”

and “minor details” respectively.

3.2.18 Well Known Abbreviation: An abbreviation can be used as the modelled element name or

as a component of a modelled element name. The abbreviation, when used in such manner, must be

documented in the same document where the modelled element is defined.

4 Abbreviations

This Recommendation uses the following abbreviations:

3GPP 3rd Generation Partnership Project

ADM Administrative (usage: requirements category)

ASN.1 Abstract Syntax Notation One

CM Conditional-Mandatory

CO Conditional-Optional

CON Conceptual (usage: requirements category)

CORBA Common Object Request Broker Architecture

FUN Functional (usage: requirements category)

GDMO Guidelines for the Definition of Managed Objects

IDL Interface Definition Language

IOC Information Object Class

IRP Integration Reference Point

IS Information Service

LCC Lower Camel Case

MISM Management Interface Specification Methodology

NA Not Applicable

NE Network Element

NON Non-functional (usage: requirements category)

OMG Object Management Group

OO Object Oriented

OSI Open Systems Interconnection

SDL Specification and Description Language

SOA Service Oriented Architecture

6 Rec. ITU-T M.3020 (07/2011revision 2016)

SS Solution Set

TS Technical Specification

UCC Upper Camel Case

UML Unified Modelling Language

WKA Well Known Abbreviation

XML eXtensible Markup Language

5 Conventions

Clause A.1 contains conventions applicable to the requirements phase.

Clause B.1 contains conventions applicable to the analysis phase.

6 Requirements for methodology and notational support

In developing the methodology and choosing a notation, the following requirements apply:

1) The methodology, including the choice of notation, shall support the capture of all the

relevant requirements of the problem space, namely telecommunications management.

2) The methodology facilitates the production of requirements, its corresponding

Analysis|Information Services and their corresponding Design Specifications|Solution Sets.

3) The notation shall facilitate unambiguous generation of the specification in the target

management protocol profile. The methodology does not address possible choices of

protocol services (e.g., CORBA Security Service).

NOTE – Management protocols applicable for ITU-T use are specified in [ITU-T Q.812].

4) The methodology shall allow specification of mandatory and optional items in all three

phases. It also specifies the relation of mandatory|optional items between the three phases.

5) It should be possible to generate, from the protocol-neutral specification (Analysis|IS),

interoperable language specific definitions, i.e., Design|SS (for example UML to IDL,

UML to GDMO/ASN.1).

7 Methodology

7.1 General considerations

The purpose of this methodology is to provide a description of the processes leading towards the

definition of machine-machine management interfaces.

7.2 Application and structure of the methodology

The management interface specification methodology (MISM) specifies a three-phase process with

features that allow traceability across the three phases. The three phases apply industry-accepted

techniques using object oriented analysis and design principles. The three phases are requirements,

analysis and design. The techniques should allow the use or development of commercially available

support tools. Different techniques may be used for the phases depending on the nature of the

problem.

7.3 Detailed methodology

7.3.1 General

The requirements and analysis phases produce UML specifications. The design phase uses network

management paradigm specific notation. The outputs of the 3 phases are:

 Rec. ITU-T M.3020 (07/2011revision 2016) 7

– Requirements phase – Requirements.

– Analysis phase – Implementation independent specification.

– Design phase – Technology specific specification.

Initially, the design phase will be developed using a manual or customized approach. When

interoperable protocol specific definition can be generated by tools, then UML notation can be

applied to the design phase.

The clauses below describe the three phases.

7.3.2 Requirements

The requirements for the problem being solved fall into two classes. The first class of requirements

is referenced here as business requirements. A subject matter expert on the topic shall be able to

determine that the requirements adequately represent the needs of the management problem being

solved. The second class is referred to as specification requirements. These requirements shall

provide sufficient details so that the interface definition in the analysis and design phases can be

developed. As final interface definitions must be traceable to the requirements, it may be necessary

to have interaction between the three phases. Any ambiguity in the requirements will have to be

resolved by this interaction to assure that an implementable specification can be developed.

Human-computer interface data may be specified in the second class of requirements. These

requirements may have great impact on concepts and data designed in the subsequent phases. For

more detail, see Appendix III, and see the ITU-T M.1400-series Recommendations on data design

for human-computer interfaces.

Different techniques may be used to specify the two classes of requirement. Irrespective of the

technique, the readability of the requirements is critical. The requirements themselves are not

required to be in a machine-readable notation as long as readability and traceability are possible.

Enumerating requirements is the recommended solution to delineate the different requirements for

traceability.

The requirements phase includes identifying aspects such as security policy, scope of the problem

domain in terms of the applications, resources, and roles assumed by the resources. The

requirements specify roles, responsibilities, and the relationships between the constituent entities for

the problem space. Different techniques, including textual representation, may be used to specify

the business level requirements. In order to facilitate traceability of these requirements to the design

and implementation phases, enumerating requirements is recommended.

The problem must be bounded with a specific scope. One way to determine the scope is by using

the management services identified in [ITU-T M.3200] and function sets identified in

[ITU-T M.3400]. Requirements are specified using the resources being managed and management

functions. An alternative to the management services approach is described in [ITU-T M.3050.x]

"enhanced Telecom Operations Map (eTOM)" which provides a business process based approach.

The relationship between the [ITU-T M.3200] and [ITU-T M.3050] approaches is described in

[ITU-T M.3050.x].

Management functions must be grouped and supported within applications that address specific

business needs, so the linkage between the eTOM processes, the [ITU-T M.3200] management

services, the [ITU-T M.3400] management function sets and management functions is important to

assist in making this grouping clear and effective. Augmenting [ITU-T M.3400] may be required in

order to meet the business requirements of the problem.

UML use cases and scenarios should be used to interact with subject matter experts in capturing the

business level requirements. The requirements should also identify the failure conditions visible to

the business process.

NOTE – It is not required that every requirement be expressed as a use case.

8 Rec. ITU-T M.3020 (07/2011revision 2016)

The requirements produced must be complete and detailed. The recursive nature of the

methodology is used to achieve this completeness. The completeness of the requirements (clear and

well-documented) drives the analysis and design phases.

Guidelines and template for requirement structure and identification are described in clause A.1.2.

Use cases are goals that are fulfilled through a sequence of steps. Each step can be considered as a

sub-goal of the use case. As such each step represents either another use case (subordinate use case)

or an autonomous action that is at the lowest level of the case decomposition.

Guidelines and template for use cases are described in clause A.1.2.

An example requirements definition is available in Appendix I.

7.3.3 Analysis

In the analysis phase, the requirements are used to identify the interacting entities, their properties

and the relationships among them. This allows the interfaces offered by the entities to be defined. In

the UML notation, these entities become classes. The class descriptions along with the interfaces

exposed should be traceable to the requirements. The relationship among the classes, defined in the

analysis specification, and the classes in the design specification is not necessarily one to one.

This phase should take into account the needs of human-computer interface data (i.e., the

information model must contain sufficient information so that designs can be developed based on

the analysis results).

This Recommendation gives high-level guidance on the use of UML notation to support

management interface specification; however, SDL [ITU-T Z.100] might be used to augment the

UML definitions.

The analysis phase should be independent of design constraints. For example, the analysis may be

documented using OO principles even though the design may use a non object-oriented technology.

The information specified in the analysis phase includes class descriptions, data definitions, class

relationships, interaction diagrams (sequence diagrams and/or collaboration diagrams), state

transition diagrams and activity diagrams. The class definitions include specification of operations,

notifications, attributes and behaviour captured as notes or textual description.

Protocol-neutral common management services (if available) – or other existing services – should

be reused during the analysis phase in order to support management interface harmonization.

Guidelines and template for use cases are described in Annex A.

The analysis template uses information type as one characteristic to describe IOC attributes and

operation/notification parameters. The valid information type(s) that can be used and their

semantics are defined in Annex E.

7.3.4 Design

7.3.4.1 General

In the design phase, an implementable interoperable interface specification is produced. This will

involve the selection of a target specification language. The design phase specifications are

dependent on the specific management paradigm (e.g., IDL for CORBA interfaces).

This phase distinguishes three kinds of specifications of data: management paradigm (e.g., XML)

dependent design of data to be communicated across multiple interfaces (e.g., fault and

performance), messages (e.g., alarm report) to be communicated over each individual interface, and

encoding method of the data (e.g., compressed XML) consistent with a particular paradigm.

The selection of a specific management paradigm is addressed in other ITU-T Recommendations.

An overview is provided in the following clauses.

 Rec. ITU-T M.3020 (07/2011revision 2016) 9

In the design phase, it is recommended that the UML descriptions from the requirements and

analysis phases be referenced to augment behavioural specification. For example, behaviour

definition of GDMO can reference state charts, sequence diagrams and class definition in the

analysis phase. If required, additional UML diagrams describing interactions between entities,

corresponding to specific protocol paradigms, may be included.

As additional paradigms are adopted for use by management, the notations/languages defined by

these paradigms will be used.

7.3.4.2 CORBA

In the context of CORBA based management, the information model is defined using IDL.

7.3.4.3 GDMO

In the context of the paradigm based on OSI systems management [ITU-T X.722], the design

specification is the information model specification using GDMO templates for managed object

classes, attributes, behaviour, notifications, actions, naming instances of the class, and

error/exception specifications. The syntax of the information is specified using ASN.1 notation

[ITU-T X.680].

In GDMO, the object class hierarchy specifies the properties of the object classes that are needed

for management. Extensive use of inheritance (super and subclasses) is needed to benefit the most

from the reuse of specifications. The object classes are specified using the templates from

[ITU-T X.722]. The templates defining the information model should be registered (according to

the rules of [ITU-T X.722]) with a value for the ASN.1 object identifier. For those object classes

that are already specified in other ITU-T Recommendations and ISO standards, only a reference to

the particular Recommendation and object class is needed. Naming is not a part, nor the purpose, of

the object class hierarchy.

7.3.4.4 XML

For further study.

8 Management interface specifications

A management interface specification includes the requirements, analysis and design specifications

discussed in clause 7. A structure for specifying these specifications is provided in Annexes A, B

and C.

These techniques and supporting notations are also applicable when designing a system to the

management interface specifications, even though system design is not considered as part of the

ITU-T management Recommendations. They assist in describing how the interface specifications

are applied in managing the resources within a system such as an NE.

9 Traceability in MISM process

In order to achieve traceability between requirements, analysis and design, it is necessary that

appropriate identification be assigned. Traceability is supported through references between entities

specified within each phase and between phases. Traceability is from design|solution set to

analysis|information services and from analysis|information services to requirements. Traceability is

further applicable between artifacts of the requirements specification and between artifacts of the

analysis|information service, e.g., between use cases and textual requirements. Requirements should

be identified as described in clause 7.3.2. The analysis phase output specifies for the various use

cases further detailed information requirements. The design phase should point to the various

diagrams and text in the analysis phase output. The pointer may be in terms of a reference to the

appropriate clauses.

10 Rec. ITU-T M.3020 (07/2011revision 2016)

Traceability from the design phase to subject matter level requirements is usually indirect. This is

required because the output of the phases is defined to different level of details.

Guidelines for traceability between the requirements phase and the analysis phase are described in

Annex B.

The following mechanism for traceability with requirements, etc., specified in other documents

(possibly not following the advocated identification schema) is recommended:

 forum/body "::" document ID "::" id

where "id" could be one of:

1) requirement ID;

2) use case ID;

3) requirement title/text;

4) use case title;

5) subclause of the document which uniquely identifies a requirement or use case.

Examples:

3GPP::32.111-1::getAlarmList

ITU-T::M.3016::1.5.1.2

10 Documentation structure

Even though there are three phases, the documentation of the interface may combine their outputs

into one or more documents. It is recommended that the requirements and analysis be combined and

separate design documents are developed for each specific network management protocol paradigm.

Annex A

Requirements

(This annex forms an integral part of this Recommendation.)

 A.1 Conventions

 A.1.1 Use of UML notation for requirements

 A.1.2 Use case template

 A.1.3 Requirements categories

 A.2 Requirements template

 1 Concepts and background

 2 Business level requirements

 2.1 Requirements

 2.2 Actor roles

 2.3 Telecommunication resources

 2.4 High-level use cases

 3 Specification level requirements

 3.1 Requirements

 3.2 Actor roles

 Rec. ITU-T M.3020 (07/2011revision 2016) 11

 3.3 Telecommunication resources

 3.4 Use cases

 A.3 Simplified requirements template

 1 Concepts and background

 2 Requirements

The following are guidelines for specification of requirements. An example of the use of this

template can be found in Appendix I.

The normal (or full format) requirements template is found in clause A.2. In addition, a simplified

requirements template is defined and found in clause A.3.

A.1 Conventions

A.1.1 Use of UML notation for requirements

Table A.1 identifies the correspondence between management concepts and UML notation. This

Recommendation specifies the high-level concepts and notations to be used in the different phases.

Stereotypes are used to extend UML notation. The approved stereotypes for use within the

management environment are included in this Recommendation (see Annex C).

Table A.1 – Requirements concepts

Management concept
UML

notation
Comment

user. Actor A user is modelled as an actor.

management role. Actor An actor plays a role. It is normally advisable to only model a

single role for each actor.

management function. use case A management function is modelled by one or more use

cases.

management function set. use case A management function set is a composite use case with each

management function (potentially) modelled as a separate use

case.

management service. use case A management service is modelled as a high-level use case.

management scenario. sequence

diagram

Sequence diagrams are preferred over collaboration

diagrams.

telecommunication

resource type.

Class The class diagrams depict the property details of the

telecommunications resource type, at the level of detail

appropriate to the phase of the methodology.

management goals. – Management goals are captured as textual descriptions as

there is no applicable UML notation.

A.1.2 Use case template

When use cases are provided, the following conventions and templates should be followed.

12 Rec. ITU-T M.3020 (07/2011revision 2016)

Table A.2 – Use case template

Use case stage Evolution/Specification
<<Uses>>

Related use

Goal(*) This is the objective/end result the use case strives to achieve and should

be a concise statement of what the use case should achieve in a

successful scenario.

There may be a statement about priority relative to other use cases and

required performance of the use case, e.g.:

• Real Time.

• Near real time.

• Not real time.

Actors and

roles(*)

The names of actors/roles involved in the use case including role

characteristic for each actor.

Telecom

resources

The names of the telecommunication resources involved in the use case.

Assumptions A description of the environment providing a context for the use case.

Assumptions are mutually exclusive to pre-conditions.

Assumptions are concerned with static properties.

Pre-conditions A list of all system and environment conditions that must be true before

the use case can be triggered.

Pre-conditions are mutually exclusive to assumptions.

Pre-conditions are related to dynamic properties and can result in an

exception. This is never the case with assumptions.

Begins when The name of the single event that triggers the start of the use case.

Optional and normally not used to specify triggers such as "when the

manager must retrieve information".

Step 1(*) (M|O) A use case describes a list of steps (manual and automated) that are

necessary to accomplish the goal of the use case.

Steps may invoke other use cases.

Steps are numbered for traceability.

Each step is identified as being mandatory (M) or optional (O).

Sub-steps are identified relative to the containing step, e.g.:

Step n

Step n.1

Step n.2

where n.1 and n.2 are sub-steps of step n.

Reference to

a used use

case.

Step n (M|O) Steps added as necessary and in a logical sequence.

Ends when(*) The list of event(s) that indicates the use case completion.

NOTE – In this context, "event" should be considered in the most

general sense and not limited to, e.g., notifications exchanged across a

management interface. As an example, the completion of processing can

be considered an event that indicates completion of a use case.

Exceptions A summary list of exception conditions and faults detected by the use

case during its operation.

Post-conditions A list of all system and environmental conditions that must be true when

the use case has completed. The statement of post-conditions determines

if the use case is expected to be fully successful, partially successful or

even to have failed in order to be completed.

 Rec. ITU-T M.3020 (07/2011revision 2016) 13

Table A.2 – Use case template

Use case stage Evolution/Specification
<<Uses>>

Related use

Traceability(*) Requirements or use case exposed by the use case.

NOTE – Fields marked with "*" are mandatory for all use case specifications. Other fields are only

mandatory when relevant for the specific use case.

A.1.3 Requirements categories

It is useful to classify requirements in different categories. The following categories are considered

relevant for MISM:

– Conceptual (CON) – Identifies a concept, data type, relationship, format, or structure.

– Functional (FUN) – Identifies a functional capability, dynamic situation, a sequence, timing

parameters, or an interaction.

– Non-functional (NON) – Non-functional requirements, including abnormal conditions,

error conditions and bounds of performance.

– Administrative (ADM) – System administration and operational requirements not related to

the use cases normal operations.

Requirements should be written based on the following template:

 REQ-Label-Category-Number {Category, number} Details {Source Citation}

where "Label" is an abbreviation for the Recommendation (or part thereof). The set of labels is not

finite and not subject for standardization.

Guidelines on requirements numbering can be found in Appendix VI.

A.2 Requirements template

1 Concepts and background

Define major goals and objectives and the applicable management interfaces (and reference points) for

this specification. Use [ITU-T M.3200] categorization as a source for identifying the management

service(s) supported by this interface.

This subclause should give a clear description of the users' benefit, i.e., the reason for performing this

management service. Background and context should be added as necessary, but the explanatory and

descriptive parts should be separated. Supporting background information, where required, should be

placed in an appendix.

1.a SubClauseTitle

SubClauseTitle is the name of the subclause.

"a" represents a number, starting at 1 and increasing by 1 with each new subclause.

The use of subclauses is optional.

2 Business level requirements

2.1 Requirements

2.1.a SubSetTitle

14 Rec. ITU-T M.3020 (07/2011revision 2016)

SubSetTitle is the name of a sub-set of the business level requirements.

"a" represents a number, starting at 1 and increasing by 1 with each new sub-set.

The use of sub-sets is optional and all business level requirements can be stated in subclause 2.1

(requirements).

List major requirements in text, and identify use cases with actor/role and resources. The high-level use

cases (subclause 2.4 below) should bring out the business level requirements and are distinguished from

the specification requirements by not refining to lower levels. Clause 2.4 contains many examples of what

makes up the high-level use cases. Policy-related information (e.g., security, persistence) are candidates

for inclusion at this level. Numbering the requirements is required for traceability.

Requirements should be specified as described in clause A.1.3. Within a requirements specification, it is

suggested that requirements be written in the sequence of clause A.1.3 (either for the entire specification

or for each sub-set).

Use of requirements categories is optional, and – when used – a subset of the categories can be applied.

As an example, conceptual requirement number 23 in Recommendation tagged 'SM' would be specified as

follows:

Identifier Definition

REQ-SM-CON-23 A Service Order consists of a name, address, phone number, service

description and an optional FAX number for contacts {T1M1.5

Document 246 11/96}

One or more tables can be used with supportive text between tables as necessary.

2.2 Actor roles

A textual description of the actor (see clause 3) is included here.

2.3 Telecommunication resources

Textual description of the relevant resources (see clause 3) required to support the use cases are

presented here.

2.4 High-level use cases

A high-level use case diagram may be presented. In order to understand the use case by subject matter

experts, they should be augmented with a textual description for each use case. The description should

serve two purposes: to capture the domain experts' knowledge and to validate the models in analysis and

design phases with respect to the requirements. An example of a high-level use case diagram is given in

Appendix I.

2.4.a UseCaseName

UseCaseName is the name of the use-case.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of a use case.

This subclause is repeated for each high-level use case defined for the interface specification

requirements.

The high-level use cases may identify the various function sets defined in [ITU-T M.3400] or the

management processes defined in [ITU-T M.3050.x]. These use cases may be further refined as described

in the specification level requirement subclause below by using stereotypes such as "include" and

"extend".

If appropriate, sequence diagrams may be used. However, at the high-level requirements these diagrams

are not expected to be used. When the use cases at this level are further decomposed in the next level of

requirements, these diagrams may be more suitable.

The traceability of the next level of requirements from this level may be identified by how each function set

is further refined with new use cases.

A set of use case tables, using the template defined in Table A.2, may be used to represent the significant

capabilities studied at a level of abstraction appropriate to the problem being analysed.

The level of detail, and extent of coverage provided in the use cases is dependent upon the authoring

 Rec. ITU-T M.3020 (07/2011revision 2016) 15

team's familiarity with the subject matter and is therefore subjective. The lower levels of details are most

likely an indication of analysis rather than requirements capture.

It is permitted to develop successively more detailed analysis of each step of a higher abstraction level use

case by referring to the more detailed use case in the table cell reserved for this purpose. It is emphasized

this does not have to be done, and is subjective depending upon the need of the author/group.

The following list is provided to aid the initial identification of suitable use cases:

– What is the main purpose of the system?

– What types of people/system need to interact with the system?

– How can these people/systems be grouped or abstracted to roles?

– What are the start up, normal running, failure and recovery aspects of the system?

– What types of reports or data may be needed from the system?

– Which special activities are required (e.g., based on times of day and network loads)?

It is useful to document use cases in a common manner. The following structure is suggested:

– <use case table> (see Table A.2)

– <optional sequence diagram(s)>

– <optional state chart(s)>

3 Specification level requirements

3.1 Requirements

The business level requirements are further refined here using management functions from [ITU-T

M.3400]. Since [ITU-T M.3400] is not exhaustive enough to address all management services for all

managed areas, it is expected that new functions will be required. The new functions should be included in

the requirements as described below.

3.1.a SubSetTitle

SubSetTitle represents the name of a subset of specification level requirements.

"a" represents a number, starting at 1 and increasing by 1 with each new sub-set.

The use of sub-sets is optional and all specification level requirements can be stated in subclause 3.1

(requirements).

List major detailed and concrete requirements in text, and identify use cases with actor/role and

resources. The use cases in subclause 3.4 should bring out specification level requirements with lower

level details and be more implementation-oriented compared to the business level use case requirements.

Numbering the requirements is required for traceability.

Requirements should be specified as described in clause A.1.3. Within a requirements specification, it is

suggested that requirements be written in the sequence of clause A.1.3 (either for the entire specification

or for each sub-set).

Use of requirements categories is optional, and – when used – a subset of the categories can be applied.

As an example, functional requirement number 33 in a Recommendation tagged 'OM' would be specified

as follows:

Identifier Definition

REQ-OM-FUN-33 A pending operation can be cancelled by the initiator.

One or more tables can be used with supportive text between tables as necessary.

Specification level requirements should follow the conventions and templates defined in clause A.1.

3.2 Actor roles

A list of all actors and textual description of actors not already defined in the business level requirements

is included here.

3.3 Telecommunication resources

A list of all passive resources and textual description of resources not already defined in the business level

requirements is presented here.

3.4 Use cases

The high-level use cases are further refined here using several specification level use cases, each of which

will be further explained in detail in a subclause as described below.

16 Rec. ITU-T M.3020 (07/2011revision 2016)

3.4.a UseCaseName

UseCaseName is the name of the use-case.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of a use case.

If appropriate, sequence and state chart diagrams may be used.

NOTE – Guidelines and criteria for use of sequence diagrams and state chart diagrams are for further

study.

Use case specifications should follow the conventions and templates defined in clause A.1.

A.3 Simplified requirements template

The simplified requirements template is an alternative template for use in cases when only the

textual requirements are required. A separate template is defined to avoid ambiguity that would

result by adding options in the full-form template described in clause A.2.

1 Concepts and background

Define major goals and objectives and the applicable management interfaces (and reference points) for this

specification. Use [ITU-T M.3200] categorization as a source for identifying the management service(s)

supported by this interface.

This clause should give a clear description of the users' benefit, i.e., the reason for performing this

management service. Background and context should be added as necessary, but the explanatory and

descriptive parts should be separated. Supporting background information, where required, should be

placed in an appendix.

1.a SubClauseTitle

SubClauseTitle is the name of the subclause.

"a" represents a number, starting at 1 and increasing by 1 with each new subclause.

The use of subclauses is optional.

2 Requirements

2.a SubSetTitle

SubSetTitle is the name of a sub-set of the business level requirements.

"a" represents a number, starting at 1 and increasing by 1 with each new sub-set.

The use of sub-sets is optional and all business level requirements can be stated in clause 2 (requirements).

List major requirements in text, and identify use cases with actor/role and resources. The use cases should

bring out high-level requirements and are distinguished from the specification requirements by not refining

to lower levels. Policy-related information (e.g., security, persistence) are candidates for inclusion at this

level. Numbering the requirements is required for traceability.

Requirements should be specified as described in subclause A.1.3. Within a requirements specification, it is

suggested that requirements are written in the sequence of subclause A.1.3 (either for the entire specification

or for each sub-set).

Use of requirements categories is optional, and – when used – a subset of the categories can be applied.

As an example, conceptual requirement number 23 in a Recommendation tagged 'SM' would be specified as

follows:

Identifier Definition

REQ-SM-CON-23 A Service Order consists of a name, address, phone number, service

description and an optional FAX number for contacts {T1M1.5

Document 246 11/96}

One or more tables can be used with supportive text between tables as necessary.

 Rec. ITU-T M.3020 (07/2011revision 2016) 17

18 Rec. ITU-T M.3020 (07/2011revision 2016)

Annex B

Analysis

(This annex forms an integral part of this Recommendation.)

 B.1 Conventions

 B.1.1 Mandatory, optional and conditional qualifiers

 B.2 Analysis template

 1 Concepts and background

 2 Information object classes

 2.1 Imported information entities and local labels

 2.2 Class diagram

 2.2.1 Attributes and relationships

 2.2.2 Inheritance

 2.3 Information object class definitions

 2.3.a InformationObjectClassName

 2.4 Information relationship definitions

 2.4.a InformationRelationshipName (supportQualifier)

 2.5 Information attribute definitions

 2.5.1 Definition and legal values

 2.5.2 Constraints

 2.6 Common notifications

 2.7 System state model

 3 Interface definition

 3.1 Class diagram representing interfaces

 3.2 Generic rules

 3.b Interface InterfaceName (supportQualifier)

 3.b.a Operation OperationName (supportQualifier)

 3.b.b Notification NotificationName (supportQualifier)

 3.c Scenario

 B.3 IOC properties, inheritance and import

 B.3.1 Property

 B.3.2 Inheritance

 B.3.3 Import

The following are guidelines for specification of the results of the analysis phase.

The analysis template is based on the 3GPP information service [b-3GPP TS 32.1571] and

augmented to meet additional requirements on the methodology (e.g., traceability).

For a management interface specification, both subclauses 2.2 and 2.3 of "Analysis" template

indicated in clause B.2 shall be used. For an information model (e.g., a network resource model),

only subclause 2.2 shall be used.

 Rec. ITU-T M.3020 (07/2011revision 2016) 19

The analysis template uses Information Type as one characteristic to describe IOC attributes and

operation/notification parameters. The valid Information Type(s) that can be used and their

semantics are defined in Annex E.

An example of the use of this template can be found in Appendix II.

The constructs "Analysis|Information Service" and "Design|Solution" sets are used to denote the

equivalent, but differently named, specifications developed by ITU-T and 3GPP.

B.1 Conventions

B.1.1 Mandatory, optional and conditional qualifiers

This subclause defines a number of terms used to qualify the relationship between the

Analysis|Information Service, the Design|Solution Sets and their impact on the interface

implementations. The qualifiers defined in this subclause are used to qualify agent behaviour only.

This is considered sufficient for the specification of the management interfaces.

Analysis specification|IS specifications define IOC attributes, interfaces, operations, notifications,

operation parameters and notification parameters. They can have the following support/read/write

qualifiers: M, O, CM, CO, C.

Definition of qualifier M (Mandatory):

• Used for items that shall be supported.

Definition of qualifier O (Optional):

• Used for items which may or may not be supported.

Definition of qualifier CM (Conditional-Mandatory):

• Used for items that are mandatory under certain conditions, specifically:

– All items having the support qualifier CM shall have a corresponding constraint

defined in the Recommendation|IS specification. If the specified constraint is met, then

the items shall be supported.

Definition of qualifier CO (Conditional-Optional):

• Used for items that are optional under certain conditions, specifically:

– All items having the support qualifier CO shall have a corresponding constraint defined

in the Recommendation|IS specification. If the specified constraint is met, then the

items may be supported.

Definition of qualifier C (SS-Conditional):

• Used for items that are only applicable for certain but not all Designs|Solutions Sets (SSs).

Design|SS specifications define the SS-equivalents of the IOC attributes, operations, notifications,

operation parameters and notification parameters. These SS-equivalents can have the following

support/read/write qualifiers: M, O, CM and CO.

The mapping of the qualifiers of Analysis|IS-defined constructs to the qualifiers of the

corresponding SS-constructs is defined as follows:

• For qualifier M, O, CM and CO, each IS-defined item (operation and notification, input and

output parameter of operations, input parameter of notifications, information relationship

and information attribute) shall be mapped to its equivalent(s) in all SSs. Mapped

equivalent(s) shall have the same qualifier as the IS-defined qualifier.

• For qualifier C, each IS-defined item shall be mapped to its equivalent(s) in at least one SS.

Mapped equivalent(s) can have support qualifier M or O.

20 Rec. ITU-T M.3020 (07/2011revision 2016)

Table B.1 defines the semantics of qualifiers of the equivalents, in terms of support from the agent

perspective.

Table B.1 – Semantics for qualifiers used in Design|Solution sets

Mapped SS

equivalent
Mandatory Optional

Conditional-

Mandatory

(CM)

Conditional-

Optional (CO)

Mapped

notification

equivalent

The agent

shall

generate the

notification.

The agent may or may not

generate it.

The agent shall

generate this

notification if

the constraint

for this item is

satisfied.

The agent may

choose whether or

not to generate it. If

the agent chooses

to generate it, the

constraint for this

notification must

be satisfied.

Mapped

operation

equivalent

The agent

shall support

it.

The agent may or may not

support this operation. If the

agent does not support this

operation, the agent shall

reject the operation invocation

with a reason indicating that

the agent does not support this

operation. The rejection,

together with a reason, shall

be returned to the manager.

The agent shall

support this

operation if the

constraint for

this item is

satisfied.

The agent may

support this

operation if the

constraint for this

item is satisfied.

Input parameter

of the mapped

operation

equivalent

The agent

shall accept

and behave

according to

its value.

The agent may or may not

support this input parameter.

If the agent does not support

this input parameter and if it

carries meaning (i.e., it does

not carry no-information

semantics), the agent shall

reject the invocation with a

reason (that it does not

support the parameter). The

rejection, together with the

reason, shall be returned to

the manager.

The agent shall

accept and

behave

according to its

value if the

constraint for

this item is

satisfied.

The agent may

accept and behave

according to its

value if the

constraint for this

item is satisfied.

Input parameter

of mapped

notification

equivalent

AND

output parameter

of mapped

operation

equivalent

The agent

shall supply

this

parameter.

The agent may supply this

parameter.

The agent shall

supply this

parameter if the

constraint for

this item is

satisfied.

The agent may

supply this

parameter if the

constraint for this

item is satisfied.

Mapped IOC

attribute

equivalent

The agent

shall support

it.

The agent may support it. The agent shall

support this

attribute if the

constraint for

this item is

satisfied.

The agent may

support this

attribute if the

constraint for this

item is satisfied.

 Rec. ITU-T M.3020 (07/2011revision 2016) 21

B.2 Analysis template

1 Concepts and background

This clause should provide an introduction to the management interface specification analysis.

1.a SubClauseTitle

SubClauseTitle is the name of a subclause.

"a" represents a number, starting at 1 and increasing by 1 with each new subclause.

The use of subclauses is optional.

2 Information object classesModel

This clause shall be used for all specifications (both management interface specifications and information

model only specifications).

2.1 Imported information entities and local labels

This subclause identifies a list of information entities (e.g., information object class, interface, information

relationship, information attribute) that have been defined in other specifications and that are imported in

the present (target) document. All imported entities shall be treated as defined locally in the present target

specification. One usage for import is for inheritance purpose.

Each element of this list is a pair (label reference, local label). The label reference contains the name of the

specification where it is defined, the type of the information entity and its name. The local label of imported

information entities can then be used throughout the specification instead of the label reference.

This information is provided in a table.

Label reference Local label

Imported elements should be from protocol neutral definitions based on this methodology but may import

elements from other specifications, if necessary, in the interest of migration of protocol specific

specifications over time.[KJ2]

Guidelines on entity import as well as IOC properties and inheritance can be found in Annex F.[KJ3][M4][KJ5]

2.2 Class diagram

2.2.1 Relationships

This first set of diagrams represents all information object classes defined in this IS specification with all

their relationships and all their attributes, including relationships with imported information entities IOCs

(if any). These diagrams shall contain information object class cardinalities (for associations as well as

containment relationships) and may also contain association names and role names. These shall be UML

compliant class diagrams (see also Annex C).

Characteristics (relationships) of imported information object classes need not be repeated in the diagram.

Allowable classes are specified in Annex C.

Use this as the first paragraph: "This clause depicts the set of classes (e.g. IOCs) that encapsulates the

information relevant for this management specification. This clause provides an overview of the

relationships between relevant classes in UML. Subsequent clauses provide more detailed specification of

various aspects of these classes."

Information object classes should be defined using the stereotype <<InformationObjectClass>>.

2.2.2 Inheritance

This second set of diagrams represents the inheritance hierarchy of all information object classes defined in

this specificationIS. These diagrams do not need to contain the complete inheritance hierarchy but shall at

22 Rec. ITU-T M.3020 (07/2011revision 2016)

least contain the parent information object classes of all information object classes defined in the present

document. By default, a n information object class inherits from the information object class "top". These

shall be UML compliant class diagrams.

Characteristics (attributes, relationships) of imported information object classes need not be repeated in the

diagram. Information object classes should be defined using the stereotype <<InformationObjectClass>>.

NOTE 1 – Some inheritance relationships presented in subclause 2.2.2 can be repeated in subclause 2.2.1 to

enhance readability.

NOTE 2 – Interface inheritance is shown in subclause 3.1 and not in this subclause.

Use "This subclause depicts the inheritance relationships." as the first paragraph.

2.3 Information object cClass definitions

Each information object class is defined using the following structure.

Inherited items (attributes, etc.) shall not be shown, as they are defined in the parent classes(es) IOC(s) and

thus valid for all the subclasses.

2.3.a InformationObjectClassName

InformationObjectClassName is the name of the information object class.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an IOCa class.

2.3.a.1 Definition

The <Definition> subclause is written in natural language. The <Definition> subclause refers to the

information object class itself. The characteristics related to the relationships that the object class can have

with other object classes cannot be found in the definition. The reader has to refer to relationships definition

to find such kind of information. Information related to inheritance shall be specified here.

Information on traceability back to one or more requirements supported by this IOC class should also be

defined here, in the following form:

Document rReference Requirements label Comment

2.3.a.2 Attributes

The <Attributes> subclause presents the list of attributes, which are the manageable properties of the object

class. Each element is a tuple (attributeName, supportQualifier, readQualifier, writeQualifier):

– The supportQualifier indicates whether the attribute is Mandatory (M), Optional (O), Conditional-

Mandatory (CM), Conditional-Optional (CO), SS-Conditional (C) or Not supported (–). Allowed values are:

Mandatory, Optional, Conditional or Not supported ("M","O","C", or "–", respectively).

– The readQualifier indicates whether the attribute shall be readable by the manager. The possible values

are: Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO),

SS-Conditional (C) or Not supported (–). Allowed values are: Mandatory (M), Optional (O) and Not

supported (–).

– The writeQualifier indicates whether the attribute shall be writeable by the manager. The semantics for

writeQualifier is identical to supportQualifier, for "M", "O", and "–". Allowed values are: Mandatory (M),

Optional (O) and Not supported (–).

There is a dependency relationship between the supportQualifier, readQualifier, and writeQualifier. The

supportQualifier indicates the requirements for the support of the attribute. For any given attribute,

regardless of the value of the supportQualifier, at least one of the readQualifier or writeQualifier must be

"M". The implication of the "O" supportQualifier is that the attribute is optional; however, the read and

write qualifiers indicate how the optional attribute shall be supported, should the optional attribute be

supported.

Private or agent internal attributes are per definition not writable by the IRPManager. Their writeQualifier

is hence always "–".

The readQualifier and writeQualifier of a supported attribute, that is public, may not be both "–".

Each attribute is characterised by some of the attribute properties (see Table 1 of Annex [M6]C), i.e.

supportQualifier, isReadable, isWritable,isInvariant and isNotifyable.

 Rec. ITU-T M.3020 (07/2011revision 2016) 23

The legal values and their semantics for attribute properties are defined in Annex C. The use of "–" in

supportQualifier is reserved for documenting support of attributes defined by an "Archetype" IOC (see

subclause C.3.5). Attributes with a supportQualifier of "–" are not implemented by the IOC that is realizing

a subset of the attributes defined by the "Archetype". The readQualifier and writeQualifier are of no

relevance in this case. However, a not supported attribute is neither readable nor writable. For this reason,

the readQualifier and writeQualifier shall be "–" for unsupported attributes.

For any IOC that uses one or more attributes from an "Archetype", a separate table shall be used to indicate

the supported attributes. This table is absent if no "Archetype" attributes are supported. For example, if a

particular IOC has defined attributes (i.e., attributes not defined by an "Archetype") and encapsulates

attributes from two "Archetype"s, then the totality of the attributes of the said IOC will be contained in three

separate tables.

24 Rec. ITU-T M.3020 (07/2011revision 2016)

This information is provided in a table.[KJ7]

Attribute

name

Support

qualifier

Read

qualifierisReadable

Write

qualifierisWriteable

isInvariant Requirement

IDsisNotifyable

In case there is one or more attributes related to role (see Annex C.XX), the attributes related to role shall be

specified at the bottom of the table with a divider “Attribute related to role”, as shown in the following

example:

Attribute name
Support

qualifier
isReadable isWriteable

isInvariant
isNotifyable

…

…

Attribute related to role

…

…

2.3.a.3 Attribute constraints

The <Attribute constraints> subclause presents constraints between for the attributes, and one usage is to

present the predicates for conditional qualifiers (CM/CO). that are always held to be true. Those properties

are always held to be true during the lifetime of the attributes and in particular do not need to be repeated in

pre- or post-conditions of operations or notifications.

This information is provided in a table.

Name Definition

NOTE – This subclause shall state “None.” does not need to be present when there isare no attribute

constraints to define.

2.3.a.4 Relationships[KJ8][M9]

The <Relationship> subclause presents the list of relationships in which this class is involved. Each element

is a relationshipName.

The relationships will be listed in a table as follows:

Relationship Requirement IDs

And each relationship name should be a reference (and preferably also a hyperlink) to the appropriate

subclause of clause 2 (information object classes).

NOTE – This subclause is optional and may be avoided since all relationships are represented in the class

diagram in subclause 2.2.1.

2.3.a.5 State diagram[KJ10][M11]

The <State diagram> subclause contains state diagrams. A state diagram of an information object class

defines permitted states of this information object class and the transitions between those states. A state is

expressed in terms of individual attribute values or a combination of attribute values or involvement in

relationships of the information object class being defined. This shall be a UML-compliant state diagram.

NOTE – This subclause does not need to be present when there is no state diagram to define.

2.3.a.6 Notifications

 Rec. ITU-T M.3020 (07/2011revision 2016) 25

The <Notifications> subclause, for this classIOC, presents one of the following options:

a) optionally, a reference to the common notifications defined in subclause 2.6 as valid for this IOC, and

b) optionally, a list of notifications that shall be excluded from the list of common notifications (defined in

subclause 2.6) for this IOC (note that inherited notifications from the parent IOC(s) cannot be excluded),

and

c) optionally, a list of notifications applicable to this IOC, and which may or may not be defined in the

common notifications in subclause 2.6.

a) The class defines (and independent from those inherited) the support of a set of notifications that is identical to that

defined in clause 2.4.5. In such case, use "The common notifications defined in clause 2.4.5 are valid for this class,

without exceptions or additions." as the lone sentence of this clause.

b) The class defines (and independent from those inherited) the support of a set of notifications that is a superset of

that defined in clause 2.4.5. In such case, use "The common notifications defined in clause 2.4.5 are valid for this

class. In addition, the following set of notification is also valid." as the lone paragraph of this clause. Then, define

the ‘additional’ notifications in a table. See clause 2.4.5 for the notification table format.

c) The class defines (and independent from those inherited) the support of a set of notifications that is not identical to,

nor a superset of, that defined in clause 2.4.5. In such case, use "The common notifications defined in clause 2.4.5

are not valid for this class. The set of notifications defined in the following table is valid." as the lone paragraph of

this clause. Specify the set of notifications in a table. See clause 2.4.5 for the notification table format.

d) The class does not define (and independent from those inherited) the support of any notification. In such case, use

"There is no notification defined." as the lone sentence of this clause.

The notifications identified (options a-c above) in this subclause are notifications that can be emitted across

the management interface, where the "object class" and "object instance" parameters of the notification

header (see Note 2) of these notifications identify an instance of the IOC defined by the encapsulating

subclause (i.e., subclause 2.3.a).

The notifications identified (options a-c above) in this subclause may originate from implementation

object(s) whose identifier is mapped in the implementation, to the object instance identifier used over the

management interface may or may not be the same as that carried in the notification parameters “object

class” and “object instance” . Hence, the identificationpresence of notifications in this subclause

(i.e., subclause 2.3.a.6) does not imply nor identify those notifications as being originated from an instance

of the IOC class (or its direct or indirect derived class) defined by the encapsulating subclause (i.e.,

subclause 2.3.a).

The information related to option c) above is provided in a table. An example of such a table is given below:

Name Qualifier Requirement IDs Notes

NOTE 1 – This subclause and table can be absent. This clause shall state "This class does not support any

notification." (see option-c) when there is no notification defined for this class. (Note that if its parent class has defined

some notifications, the implementation of this class is capable of emitting those inherited defined notifications.)

NOTE 2 – The notification header is defined in the notification IRP Information service

[b-3GPP TS 32.302].

NOTE 3 – The qualifier of a notification, specified in Notification Table, indicates if an implementation can

generate asuch notification can carrying the instance DN in the notificationof the subject class. The qualifier

of a notification, specified in a management specification, indicates the support level regarding the emission

of the subject notification.if an implementation of the management specification can generate such

notification in general.

A Manager can receive notification-XYZ that carries DN (the “object class” and “object instance”) of class-

ABC instance if and only if:

1) The class-ABC Notification Table defines the notification-XYZ and

2) The class-ABC instance implementation supports this notification-XYZ and

3) A management interface defines the notification-XYZ and

4) The management interface implementation supports this notification-XYZ.

2.4 Information relationship definitions

26 Rec. ITU-T M.3020 (07/2011revision 2016)

This subclause first lists all the relationships supported by this Recommendation | Specification in the

following table. Support qualifier is defined as for attributes in clause B.1.

Relationship Support Qualifier Requirement IDs

Each information relationship is defined using the following structure.

Inherited relationships shall not be shown, as they are defined by the parent IOC(s) and thus valid for all

subclasses.

2.4.a InformationRelationshipName (supportQualifier)

InformationRelationshipName is the name of the information relationship followed by a qualifier (see

clause B.1).

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an information

relationship.

2.4.a.1 Definition

The <Definition> subclause is written in natural language.

2.4.a.2 Roles

The <Roles> subclause identifies the roles played in the relationship by object classes. Each element is a

pair (roleName, roleDefinition).

This information is provided in a table.

Name Definition

2.4.a.3 Constraints

The <Constraints> subclause contains the list of properties specifying the semantic invariants that must be

preserved on the relationship. Each element is a pair (propertyName, propertyDefinition). Those properties

are always held to be true during the lifetime of the relationship and do not need to be repeated in pre- or

post-conditions of operations or notifications.

This information is provided in a table.

Relationship Support Qualifier Requirement IDs

2.45 Information aAttribute definitions

Each information attribute is defined using the following structure.

Inherited attributes shall not be shown, as they are defined in the parent IOC(s) and thus valid for all

subclasses.

2.45.1 Definition and legal valuesAttribute properties

It has a lone paragraph "The following table defines the properties of attributes that are specified in the

present document.".

Each information attribute is defined using the following structure.

Inherited attributes shall not be shown, as they are defined in the parent class(es) and thus valid for this

class.

An attribute has properties (see Table 1 of Annex C). Some properties of an attribute are defined in 2.3.a.2

(e.g. Support Qualifier). The remaining properties of an attribute (e.g. documentation, default value) are

defined here.

 Rec. ITU-T M.3020 (07/2011revision 2016) 27

The information is provided in a table. In case a) attributes of the same name are specified in more than one

class and b) the attributes have different properties, then the attribute names (first column) should be

prefixed with the class name followed by a period.

An example is given below:

Attribute Name Documentation and Allowed Values Properties

xyzId It identifies …

allowedValues …

type: Integer
multiplicity: …
isOrdered: …
isUnique: …
defaultValue: …

isNullable: False

In case there is one or more attributes related to role (see section 5.2.9 of Annex C), the attributes related to role shall

be specified at the bottom of the table with a divider "Attribute related to role". See example below.

Attribute Name Documentation and Allowed Values Properties

abc It identifies …

allowedValues …

type: Integer
multiplicity: …
isOrdered: …
isUnique: …
defaultValue: …

isNullable: False

Attribute Related to Role

aEnd It identifies …

allowedValues …

type: DN
multiplicity: …
isOrdered: …
isUnique: …
defaultValue: …
isNullable: False

This subclause contains, for each attribute being defined, its Attribute Name, its Definition written

in natural language, an Information Type (see Annex E) and an optional list of Legal Values

supported by the attribute.

In the case where the Legal Values can be enumerated, each element is a pair (Legal Value Name, Legal

Value Semantics), unless a Legal Value Semantics applies to several values in which case the Semantics is

provided only once. When the Legal Values cannot be enumerated, the list of Legal Values is defined by a

single definition.

This information is provided in a table.

Attribute Name Definition
Information Type/

Legal Values

2.45.2 Constraints

The <Constraints> subclause indicates whether there are any constraints affecting attributes. Each

constraint is defined by a tuple (propertyName, affected attributes, propertyDefinition). PropertyDefinitions

are expressed in natural language.

This information is provided in a table. [KJ12]

28 Rec. ITU-T M.3020 (07/2011revision 2016)

Name Affected attribute(s)[M13] Definition

This subclause shall state “None.” if there is no constraint.

2.56 Common notifications

This <Common Notifications> subclause presents a list of notifications that can be referred to by any IOC

class defined by this management interfacein the specification. These notifications are only applicable to

IOCs referring to this subclause in subclause 2.3.a.6.

This information is provided in a table.

Name Qualifier Notes

NOTE – This subclause does not need to be present when there are no common notifications.This subclause

shall state “None.” if there are no common notifications.

2.5.1 Alarm notifications[M14]

The following quoted text shall be copied as the only paragraph of this clause.

"This clause presents a list of notifications, defined in [x], that a manager can receive. The notification

header attribute objectClass/objectInstance, defined in [y], shall capture the DN of an instance of a class

defined in this specification."

The information is provided in a table. The following is an example.

Name Qualifier Notes

notifyNewAlarm M -

2.5.2 Configuration notifications

The following quoted text shall be copied as the only paragraph of this clause.

"This clause presents a list of notifications, defined in [x], that IRPManager can receive. The notification

header attribute objectClass/objectInstance, defined in [z], shall capture the DN of an instance of a class

defined in this specification."

The information is provided in a table. The following is an example.

Name Qualifier Notes

notifyAttributeValueChange O -

notifyObjectCreation O -

notifyObjectDeletion O -

2.67 System state model[KJ15][M16]

Some configurations of information are special or complex enough to justify the usage of a state diagram to

clarify them. A state diagram in this subclause defines permitted states of the system and the transitions

between those states. A state is expressed in terms of a combination of attribute values constraints or

involvement in relationships of one or more information object classes.

3 Interface definition[KJ17][M18]

This clause shall be used for all management interface specifications and optional for information model

only specifications.

3.1 Class diagram representing interfaces

Each interface is defined in the diagram. This shall be a UML-compliant class diagram (see also Annex C).

Interfaces are defined using a stereotype <<Interface>>. Each interface contains a set of either operations

 Rec. ITU-T M.3020 (07/2011revision 2016) 29

or notifications which are mandatory or either a single operation or a single notification which is optional.

Stereotypes (see Annex C) are used to specify optional or mandatory interfaces. On the class diagram, each

operation and notification in an interface shall be qualified as "public" by the addition of a symbol "+"

before each operation and notification.

NOTE – Interface inheritance can be shown in this subclause.

3.2 Generic rules

The following rules are relevant to all specifications. They shall simply be copied as part of the specification.

Rule 1: Each operation with at least one input parameter supports a pre-condition valid_input_parameter

which indicates that all input parameters shall be valid with regard to their information type. Additionally,

each such operation supports an exception operation_failed_invalid_input_parameter which is raised when

pre-condition valid_input_parameter is false. The exception has the same entry and exit state.

Rule 2: Each operation with at least one optional input parameter supports a set of pre-conditions

supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter and the

pre-condition indicates that the operation supports the named optional input parameter. Additionally, each

such operation supports an exception operation_failed_unsupported_optional_input_parameter_xxx which

is raised when (a) the pre-condition supported_optional_input_parameter_xxx is false and (b) the named

optional input parameter is carrying information. The exception has the same entry and exit state.

Rule 3: Each operation shall support a generic exception operation_failed_internal_problem which is raised

when an internal problem occurs and that the operation cannot be completed. The exception has the same

entry and exit state.

NOTE – Security considerations and resulting generic rules are for further study.

3.b Interface InterfaceName (supportQualifier)

InterfaceName is the name of the interface followed by a qualifier (see clause B.1).

"b" represents a number, starting at 3 and increasing by 1 with each new definition of an interface.

Each interface is defined by its name and by a sequence of operations or notifications as defined here below.

Each operation is defined using the following structure.

NOTE – Grouping of operations/partitioning of interface contents and naming of interfaces is for further

study.

3.b.a Operation OperationName (supportQualifier)

OperationName is the name of the operation followed by a qualifier (see clause B.1).

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an operation.

3.b.a.1 Definition

The <Definition> subclause is written in natural language.

Information on traceability back to one or more requirements supported by this operation should also be

defined here, in the following form:

30 Rec. ITU-T M.3020 (07/2011revision 2016)

Reference Requirements label Comment

3.b.a.2 Input parameters

List of input parameters of the operation. Each element is a tuple (Parameter Name, Support Qualifier,

Information Type (see Annex E and Note in clause E.2) and an optional list of Legal Values supported by the

parameter, Comment). Legal values for the Support Qualifier are specified in clause B.1.

This information is provided in a table.

Parameter Name
Support

Qualifier

Matching Information Type/

Legal Values
Comment

NOTE – Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values

can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal

Value Semantics applies to several values in which case the definition is provided only once. When the Legal

Values cannot be enumerated, the list of Legal Values is defined by a single definition.

3.b.a.3 Output parameters

List of output parameters of the operation. Each element is a tuple (Parameter Name, Support Qualifier,

Matching Information / Information Type (see Annex E and Note in clause E.2) and an optional list of Legal

Values supported by the parameter, Comment). Legal values for the Support Qualifier are specified in

clause B.1.

This information is provided in a table.

Parameter Name
Support

Qualifier

Matching Information/

Information Type/

Legal Values

Comment

NOTE – Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values

can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal

Value Semantics applies to several values, in which case the definition is provided only once. When the

Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

This table shall also include a special parameter 'status' to indicate the completion status of the operation

(success, partial success, failure reason, etc.).

3.b.a.4 Pre-condition

A pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-

condition must be held to be true before the operation is invoked.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the pre-

condition are provided in a table.

Assertion Name Definition

 Rec. ITU-T M.3020 (07/2011revision 2016) 31

3.b.a.5 Post-condition

A post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The

post-condition must be held to be true after the completion of the operation. When nothing is said in a post-

condition regarding an information entity, the assumption is that this information entity has not changed

compared to what is stated in the pre-condition.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the

post-condition are provided in a table.

Assertion Name Definition

3.b.a.6 Exceptions

List of exceptions that can be raised by the operation. Each element is a tuple (exceptionName, condition,

ReturnedInformation, exitState).

3.b.a.6.c exceptionName

ExceptionName is the name of an exception.

"c" represents a number, starting at 1 and increasing by 1 with each new definition of an exception.

This information is provided in a table.

Exception Name Definition

 Condition

Return info

Exit state

 Condition

Return info

Exit state

3.b.a.7 Constraints

The <Constraints> subclause presents constraints for the operation or its parameters.

NOTE – This subclause does not need to be present when there are no constraints to be defined.

3.b.b Notification NotificationName (supportQualifier)

NotificationName is the name of the notification followed by a qualifier (see clause B.1).

"b" represents a number, starting at 1 and increasing by 1 with each new definition of a notification.

3.b.b.1 Definition

The <Definition> subclause is written in natural language.

Information on traceability back to one or more requirements supported by this notification should also be

defined here, in the following form:

Reference Requirements label Comment

3.b.b.2 Input parameters

List of input parameters of the notification. Each element is a tuple (Parameter Name, Qualifiers, Matching

Information/Information Type (see Annex E and Note in clause E.2) and an optional list of Legal Values

supported by the parameter, Comment).

32 Rec. ITU-T M.3020 (07/2011revision 2016)

The column "Qualifiers" contains the two qualifiers, Support Qualifier (see clause B.1) and Filtering

Qualifier, separated by a comma. The Filtering Qualifier indicates whether the parameter of the notification

can be filtered or not. Values are Yes (Y) or No (N).

This information is provided in a table.

Parameter

Name
Qualifiers

Matching Information/

Information Type/

Legal Values

Comment

NOTE – Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values

can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal

Value Semantics applies to several values, in which case the definition is provided only once. When the

Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

3.b.b.3 Triggering event

The triggering event for the notification to be sent is the transition from the information state defined by the

"from state" subclause to the information state defined by the "to state" subclause.

3.b.b.3.1 From state

This subclause is a collection of assertions joined by AND, OR, and NOT logical operators.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state

"from state" are provided in a table.

Assertion Name Definition

3.b.b.3.2 To state

This subclause is a collection of assertions joined by AND, OR and NOT logical operators. When nothing is

said in a to-state regarding an information entity, the assumption is that this information entity has not

changed compared to what is stated in the from state.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state

"to state" are provided in a table.

Assertion Name Definition

3.b.b.4 Constraints

The <Constraints> subclause presents constraints for the notification or its parameters.

NOTE – This subclause does not need to be present when there are no constraints to be defined.

3.c Scenario

This subclause contains one or more sequence diagrams, each describing a possible scenario. These shall be

UML-compliant sequence diagrams. This is an optional subclause.

 Rec. ITU-T M.3020 (07/2011revision 2016) 33

B.3 IOC properties and inheritance

B.3.1 Property

The properties of an IOC (excluding Support IOC) are specified in terms of the following:

a) An IOC attribute(s) including its semantics and syntax, its legal value ranges and support

qualifications. The IOC attributes are not restricted to Configuration Management but also

include those related to, for example, 1) Performance Management (i.e., measurement

types), 2) Trace Management and 3) Accounting Management.

b) The non-attribute-specific behaviour associated with an IOC (see Note 1).

NOTE 1 – As an example, the Link between A and B is optional. It is mandatory if the A instance

belongs to one ManagedElement instance while the B instance belongs to another ManagedElement

instance. This Link behaviour is a non-attribute-specific behaviour. It is expected that this

behaviour, like others, will be inherited.

c) An IOC relationship(s) with another IOC(s).

d) An IOC notification type(s) and their qualifications.

e) An IOC's relation with its parents (see Note 2). There are three mutually exclusive cases:

1) The IOC is abstract and no parents have yet been designated.

2) The IOC is abstract and all of the possible parent(s) have been designated and whether

subclass IOCs can be designated as a root IOC.

3) The IOC is not abstract and all of the possible parent(s) have been designated and

whether the IOC can be designated as a root IOC.

An IOC instance is either a root IOC or it has one and only one parent.

NOTE 2 – The parent and child relation in this subclause is the parent name-containing the child

relation.

f) An IOC's relation with its children. There are three mutually exclusive cases:

1) An IOC shall not have any children (name-containment relation) IOCs.

2) An IOC can have children IOC(s). The maximum number of instances per children

IOC can be specified. An IOC may designate that vendor-specific objects are not

allowed as children IOCs.

3) An IOC can only have the specific children IOC(s) (or their subclasses). The maximum

number of instances per children IOC can be specified. An IOC may designate that

vendor-specific objects are not allowed as children IOCs.

g) Whether An IOC can be instantiated or not (i.e., whether an IOC is an abstract IOC).

h) An attribute for naming purpose.

B.3.2 Inheritance

An IOC (the subclass) inherits from another IOC (the superclass) in that the subclass shall have all

the properties of the superclass.

The subclass can change the inherited support-qualification(s) from optional to mandatory but not

vice versa. The subclass can change the inherited support-qualification from conditional-optional to

conditional-mandatory but not vice versa.

An IOC can be a superclass of many IOC(s). A subclass cannot have more than one superclass.

The subclass can:

a) Add (compared to those of its superclass) unique attributes including their behaviour, legal

value ranges and support-qualifications. Each additional attribute shall have its own unique

attribute name (among all added and inherited attributes).

34 Rec. ITU-T M.3020 (07/2011revision 2016)

b) Add non-attribute behaviour on an IOC basis. This behaviour may not contradict inherited

superclass behaviour.

c) Add relationship(s) with IOC(s). Each additional relationship shall have its own unique

name (among all added and inherited relations).

d) Add additional notification types and their qualifications.

e) Designate all of the possible parent(s) (and their subclasses) if the superclass has

Property-e-1 such that an IOC will have Property-e-2 or Property-e-3. Restrict possible

parent(s) (and their subclasses) and/or remove the capability of the subclass from being a

root IOC, if the superclass has Property-e-2 or Property-e-3.

f) Add children IOC(s) if the superclass has Property-f-2 such that an IOC will have

Property-f-3. Restrict the allowed children IOC(s) (or their subclasses) if the superclass has

Property-f-3.

g) Specify whether an IOC can be instantiated or not (i.e., the IOC is an abstract IOC).

h) Restrict the legal value range of a superclass attribute that has a legal value range.

B.3.3 Import

To facilitate reuse of IOC definitions among IRP specifications, an import mechanism is used by

one IRP specification (called the subject IRP) specification to reuse IOC definition defined in

another IRP specification. When the subject IRP specification imports an IOC, it cannot change the

imported IOC property. If it requires changes to the imported IOC, it must use inheritance to define

its own new class.

 Rec. ITU-T M.3020 (07/2011revision 2016) 35

Annex C

MISM UML repertoire

(This annex forms an integral part of this Recommendation.)

The following are guidelines for specification of the results of the analysis phase as based on 3GPP

unified modelling language (UML) repertoire [b-3GPP TS 32.152156].

C.1 Introduction

UML provides a rich set of concepts, notations and model elements to model distributed systems.

Usage of all UML notations and model elements is not necessary for the purpose of analysis

specifications. This annex documents the necessary and sufficient set of UML notations and model

elements, including the ones built by the UML extension mechanism <<stereotype>>, for use by

development of protocol-neutral specifications. Collectively, this set of notations and model

elements is called the UML modelling repertoire.

Recommendations following the methodology shall employ the UML notation and model elements

of this repertoire and may also employ other UML notation and model elements considered

necessary.

C.2 Basic model elements

C.2.1 General

UML defined a number of basic model elements. This subclause lists the selected subset for use in

specifications based on the repertoire. The semantics of these selected ones basic model elements

are defined in [OMG UMLUML-I].

For each basic model element listed, there are three parts. The first part contains its description. The

second part contains its graphical notation examples and the third part contains the rule, if any,

recommended for labelling or naming it.

The graphical notation has the following characteristics:

a) Subclause 7.2.7 of [OMG UML-S] specifies "A class is often shown with three

compartments. The middle compartment holds a list of attributes while the bottom

compartment holds a list of operations" and "Additional compartments may be supplied to

show other details". This repertoire only allows the use of the name (top) compartment and

attribute (middle) compartment. The operation (bottom) compartment may be present but is

always empty, as shown in the figure below.

b) Classes may or may not have attributes. The graphical notation of a class may show an

empty attribute (middle) compartment even if the class has attributes, as shown in figure

below.

c) The visibility symbol shall not appear along with the class attribute, as shown below.

36 Rec. ITU-T M.3020 (07/2011revision 2016)

d) The use of the decoration, i.e. the symbol in the name (top) compartment, is optional.

C.2.2 Attribute

See subclause 3.25 of [OMG UML].

This sample shows some attributes, listed as strings in the attribute compartment of the class

AlarmInformation.

C.2.2.1 Description

It is a typed element representing a property of a class. See 10.2.5 Property of [OMG-UML-I].

An element that is typed implies that the element can only refer to a constrained set of values.

See 10.1.4 Type of [OMSG-UML-I1[M19]] for more information on type.

See 5.3.4 and 5.4.3 for predefined data types and user-defined data types that can apply type

information to an element.

Table C.1 captures the properties of this modelled element.

Table C.1 – Attribute properties

Property

name

Description Legal values

documentation Contains a textual description of the attribute.

Should refer (to enable traceability) to the specific requirement.

Any

isOrdered For a multi-valued multiplicity; this specifies if the values of this

attribute instance are sequentially ordered. See section 7.3.44 and its

Table 7.1 of [OMG-UML-S].

True, False (default)

isUnique For a multi-valued multiplicity, this specifies if the values of this

attribute instance are unique (i.e., no duplicate attribute values). See

section 7.3.44 and its Table 7.1 of [OMG-UML-S].

True (default), False

isReadable Specifies that this attribute can be read by the manager. True (default), False

isWritable Specifies that this attribute can be written by the manager under the

conditions specified in Annex G.

True, False (default)

type Refers to a predefined (see section 00) or user defined data type (see

section 00. See also section 7.3.44 of Error! Reference source not

found.Error! Reference source not found., inherited from

StructuralFeature.

NA

isInvariant Attribute value is set at object creation time and cannot be changed

under the conditions specified in Annex G.

True, False (default)

AlarmInformation

alarmId

notificationId

clearUserId

other attributes ...

<<SupportIOC>>

 Rec. ITU-T M.3020 (07/2011revision 2016) 37

Property

name

Description Legal values

allowedValues Identifies the values the attribute can have. Dependent on type

isNotifyable Identifies if a notification shall be sent in case of a value change.1,2 True (default), False

defaultValue Identifies a value at specification time that is used at object creation

time under conditions defined in Annex G.

No value (default) or a

value that is dependent

on allowedValues

multiplicity Defines the number of values the attribute can simultaneously have.

See section 7.3.44 of Error! Reference source not found.; inherited

from StructuralFeature.

See 00 Default is 1

isNullable Identifies if an attribute can carry no information. The implied

meaning of carrying “no information” is context sensitive and is not

defined in this Model Repertoire.

True, False (default)

supportQualifier Identifies the required support of the attribute. See also section 7. M, O (default), CM,

CO, C

Note 1 – Whether a client/manager can receive the notification depends on a) if the client/manager

has subscribed or registered for reception of such notification and b) if a notification mechanism is

supported.

Note 2 – If the attribute is a role-attribute and its property passedById is ‘False’, then changes in the

navigable association target end instance alone shall not trigger a notification.

C.2.2.2 Example

This example shows three attributes, i.e., a, b and c, listed in the attribute (the second)

compartment of the class Xyz.

Figure C-1: Attribute notation

C.2.2.3 Name style

An attribute name shall use the LCC style.

Well Known Abbreviation (WKA) is treated as a word if used in a name. However, WKA shall be

used as is (its letter case cannot be changed) except when it is the first word of a name; and if so, its

first letter must be in lower case.

C.2.3 Association relationship

C.2.3.1 Description

It shows a relationship between two classes and describes the reasons for the relationship and the

rules that might govern that relationship.

It has ends. Its end, the association end(s), specifies the role that the object at one end of a

relationship performs. Each end of a relationship has properties that specify the role (see C.2.10),

multiplicity (see C.2.9), visibility and navigability (see the arrow symbol used in Figure C-3:

Unidirectional association relationship notationFigure C-3: Unidirectional association relationship

notation) and may have constraints. Note that visibility shall not be used in models based on this

Repertoire (see paragraph 3 of C.2.1).

See 7.3.3 Association of [OMG-UML-S].

Three examples below show a binary association between two model elements. The association can

include the possibility of relating a model element to itself.

38 Rec. ITU-T M.3020 (07/2011revision 2016)

The first example (Figure C-2) shows a bi-directional navigable association in that each model

element has a pointer to the other. The second example (Figure C-3) shows a unidirectional

association (shown with an open arrow at the target model element end) in that only the source

model element has a pointer to the target model element and not vice-versa. The third example

(Figure C-4) shows a bi-directional non-navigable association in that each model element does not

have a pointer to the other; i.e., such associations are just for illustration purposes.

C.2.2.3 Example

An association shall have an indication of cardinality (see C.2.9).

It shall, except the case of non-navigable association, have an indication of the role name (see

C.2.10). The model element involved in an association is said to be “playing a role” in that

association. The role has a name such as +class3 in the first example below. Note that the "+"

character in front of the role name, indicating the visibility, is ignored.

Figure C-2: Bidirectional association relationship notation

Figure C-3: Unidirectional association relationship notation

Figure C-4: Non-navigable association relationship notation

Note that some tools do not use arrows in the UML graphical representation for bidirectional

associations. Therefore, absence of arrows is not, but absence of role names is, an indication of a

non-navigable association.

C.2.3.3 Name style

An Association can have a name. Use of Association name is optional. Its name style is UCC style.

A role name shall use the LCC style.

C.2.3 Aggregation

See subclause 3.43.2.5 of [OMG UML].

This sample shows a hollow diamond attached to the end of a path to indicate aggregation. The

diamond is attached to the class that is the aggregate.

 Rec. ITU-T M.3020 (07/2011revision 2016) 39

C.2.4 Operation

See subclause 3.26 of [OMG UML].

This sample shows two operations, shown as strings in the operation compartment of class

NotificationIRPManagement, that the instance of NotificationIRPManagement may be requested to

perform. The operation has a name, e.g., subscribe and a list of arguments (not shown).

C.2.5 Association and association name

See subclause 3.41 of [OMG UML].

These two samples show a binary association between exactly two model elements. The association

can include the possibility of relating a model element to itself. The first sample shows a bi-

directional association in that each model element is aware of the other. The second sample shows a

unidirectional association (shown with an open arrow at the target model element end) in that only

the source model element is aware of the target model element and not vice versa.

Association can be named, such as abcd and label6 in the following samples.

C.2.6 Realization relationship

See subclause 2.5.2.1 of [OMG UML].

This sample shows the realization relationship between a model element AlarmIRPOperations_1

and another model element, AlarmIRP. The latter (the target model element) implements the

former. The target model element must be an <<Interface>>.

MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

NotificationIRPManagement

subscribe()

unsubscribe()

<< Interface>>

XClass

<<InformationObjectClass>>

YClass

<<InformationObjectClass>>
abcd

AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>
label6

40 Rec. ITU-T M.3020 (07/2011revision 2016)

C.2.7 Generalization relationship

See subclause 3.50 of [OMG UML].

This sample shows a generalization relationship between a more general element (the agent) and a

more specific element (the Agent_vendor_A) that is fully consistent with the first element and that

adds additional information.

C.2.8 Dependency relationship

See subclause 3.51 of [OMG UML].

This sample shows that BClass instances have a semantic relationship with AClass instances. It

indicates a situation in which a change to the target element will require a change to the source

element in the dependency.

C.2.9 Note

See subclause 3.11 of [OMG UML].

This sample shows a note, as a rectangle with a "bent corner" in the upper right corner. The note

contains arbitrary text. It appears on a particular diagram and may be attached to zero or more

modelling elements by dashed lines.

C.2.10 Multiplicity, a.k.a. cardinality

See subclause 3.44 of [OMG UML].

This sample shows a multiplicity attached to the end of an association path. The meaning of this

multiplicity is one-to-many. Network instance(s) is associated with zero, one or more SubNetwork

instances.

In previous versions of [b-3GPP TS 32.152], the cardinality zero can indicate that the IOC has the

so-called "transient state" characteristic. For example, it indicates that the instance is not yet created

but it is in the process of being created. In this version of the methodology, the cardinality zero will

not be used to indicate this characteristic since such characteristic is considered inherent in all IOCs.

All IOCs defined are considered to have such inherent "transient state" characteristics.

AlarmIRP

<<SupportIOC>> AlarmIRPOperations_1

getAlarmList()

acknowledgeAlarms()

<< Interface>>

IRPAgent

<<InformationObjectClass>>

IRPAgent_vendor_A

<<InformationObjectClass>>

AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>

SubNetwork

<<InformationObjectClass>> This is a sample of

a note.

 Rec. ITU-T M.3020 (07/2011revision 2016) 41

C.2.11 Role name

See subclause 3.43.2.6 of [OMG UML].

This sample shows a Person (say instance John) associated with a Company (say whose DN is

"Company=XYZ"). We navigate the association by using the opposite association-end such that

John's Person.theCompany would hold the DN, i.e., "Company=XYZ". Use noun for the rolename.

C.2.12 Xor constraint

See subclauses 2.5.2.3 and 3.42.5.1 of [OMG UML].

This sample shows an Account (e.g., account 0960) that is associated with a Person (e.g.,

John Smith) or a Corporation (e.g., ABC Inc).

C.2.4 Aggregation association relationship

C.2.4.1 Description

It shows a class as a part of or subordinate to another class.

An aggregation is a special type of association in which objects are assembled or configured

together to create a more complex object. Aggregation protects the integrity of an assembly of

objects by defining a single point of control called aggregate, in the object that represents the

assembly.

See 7.3.2 AggregationKind (from Kernel) of [OMG-UML-S].

C.2.4.2 Example

A hollow diamond attached to the end of a relationship is used to indicate an aggregation. The

diamond is attached to the class that is the aggregate. The aggregation association shall have an

indication of cardinality at each end of the relationship (see C.2.9).

Figure C-nn: Aggregation association relationship notation

Network

<<InformationObjectClass>>

SubNetwork

<<InformationObjectClass>>

0..*0..*

Company

<<InformationObjectClass>>

Person

<<InformationObjectClass>>

+theCompany

Person

<<InformationObjectClass>>

Corporation

<<InformationObjectClass>>

Account

<<InformationObjectClass>>
{xor}

42 Rec. ITU-T M.3020 (07/2011revision 2016)

C.2.4.3 Name style

An Association can have a name. Use of Association name is optional. Its name style is UCC.

C.2.5 Composite aggregation association relationship

C.2.5.1 Description

A composite aggregation association is a strong form of aggregation that requires a part instance be

included in at most one composite at a time. If a composite is deleted, all of its parts are deleted as

well.

A composite aggregation shall contain a description of its use.

See 7.3.3 Association (from Kernel) of [OMG-UML-S].

C.2.5.2 Example

A filled diamond attached to the end of a relationship is used to indicate a composite aggregation.

The diamond is attached to the class that is the composite. The composition association shall have

an indication of cardinality at each end of the relationship (see C.2.9).

Figure C-nn: Composite aggregation association relationship notation

C.2.5.3 Name style

An Association can have a name. Use of Association name is optional. Its name style is UCC.

C.2.6 Generalization relationship

C.2.6.1 Description

It indicates a relationship in which one class (the child) inherits from another class (the parent).

See 7.3.20 Generalization of [OMG-UML-S].

C.2.6.2 Example

This example shows a generalization relationship between a more general model element (the

IRPAgent) and a more specific model element (the IRPAgentVendorA) that is fully consistent

with the first element and that adds additional information.

Figure C-nn: Generalization relationship notation

C.2.6.3 Name style

It has no name so there is no name style.

C.2.7 Dependency relationship

C.2.7.1 Description

 “A dependency is a relationship that signifies that a single or a set of model elements requires other

model elements for their specification or implementation. This means that the complete semantics

of the depending elements is either semantically or structurally dependent on the definition of the

supplier element(s)...“, an extract from 7.3.12 Dependency of [OMG-UML-S].

 Rec. ITU-T M.3020 (07/2011revision 2016) 43

C.2.7.2 Example

This example shows that the BClass instances have a semantic relationship with the AClass

instances. It indicates a situation in which a change to the target element (the AClass in the

example) will require a change to the source element (the BClass in the example) in the

dependency.

Figure C-nn: Dependency relationship notation

C.2.7.3 Name style

A Dependency can have a name. Use of Dependency name is optional. Its name style is UCC.

C.2.8 Comment

C.2.8.1 Description

A comment is a textual annotation that can be attached to a set of elements.

See 7.3.9 Comment (from Kernel) from [OMG-UML-S].

C.2.8.2 Example

This example shows a comment, as a rectangle with a "bent corner" in the upper right corner. It

contains text. It appears on a particular diagram and may be attached to zero or more modelling

elements by dashed lines.

Figure C-nn: Comment notation

C.2.8.3 Name style

It has no name so there is no name style.

C.2.9 Multiplicity, a.k.a. cardinality in relationships

C.2.9.1 Description

 “A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a

lower bound and ending with a (possibly infinite) upper bound. A multiplicity element embeds this

information to specify the allowable cardinalities for an instantiation of this element…“, an extract

from 7.3.32 MultiplicityElement of [OMG-UML-S].

44 Rec. ITU-T M.3020 (07/2011revision 2016)

Table C-nn: Multiplicity-string definitions

Multiplicity Explanation

1 Attribute has one attribute value.

m Attribute has m attribute values.

0..1 Attribute has zero or one attribute value.

0..* Attribute has zero or more attribute values.

* Attribute has zero or more attribute values.

1..* Attribute has at least one attribute value.

m..n Attribute has at least m but no more than n attribute values.

The use of "0..n" and “0..*” is not recommended although it has the same meaning as “*”.

The use of a standalone symbol zero (0) is not allowed.

C.2.9.2 Example

This example shows a multiplicity attached to the end of an association path. The meaning of this

multiplicity is one to many. One Network instance is associated with zero, one or more

SubNetwork instances. Other valid examples can show the “many to many” relationship.

Figure C-nn: Cardinality notation

The cardinality zero is not used to indicate the IOC’s so-called “transient state” characteristic. For

example, it is not used to indicate that the instance is not yet created but it is in the process of being

created. The cardinality zero will not be used to indicate this characteristic since such characteristic

is considered inherent in all IOCs. All IOCs defined are considered to have such inherent “transient

state” characteristics.

Note that the use of “0..*”, "0..n" or ‘*’ means “zero to many”. The use of “0..*” is recommended.

The following table shows some valid examples of multiplicity.

Table C-nn: Multiplicity-string examples

C.2.9.3 Name

style

It has no name so

there is no name style.

Multiplicity Explanation

1 Attribute has exactly one attribute value.

5 Attribute has exactly 5 attribute values.

0..1 Attribute has zero or one attribute value.

0..* Attribute has zero or more attribute values.

1..* Attribute has at least one attribute value.

4..12 Attribute has at least 4 but no more than 12 attribute values.

 Rec. ITU-T M.3020 (07/2011revision 2016) 45

C.2.10 Role

C.2.10.1 Description

It indicates navigation, from one class to another class, involved in an association relationship. A

role is named. The direction of navigation is to the class attached to the end of the association

relationship with (or near) the role name.

The use of role name in the graphical representation is mandatory for bidirectional and

unidirectional association relationship notations (see Figure C-2: Bidirectional association

relationship notation and Figure C-3: Unidirectional association relationship notationFigure C-3:

Unidirectional association relationship notation). Role name shall not be used in non-navigable

association relationship notation (see Figure C-4: Non-navigable association relationship

notationFigure C-4: Non-navigable association relationship notation).

A role at the navigable end of a relationship becomes (or is mapped into) an attribute (called role-

attribute) in the source class of the relationship. Therefore roles have the same behaviour (or

properties) as attributes. See Error! Reference source not found.Error! Reference source not

found..

The role-attribute shall have all properties defined for attributes in section C.2.2 Error! Reference

source not found. and in addition the following property:

Table C-nn: passedById property

Property

name

Description Legal values

passedById If True, the role-attribute (navigable association source end) contains a DN

of the navigable association target end instance.

If False, the role-attribute contains (a copy of) the whole target end instance

(e.g. X). If X has a role-attribute whose “passedById==False”, then the

subject role-attribute contains (a copy of) X’s target end instance as well.

The above rule is applied repeatedly for all occurrences of

“passedById==False”. This application can result in a collection of instances

where no ordering can be implied and no instances are duplicated.

Use of “passedById==False” supports the efficient access of target end

instances from a source end instance. The mechanism by which such access

is achieved is operation model design specific (e.g. not related to resource

model design).

True (default),

False

C.2.10.2 Example

This example shows that a Person (say instance John) is associated with a Company (say whose

DN is “Company=XYZ”). We navigate the association by using the opposite association-end such

that John’s Person.theCompany would hold the DN, i.e. "Company=XYZ".

Figure 1: Role notation

46 Rec. ITU-T M.3020 (07/2011revision 2016)

C.2.10.3 Name style

A role has a name. Use noun for the name. The name style follows the attribute name style; see

section C.2.2.3.

C.2.11 Xor constraint

C.2.11.1 Description

 “A Constraint represents additional semantic information attached to the constrained elements. A

constraint is an assertion that indicates a restriction that must be satisfied by a correct design of the

system. The constrained elements are those elements required to evaluate the constraint

specification…“, an extract from 7.3.10 Constraint (from Kernel) of [OMG-UML-S].

For a constraint that applies to two elements such as two associations, the constraint shall be shown

as a dashed line between the elements labeled by the constraint string (in braces). The constraint

string, in this case, is xor.

C.2.11.2 Example

The figure below shows a ServerObjectClass instance that has relation(s) to multiple

instances of a class from the choice of ClientObjectCLass_Alternative1,

ClientObjectClass_Alternative2 or ClinetObjectCLass_Alternative3.

Figure C-nn: {xor} notation

C.2.11.3 Name style

It has no name so there is no name style.

C.3 Stereotypes

C.3.1 General

This subclause lists all allowable stereotypes to be used in management interface specifications.

One stereotype <<Interface>> is defined in [OMG UMLUML-I]. This Recommendation lists it out

for ease of reference and completeness. Other stereotypes are defined in this Recommendation.

For each stereotype model element listed, there are three parts. The first part contains its

description. The second part contains its graphical notation examples and the third part contains the

rule, if any, recommended for labelling or naming it.

Table C.3-1 – Entity stereotypes[KJ20]

Stereotype Base class
Affected metamodel

[M21]elements

Interface Class[M22]

ProxyClass Class

 Rec. ITU-T M.3020 (07/2011revision 2016) 47

Notification Class

Archetype Classifier (subclause 2.5.2.10 of [OMG UML])

InformationObjectClass Classifier

SupportIOC Classifier

Use Association

may use Association

may realize Association

Names Composition

datatype

Enumeration

choice

48 Rec. ITU-T M.3020 (07/2011revision 2016)

C.3.2 <<Interface>>

Subclause 2.5.2.25 of [OMG UML]:

"An interface is a named set of operations that characterize the behaviour of an element. In

the metamodel, an Interface contains a set of Operations that together define a service

offered by a Classifier realizing the Interface. A Classifier may offer several services,

which means that it may realize several Interfaces, and several Classifiers may realize

the same Interface.

Interfaces [may or] may not have Attributes, Associations, or Methods. An Interface may

participate in an Association provided the Interface cannot see the Association; that

is, a Classifier (other than an Interface) may have an Association to an Interface that

is navigable from the Classifier but not from the Interface."

From subclause 2.5.4.6 of [OMG UML]:

"The purpose of an interface is to collect a set of operations that constitute a coherent service

offered by classifiers. Interfaces provide a way to partition and characterize groups of

operations. An interface is only a collection of operations with a name. It cannot be

directly instantiated."

From subclause 2.5.4.6 of [OMG UML]:

"Several classifiers may realize the same interface. All of them must contain at least the

operations matching those contained in the interface. The specification of an operation

contains the signature of the operation (i.e., its name, the types of the parameters and

the return type). An interface does not imply any internal structure of the realizing

classifier. For example, it does not include which algorithm to use for realizing an

operation. An operation may, however, include a specification of the effects [e.g., with

pre and post-conditions] of its invocation."

C.3.2.1 Sample

This sample shows an AlarmIRPOperations_1 <<Interface>> that has two operations. The

input and output parameters of the operations are hidden (i.e., not shown). The

AlarmIRP has a unidirectional mandatory realization relationship with the

<<Interface>>.

<<Interface>> Notation

C.3.23 <<ProxyClass>>

C.3.23.1 GeneralDescription

This represents a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods

(or operations), and interactions that are present in the represented <<InformationObjectClass>>.

The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> are present in the

represented <<InformationObjectClass>>. Since this class is simply a representation of other

classes, this class cannot define its own behaviour other than those already defined by the

represented <<InformationObjectClass>>.

AlarmIRP

<<InformationObjectClass>> AlarmIRPOperations_1

getAlarmList()

acknowledgeAlarms()

<<Interface>>

 Rec. ITU-T M.3020 (07/2011revision 2016) 49

A particular <<InformationObjectClass>> can be represented by zero, one or more

<<ProxyClass>> or <<Archetype>>. For example, the ManagedElement

<<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity

<<ProxyClass>>.

The attributes of the <<ProxyClass>> are accessible by the source entity that has an association

with the <<ProxyClass>>.

C.3.23.2 SampleExample

This shows a <<ProxyClass>> named MonitoredEntity. It represents all NRM

<<InformationObjectClass>> (e.g., GgsnFunction <<InformationObjectClass>>) whose instances

are being monitored for alarm conditions.

Note that <<MonitoredEntity>> does not define any attributes. The attributes are already defined by

all <<InformationObjectClass>> represented by the <<MonitoredEntity>>.

<<ProxyClass>> Notation

See Appendix V for more samples that use <<ProxyClass>>.

C.3.2.3 Name style

For <<ProxyClass>> name, use the same style as <<InformationObjectClass>> (see C.3.3.3).

C.3.4 <<Archetype>>

C.3.4.1 General

This represents a number of common class properties (e.g., attributes, links, operations, and

interactions that are typical of the represented <<InformationObjectClass>>.

The semantics of an <<Archetype>> is that all attributes, links operations and interactions

encapsulated by the <<Archetype>> may or may not be present in the represented

<<InformationObjectClass>>. The <<Archetype>> represents a placeholder class that is most

useful in technology neutral analysis models that will require further specification and/or mapping

within a more complete construction model.

C.3.4.2 Sample

This shows an <<Archetype>> named StateManagement. It also shows an

<<InformationObjectClass>> Agent that depends on this StateManagement. Note that the

StateManagement has defined a number of attributes (not shown in the UML diagram). The classes

that depend on this StateManagement may or may not use all of the StateManagement attributes. In

other words, at least one of the attributes of StateManagement is present in the Agent. The precise

set of StateManagement attributes used by the Agent is specified in the Agent specification.

MonitoredEntity

<<ProxyClass>>

It represents all

NRM IOCs that

can have alarms.

50 Rec. ITU-T M.3020 (07/2011revision 2016)

<<Archetype>> Notation

C.3.35 <<InformationObjectClass>>

C.3.35.1 GeneralDescription

The <<InformationObjectClass>> is identical to UML class except that it does not include/define

methods or operations.

A UML class represents a capability or concept within the system being modelled. Classes have

data structure and behaviour and relationships to other elements.

This class can inherit from zero, one or multiple classes (multiple inheritances).

See more on UML class in 10.2.1 of [OMG-UML-I].

This represents an IOC. Each <<InformationObjectClass>> represents a set of instances with

similar structure, behaviour and relationships.

This <<InformationObjectClass>> and other information classes such as <<Interface>> are mapped

into technology-specific model elements such as GDMO Managed Object Class for CMIP

technology. The mapping of the protocol-neutral modelling constructs to technology-specific

modelling constructs are captured in the corresponding protocol-specific specifications.

The name of an <<InformationObjectClass>> has scope within the Recommendation in which it is

specified and the name must be unique among all <<InformationObjectClass>> names within that

Recommendation. The Recommendation name is considered in the similar way as the UML

Package-name.

The <<InformationObjectClass>> is identical to UML class except that it does not include/define

methods or operations.

Subclause 3.22.1 of [OMG UML]: "A class represents a concept within the system being modelled.

Classes have data structure and behaviour and relationships to other elements."

C.3.5.2 SampleExample

This sample shows an AlarmList <<InformationObjectClass>>.

This example shows an AbcFunction <<InformationObjectClass>>.

<<InformationObjectClass>> Notation

The following table captures the properties of this modelled element.

AlarmList

attribute1

otherAttributes

<<InformationObjectClass>>

StateManagement
<<Archetype>>

IRPAgent
<<InformationObjectClass>>

 Rec. ITU-T M.3020 (07/2011revision 2016) 51

Table C-nn: <<InformationObjectClass>> properties

Property

name

Description Legal values

documentation Contains a textual description of this modelled element.

Should refer (to enable traceability) to a specific requirement.

Any

isAbstract Indicates if the class can be instantiated or is just used for inheritance. True, False (default)

isNotifyable Identifies the list of the supported notifications. List of names of

notification

supportQualifier Identifies the required support of the class. See also section 7. M, O (default), CM,

CO, C

.

C.3.6 <<use>> and <<may use>>

The <<use>> and <<may use>> are unidirectional associations. The target must be an

<<Interface>> or <<Notification>>.

In the case where the target is <<Interface>>, the <<use>> states that the source class must have the

capability to use the target <<Interface>> in that it can invoke the operations defined by the

<<Interface>>. Support of the capability by the source entity is mandatory. The <<may use>> states

that the source class may have the capability to use the target <<Interface>> in that it may invoke

the operations defined by the <<Interface>>. Support of the capability by the source entity is

optional.

In the case the target is <<Notification>>, the <<use>> states that the source class must be the

originator of the notifications defined by the target <<Notification>>. Support of the capability by

the source entity is mandatory. The <<may use>> states that the source class may be the originator

of the notifications defined by the target <<Notification>>. Support of the capability by the source

entity is optional.

C.3.6.1 Sample for target <<Interface>>

This shows that the IRPManager shall use the operations defined by AlarmIRPOperations_1 and

may use the operations defined by AlarmIRPOperations_2.

<<use>> and <<may use>> Notation for target <<Interface>>

AlarmIRPOperations_1

getAlarmList()

acknowledgeAlarms()

<< Interface>>

IRPManager

<<SupportIOC>>

AlarmIRPOperations_2

getAlarmCount()

<< Interface>>

<<use>>

<<may use>>

52 Rec. ITU-T M.3020 (07/2011revision 2016)

C.3.6.2 Sample for target <<Notification>>

This shows that the PMIRP shall have the capability to emit or originate notifications defined by

PMIRPNotifications_1 and may have the capability to emit or originate notifications defined by

PMIRPNotifications_2.

<<use>> and <<may use>> Notation for target <<Notification>>

C.3.7 <<may realize>>

The <<may realize>> is a unidirectional association. The target must be an <<Interface>>. The

<<may realize>> shows that the source entity may realize the operations defined by the target

<<Interface>>.

Note that the UML basic element has defined the realize association (and therefore, there is no need

to define a stereotype of such association). The realize association shows that the source entity must

realize (or implement) the operations defined by the target <<Interface>>.

C.3.7.1 Sample

This shows that the AlarmIRP may realize the operation of AlarmIRPOperations_2.

<<may realize>> Notations

C.3.48 <<names>>

It specifies a unidirectional composition. The target instance is uniquely identifiable, within the

namespace of the source entity, among all other targeted instances of the same target classifier and

among other targeted instances of other classifiers that have the same <<names>> composition with

the source.

The source classifier and target classifier shall both have a naming attribute.

PMIRPNotifications_1

notifyMeasurementJobStatusChanged()...

<<Notification>>

<<use>>

PMIRP
<<SupportIOC>>

<<may use>>

PMIRPNotifications_2

notifyThresholdMonitorStatusChanged()...

notifyThresholdMonitorObjectCreation()

notifyThresholdMonitorObjectDeletion()

<<Notification>>

AlarmIRPOperations_2

getAlarmCount()

<<Interface>>

 AlarmIRP
<<SupportIOC>> <<may realize>>

 Rec. ITU-T M.3020 (07/2011revision 2016) 53

Composition used as the act of name containment provides a semantic of a whole-part relationship

between the domain and the named elements that are contained, even if only by name. From the

management perspective, access to the part is through the whole. Multiplicity shall be indicated at

both ends of the relationship.

A target instance cannot have multiple <<names>> with multiple sources, i.e., a target instance

cannot participate in or belong to multiple namespaces.

C.3.8.1 Sample

This shows that all instances of MscFunction are uniquely identifiable within a ManagedElement

instance's namespace.

<<names>> Notation

C.3.4.1 Description

The <<names>> is modelled by a composition association where both ends are non-navigable. The

source class is the composition and the target class is the component. The target instance is uniquely

identifiable, within the namespace of the source entity, among all other targeted instances of the

same target class and among other targeted instances of other classes that have the same

<<names>> composition with the source.

The source class and target class shall each has its own naming attribute.

The composition aggregation association relationship is used as the act of name containment

providing a semantic of a whole-part relationship between the domain and the named elements that

are contained, even if only by name. From the management perspective access to the part is through

the whole. Multiplicity shall be indicated at both ends of the relationship.

A target instance can not have multiple <<names>> with multiple sources, i.e. a target instance can

not participate in or belong to multiple namespaces.

C.3.4.2 Example

This shows that all instances of Class4 are uniquely identifiable within a Class3 instance's

namespace.

Figure C-nn: <<names>> notation

C.3.4.3 Name style

It has no name so there is no name style.

C.3.9 <<opt>>

The <<opt>> (alternatively <<optional>>) enables the indication of optionality of attributes,

parameters and operations (respectively) within the UML diagrams.

In the absence of the stereotype, the attribute, parameter, or operation in question is mandatory.

MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

0..*1

<<names>>

1 0..*

54 Rec. ITU-T M.3020 (07/2011revision 2016)

C.3.9.1 Sample

<<opt>> Notation for operations

C.3.10 <<Notification>>

C.3.10.1 General

<<Notification>> is a named set of notifications.

C.3.10.2 Sample

This sample shows a <<Notification>> named "PMIRPNotifications_1" and another

<<Notification>> named "PMIRPNotifications_2". Both of them have notification(s). An example

of a notification can be notifyMeasurementJobStatusChanged().

<<Notification>> Notation

C.3.11 <<agent-internal-usage>>

This is a unidirectional association. The source passes network management information to target.

The source and target are entities or processes running in different IRP instances such as AlarmIRP,

PMIRP. The instances may be name-contained by the same IRPAgent or different IRPAgent

instances. The precise network management information passed and the information transfer

mechanism are not standardized and are vendor-specific.

C.3.11.1 Sample

This shows that NLIRP (NotificationLog IRP) can pass some network management information to

FTIRP (FileTransferIRP).

NotificationIRP

<<InformationObjectClass>>
PMIRPNotifications_1

notifyMeasurementJobStatusChanged()

<<Notification>>

<<agent-internal-usage>>

PMIRP

<<InformationObjectClass>> <<use>>

PMIRPNotifications_2

notifyThresholdMonitorStatusChanged()

notifyThresholdMonitorObjectCreation()

notifyThresholdMonitorObjectDeletion()

<<Notification>>

<<may use>>

<<agent-internal-usage>>

BulkCMActive

download()
<<opt>> validate()
<<opt>> preactivate()
activate()
fallback()

<<Interface>>

 Rec. ITU-T M.3020 (07/2011revision 2016) 55

<<agent-internal-usage>> Notation

C.3.12 <<SupportIOC>>

It is the descriptor for a set of management capabilities.

The <<SupportIOC>> is identical to UML class except that it does not include/define methods or

operations.

Subclause 3.22.1 of [OMG UML]: "A class represents a concept within the system being modelled.

Classes have data structure and behaviour and relationships to other elements."

C.3.12.1 Sample

This sample shows an AlarmList <<SupportIOC>>.

<<SupportIOC>> Notation

C.3.5 <<dataType>>

C.3.5.1 Description

It represents the general notion of being a data type (i.e. a type whose instances are identified only

by their values) whose definition is defined by user (e.g. specification authors).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The

former is defined in sub-clause 00. The latter is defined by the specifications authors using this

<<dataType>> model element.

The user-defined data types support the modelling of structured data types (see <<dataType>>

notations in C.3.5.3). When user-defined or predefined data type is used to apply type information

to a class attribute (see C.2.2), the data type name is shown along with the class attribute. See user

example of <<dataType>> in C.3.5.3

C.3.5.2 Example

The following examples are two user-defined data types. The left-most is named PlmnId that

consists of Mobile Country Code (MCC) and Mobile Network Code (MNC), whose types are the

predefined data types in 00. The right-most is named Xyz that consists of two predefined data types

(i.e., String, Integer and one user-defined data type PlmnId.

Figure C-nn: <<dataType>> notations

NLIRP

<<SupportIOC>>

FileTransferIRP

<<SupportIOC>><<agent-internal-usage>>

AlarmList

<<SupportIOC>>

56 Rec. ITU-T M.3020 (07/2011revision 2016)

The following example shows a ZClass using two user-defined data types and two predefined

data types.

Figure 2: Usage example of <<dataType>>

C.3.5.3 Name style

For <<dataType>> name, use the same style as <<InformationObjectClass>> (see C.3.3).

For <<dataType>> attribute, use the same style as Attribute (see C.2.2).

C.3.6 <<enumeration>>

C.3.6.1 Description

An enumeration is a data type. It contains sets of named literals that represent the values of the

enumeration. An enumeration has a name.

See 10.3.2 Enumeration of [OMG-UML-I].

C.3.6.2 Example

This example shows an enumeration model element whose name is Account and it has four

enumeration literals. The upper compartment contains the keyword <<enumeration>> and the name

of the enumeration. The lower compartment contains a list of enumeration literals.

Note that the symbol to the right of <<enumeration>> Account in the figure below is a feature

specific to a particular modelling tool. It is recommended that modelling tool features should be

used when appropriate.

Figure C-nn: <<enumeration>> notation

C.3.6.3 Name style

For <<enumeration>> name, use the same style as <<InformationObjectClass>> (see C.3.3).

For <<enumeration>> attribute (the enumeration literal), use the following rules:

 Enumeration literal is composed of one or more words of upper case characters. Words are

separated by the underscore character.

C.3.7 <<choice>>

C.3.7.1 Description

The «choice» stereotype represents one of a set of classes (when used as an information model

element) or one of a set of data types (when used as an operations model element).

This stereotype property, e.g., one out of a set of possible alternatives, is identical to the {xor}

constraint (see C.2.11).

 Rec. ITU-T M.3020 (07/2011revision 2016) 57

C.3.7.2 Example

Sometimes the specific kind of class cannot be determined at model specification time. In order to

support such scenario, the specification is done by listing all possible classes.

The following diagram lists 3 possible classes. It also shows a «choice, InformationObjectClass»

named SubstituteObjectClass. This scenario indicates that only one of the three

«InformationObjectClass» named Alternative1ObjectClass, Alternative2ObjectClass,

Alternative3ObjectClass shall be realised.

The «choice» stereotype represents one of a set of classes when used as an information model

element.

Figure C-nn: Information model element example using «choice» notation

Sometimes the specific kind of data type cannot be determined at model specification time. In order

to support such scenario, the specification is done by listing all possible data types.

The following diagram lists 2 possible data types. It also shows a «choice» named ProbableCause.

This scenario indicates that only one of the two «dataType» named IntegerProbableCause,

StringProbableCause shall be realised.

The «choice» stereotype represents one of a set of data types when used as an operations model

element.

Figure C-nn: Operations model element example using «choice» notation

Sometimes models distinguish between sink/source/bidirectional termination points. A generic class

which comprises these three specific classes can be modelled using the «choice» stereotype.

58 Rec. ITU-T M.3020 (07/2011revision 2016)

Figure C-nn: Sink/source/bidirectional termination points example using «choice» notation

5.3.6.3 Name style

For <<choice>> name, use the same style as <<InformationObjectClass>> (see C.3.3.3).

C.4 Others

C.4.1 Association classes

Subclause 3.46 of [OMG UML] defines an association class as:

 "An association class is an association that also has class properties (or a class that has

association properties). Even though it is drawn as an association and a class, it is really just

a single model element."

Association classes are appropriate for use when an "InformationObjectClass" needs to maintain

associations to several other "InformationObjectClass"es and there are relationships between the

members of the associations within the scope of the "containing" "InformationObjectClass". For

example, a namespace maintains a set of bindings, a binding ties a name to an object. A Binding

"IOC" can be modelled as an Association class that provides the binding semantics to the

relationship between a name and some other "InformationObjectClass". This is depicted in the

following figure (exemplary only, not taken from another Recommendation).

Example of an Association class

C.4.1.1 Description

An association class is an association that also has class properties (or a class that has association

properties).

Even though it is drawn as an association and a class, it is really just a single model element.

See 7.3.4 AssociationClass of [OMG-UML-S].

Association classes are appropriate for use when an «InformationObjectClass» needs to maintain

associations to several other instances of «InformationObjectClass» and there are relationships

Namespace
<<InformationObjectClass>>

Binding
<<InformationObjectClass>>

0..*0..*

Name
Object

<<InformationObjectClass>>

111 1

 Rec. ITU-T M.3020 (07/2011revision 2016) 59

between the members of the associations within the scope of the "containing"

«InformationObjectClass». For example, a namespace maintains a set of bindings, a binding ties a

name to an identifier. A NameBinding «InformationObjectClass» can be modelled as an

Association Class that provides the binding semantics to the relationship between an identifier and

some other «InformationObjectClass» such as Object in the figure. This is depicted in the following

figure.

C.4.1.2 Example

Figure C-nn: Association class notation

C.4.1.3 Name style

The name shall use the same style as in <<InformationObjectClass>> (see C.3.3.3).

C.4.25 Abstract class

C.4.2.1 Description

It specifies a special kind of <<InformationObjectClass>> as the general model element involved in

a generalization relationship (see C.2.6). An abstract class cannot be instantiated.

This modelled element has the same properties as class. See C.3.3.

C.4.2.2 Example

This shows that Class5_ is an abstract class. It is the base class for SpecialisedClass5.

Figure C-nn: Abstract class notation

C.4.2.3 Name style

For abstract class name, use the same style as <<InformationObjectClass>> (see C.3.3.3). The name

shall be in italics.

In the UIM and UOM its last character shall be an underscore. [M23]

C.5.1 General

It specifies an <<InformationObjectClass>> as a base class to be inherited by subclasses. An

abstract class cannot be instantiated.

60 Rec. ITU-T M.3020 (07/2011revision 2016)

Abstract class notation is the use of italics in the class name of the corresponding

<<InformationObjectClass>> in the diagram.

C.5.2 Sample

This shows that ManagedGenericIRP is an abstract <<InformationObjectClass>>.

C.4.3 Predefined data types

C.4.3.1 Description

It represents the general notion of being a data type (i.e. a type whose instances are identified only

by their values) whose definition is defined by this specification and not by the user (e.g.

specification authors).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The

latter are defined in C.3.5 C.3.5 <<dataType>> and C.3.6 C.3.6 <<enumeration>>.

The following table lists the UML data types selected for use as predefined data type.

Table C-nn: UML defined data types

Name Description and reference
Boolean See Boolean type of [ITU-T X.680].

Integer See Integer type of [ITU-T X.680].

String See PrintableString type of [ITU-T X.680].

The following table lists data types that are defined by this repertoire.

Table C-nn: Non-UML defined data types

Name Description and reference
AttributeValuePair This data type defines an attribute name and the attribute’s value.

BitString This data type is defined by Bit string of clause 3 and clause G.2.5 of

[ITU-T X.680].

DateTime This data type is defined by GeneralizedTime of Error! Reference

source not found..

DN This data type defines the DN (see Distinguished Name of Error!

Reference source not found.) of an object contains a sequence of one or

more name components. Each initial sub-sequence (note 1) of the object

name is also the name of an object. The sequence of objects so identified,

starting with the one identified by only the first name component and

ending with the object being named, is such that each is the immediate

ManagedGenericIRP
(from 32.312)

<<InformationObjectClass>>

NotificationIRP

(from 32.302)

<<InformationObjectClass>>

 Rec. ITU-T M.3020 (07/2011revision 2016) 61

Name Description and reference
superior (note 2) of that which follows it in the sequence.

Note 1: Suppose an object’s DN is composed of a sequence of 4 name

components, i.e. 1st, 2nd, 3rd and 4th components. The “initial sub-

sequence” is composed of the 1st, 2nd and 3rd components.

Note 2: Suppose object A is name-contained (see C.3.4) by object B,

object B is said to be the immediate superior of object A.

External This data type is defined by another organization.

OperationStatusAtomic This enumeration defines the status values of an atomic operation.

 SUCCESSFUL: The operation has been successfully completed

as a whole;

 NOT_SUCCESSFUL: The operation has not been successfully

completed as a whole; i.e. the states of the involved object

instances are the same as before the operation (roll back is

necessary).

OperationStatusBestEffort This enumeration defines the status values of a best effort operation.

 SUCCESSFUL: The operation has been completed successfully

as a whole;

 PARTIALLY_SUCCESSFUL: The operation has been

completed partially successfully. Further definition what this

means for a specific operation is to be specified by the interface

specification author;

 NOT_SUCCESSFULThe operation has not been completed at

all, i.e. the state of the involved object instances is unchanged.

Real This data type is defined by Real type of [ITU-T X.680].

C.4.3.2 Example

Figure C-nn: Predefined data types usage

Note: Use of this is optional. Uses of other means, to specify Predefined data types, are allowed.

C.4.3.3 Name style

It shall use the UCC style.

Abstract class notation

C.6 Application of <<InformationObjectClass>> and <SupportIOC>>

The <<InformationObjectClass>> and <<SupportIOC>> are stereotypes. These two stereotypes

serve a similar purpose in that each is a named set of management properties. However, their

applications, in the context of supporting management over a management interface, can be

different. This clause highlights their similarities and differences of such application.

 <<InformationObjectClass>> <<SupportIOC>>

Can it be an abstract class? Yes Yes

62 Rec. ITU-T M.3020 (07/2011revision 2016)

Can it be a concrete class? Yes Yes

Can it inherit from

<<InformationObjectClass>>?

Yes No

Can it inherit from

<<SupportIOC>>?

No Yes

Can it be name-contained by

<<InformationObjectClass>>?

Yes Yes

Can it be name-contained by

<<SupportIOC>>?

No Yes

Can an instance have a DN? <<InformationObjectClass>>

must be a class of a naming-

tree, meaning all its instances

must have a DN.

<<SupportIOC>> may be used by

specification author for a class

within a naming-tree. If so, it

means that all its instances will

have a DN.

Can a Manager receive

information via notifications

whose objectClass and

objectInstance parameters carry

the instance DN?

Yes.

The types of notification

emitted are shown by the

Notification Table associated

with the class definition.

Yes if <<SupportIOC>> is a class

of a naming-tree.

The types of notification emitted

are shown by the Notification

Table associated with the class

definition.

No if <<SupportIOC>> is not a

class of a naming-tree.

C.5 Qualifiers

This clause defines the qualifiers applicable for model elements specified in this document, e.g. the

IOC (see C.3.3), the Attribute (see C.2.2). The qualifications are M, O, CM, CO, C and ‘SS’. Their

meanings are specified in this section. This type of qualifier is called Support Qualifier (see

supportQualifier of IOC in Table 3 and supportQualifier of attribute in Table 1).

This clause also defines the qualifiers applicable to various properties of a model element, e.g. see

the IOC properties excepting ‘supportQualifier’ in Table 3 and attributes properties excepting

supportQualifier in Table 1. The qualifications are M, O, CM, CO, C and ‘-‘. Their meanings are

specified in this section. This type of qualifier is simply called Qualifier.

Definition of M (Mandatory) qualification:

 The capability (e.g. the Attribute named abc of an IOC named Xyz; the write property of

Attribute named abc of an IOC named Xyz; the IOC named Xyz) shall be supported.

Definition of O (Optional) qualification:

 The capability may or may not be supported.

Definition of CM (Conditional-Mandatory) qualification:

 The capability shall be supported under certain conditions, specifically:

 When qualified as CM, the capability shall have a corresponding constraint defined in

the specification. If the specified constraint is met then the capability shall be supported.

Definition of CO (Conditional-Optional) qualification:

 The capability may be supported under certain conditions, specifically:

 When qualified as CO, the capability shall have a corresponding constraint defined in

the specification. If the specified constraint is met then the capability may be supported.

 Rec. ITU-T M.3020 (07/2011revision 2016) 63

Definition of C (Conditional) qualification:

 Used for items that has multiple constraints. Each constraint is worded as a condition for one

kind of support such as mandatory support, optional support or "no support". All constraints

must be related to the same kind of support. Specifically:

 Each item with C qualification shall have the corresponding multiple constraints defined

in the specification. If all specified constraints are met and are related to mandatory, then

the item shall be supported. If all the specified constraints are met and are related to

optional, then the item may be supported. If all the specified constraints are met and are

related to "no support", then the item shall not be supported.

 Note: This qualifier should only be used when absolutely necessary, as it is more complex to

implement.

Definition of SS (SS Conditional) qualification:

 The capability shall be supported by at least one but not all solutions.

Definition of ‘-‘ (no support) qualification:

 The capability shall not be supported.

C.6 UML Diagram Requirements

Classes and their relationships shall be presented in class diagrams.

It is recommended to create:

 An overview class diagram containing all classes related to a specific management area

(Class Diagram).

 The class name compartment should contain the location of the class definition (e.g.

"Qualified Name")

 The class attributes should show the "Signature". (see section 7.3.45 of Error!

Reference source not found.Error! Reference source not found. for the signature

definition);

 A separate inheritance class diagram in case the overview diagram would be overloaded

when showing the inheritance structure (Inheritance Class Diagram);

 A class diagram containing the user defined data types (Type Definitions Diagram);

 Additional class diagrams to show specific parts of the specification in detail;

 State diagrams for complex state attributes.

64 Rec. ITU-T M.3020 (07/2011revision 2016)

Annex D

Design

(This annex forms an integral part of this Recommendation.)

This annex provides guidelines for the specification of protocol-specific designs. It is for further

study.

 Rec. ITU-T M.3020 (07/2011revision 2016) 65

Annex E

Information type definitions – type repertoire

(This annex forms an integral part of this Recommendation.)

This annex defines a repertoire of types that shall be used to specify type information in the

conceptual model (analysis model/information service).

The repertoire is defined as a subset of types defined by ASN.1 [ITU-T X.680] combined with types

derived from the types defined by ASN.1 (clause E.4).

The keywords to be used for each type are summarized in Table E.1.

E.1 Basic types

Basic types are types that can be used directly to define attributes and parameters. Basic types can

also be used to construct complex types. Basic types include the following ASN.1 types:

E.1.1 integer type clause 19 of [ITU-T X.680]

E.1.2 real type clause 21 of [ITU-T X.680]

E.1.3 boolean type clause 18 of [ITU-T X.680]

E.1.4 bitstring type clause 22 of [ITU-T X.680]

E.1.5 null type clause 24 of [ITU-T X.680]

E.1.6 generalized time type clause 38 of [ITU-T X.680]

E.2 Enumerated type

Enumerated type clause 20 of [ITU-T X.680] represents enumerated values. All values that may be

used by a specific attribute or parameter shall be listed in the legal value columns. Only the listed

names style is applicable for the conceptual model, i.e., the identification of concrete values

(numbers or strings) are left for the concrete design models.

NOTE – If the number of these values is more than 50, it is recommended to define them in an appendix or

an independent document.

E.3 Complex types

Complex types can be defined using the following concepts:

E.3.1 sequence types clause 25 of [ITU-T X.680]

E.3.2 choice types clause 29 of [ITU-T X.680]

E.3.3 set types clause 27 of [ITU-T X.680]

In addition, lists and sets of complex types are supported using:

E.3.4 sequence-of types clause 26 of [ITU-T X.680]

E.3.5 set-of types clause 28 of [ITU-T X.680]

E.4 Useful types

E.4.1 String type

String represents a string of characters, the character set is not restricted, i.e.:

String ::= UnrestrictedCharacterStringType clause 44 of [ITU-T X.680]

66 Rec. ITU-T M.3020 (07/2011revision 2016)

E.4.2 Name type

Name represents an exclusive name of an object instance in name space. It might include object

containment tree hierarchy information, but it is implementation dependent and is out of the scope

of this Recommendation. Formally, the name type is defined as:

Name ::= TYPE-IDENTIFIER Annex A of [ITU-T X.681]

E.5 Keywords

Table E.1 defines the list of keywords to be used in the analysis template (see Annex B) for

definition of information type, e.g.:

Parameter

Name

Support

Qualifier
Information Type/Legal Values Comment

…

eventIdList M SET OF INTEGER/– The list of alarms to be acknowledged.

Table E.1 – Keywords

Type Keyword

integer type INTEGER

real type REAL

boolean type BOOLEAN

bitstring type BIT STRING

null type NULL

generalized time type GeneralizedTime

enumerated type ENUMERATED

sequence type SEQUENCE

choice type CHOICE

set type SET

sequence-of type SEQUENCE OF

set-of type SET OF

string type String

name type Name

 Rec. ITU-T M.3020 (07/2011revision 2016) 67

Annex F

Guidelines on IOC properties, inheritance and entity import

(This annex forms an integral part of this Recommendation.)

The following guidelines are based on [b-3GPP TS 32.150].

F.1 IOC property

The properties of an IOC (including Support IOC) are specified in terms of the following:

a) An IOC attribute(s) including its semantics and syntax, its legal value ranges and support

qualifications. The IOC attributes are not restricted to Configuration Management but also

include those related to, for example, 1) Performance Management (i.e., measurement

types), 2) Trace Management and 3) Accounting Management.

b) The non-attribute-specific behaviour associated with an IOC.

NOTE 1 – As an example, the Link between MscServerFunction and CsMgwFunction is optional. It

is mandatory if the MscServerFunction instance belongs to one ManagedElement instance while the

CsMgwFunction instance belongs to another ManagedElement instance. This Link behaviour is a

non-attribute-specific behaviour. It is expected that this behaviour, like others, will be inherited.

c) An IOC relationship(s) with another IOC(s).

d) An IOC notification type(s) and their qualifications.

e) An IOC's relation with its parents (see Note 2). There are three mutually exclusive cases:

1) The IOC can have any parent. In UML diagram, the class has a parent Any.

2) The IOC is abstract and all of the possible parent(s) have been designated and whether

subclass IOCs can be designated as a root IOC. In UML diagram, the class has zero or

more possible parents of specific classes (except Any).

3) The IOC is concrete and all of the possible parent(s) have been designated and whether

the IOC can be designated as a root IOC. In UML diagram, the class has one or more

possible parents of specific classes (except Any).

 An IOC instance is either a root IOC or it has one and only one parent. Only 3GPP SA5

may designate an IOC class as a potential root IOC. Currently, only SubNetwork,

ManagedElement or MeContext IOCs can be root IOCs.

NOTE 2 – The parent and child relation in this subclause is the parent name-containing the child

relation.

f) An IOC's relation with its children. There are three mutually exclusive cases:

1) An IOC shall not have any children (name-containment relation) IOCs. In UML

diagram, the class has no child.

2) An IOC can have children IOC(s). The maximum number of instances per children

IOC can be specified. An IOC may designate that vendor-specific objects are not

allowed as children IOCs. In UML diagram, the class has a child Any.

3) An IOC can only have the specific children IOC(s) (or their subclasses). The maximum

number of instances per children IOC can be specified. An IOC may designate that

vendor-specific objects are not allowed as children IOCs. In UML diagram, the class

has one or more children of specific classes (except Any).

g) Whether An IOC can be instantiated or not (i.e., whether an IOC is an abstract IOC).

h) An attribute for naming purpose.

68 Rec. ITU-T M.3020 (07/2011revision 2016)

F.2 Inheritance

An IOC (the subclass) inherits from another IOC (the superclass) in that the subclass shall have all

the properties of the superclass.

The subclass can change the inherited support-qualification(s) from optional to mandatory but not

vice versa. The subclass can change the inherited support-qualification from conditional-optional to

conditional-mandatory but not vice versa.

An IOC can be a superclass of many IOC(s). A subclass cannot have more than one superclass.

The subclass can:

a) Add (compared to those of its superclass) unique attributes including their behaviour, legal

value ranges and support-qualifications. Each additional attribute shall have its own unique

attribute name (among all added and inherited attributes).

b) Add non-attribute behaviour on an IOC basis. This behaviour may not contradict inherited

superclass behaviour.

c) Add relationship(s) with IOC(s). Each additional relationship shall have its own unique

name (among all added and inherited relations).

d) Add additional notification types and their qualifications.

e) Designate all of the possible parent(s) (and their subclasses) if the superclass has

Property-e-1 such that an IOC will have Property-e-2 or Property-e-3. Restrict possible

parent(s) (and their subclasses) and/or remove the capability of the subclass from being a

root IOC, if the superclass has Property-e-2 or Property-e-3.

f) Add children IOC(s) if the superclass has Property-f-2 such that an IOC will have

Property-f-3. Restrict the allowed children IOC(s) (or their subclasses) if the superclass has

Property-f-3.

g) Specify whether an IOC can be instantiated or not (i.e., the IOC is an abstract IOC).

h) Restrict the legal value range of a superclass attribute that has a legal value range.

F.3 Entity (interface, IOC and attribute) import

Management interface specifications define entities (e.g., IOCs, interfaces and attribute). To

facilitate the reuse of entity definitions among interface specifications, an import mechanism is

used. When a management interface specification (the subject specification) imports an entity

defined in another management interface specification, the subject specification is considered to

have defined the imported entity in its specification. Furthermore, the subject specification cannot

change the properties of this imported entity. If it requires an entity that is not identical but similar

to the imported entity, it should define a new entity that inherits the imported entity and introduce

changes in the new entity definition.

 Rec. ITU-T M.3020 (07/2011revision 2016) 69

Annex G

Attribute Properties

(This annex forms an integral part of this Recommendation.)

is
In

v
a

ri
a

n
t

 w
ri

te

d
ef

a
u

lt
V

a
lu

e

m
a

n
a

g
er

 m
u

st
 p

ro
v
id

e
a

 v
a

lu
e

w
h

en
 m

a
n

a
g
er

 r
eq

u
es

ts
 o

b
je

ct

cr
ea

ti
o

n

Meaning

    Not valid.

  
May be set by the manager only during object creation time; if no

value is provided by the manager, the default value is used.

   Must be set by the manager during object creation time.

 
May be set by the manager only during object creation time; if no

value is provided by the manager, the agent must provide a value.

   Not valid.

  Valid but not useful.

  Not valid.

 Must be set by the agent during object creation time.

    Not valid.

  
May be set by the manager anytime; if no value is provided by the

manager at object creation time, it is set to the default value.

  
Must be set by the manager at object creation time and may be

changed anytime.

 
May be set by the manager at object creation time and may be changed

anytime.

   Not valid.

 
Must be set by the agent to the default value at object creation time;

may be changed by the agent anytime.

  Not valid.

May be set by the agent at object creation time and may be changed by

the agent anytime.

70 Rec. ITU-T M.3020 (07/2011revision 2016)

Annex H

Design patterns

(This annex forms an integral part of this Recommendation.)

H.1 Intervening Class and Association Class

H.1.1 Concept and Definition

Classes may be related via simple direct associations or via associations with related association

classes.

However, in situations where the relationships between a number of classes is complex and

especially where the relationships between instances of those classes are themselves interrelated

there may be a need to encapsulate the complexity of the relationships within a class that sits

between the classes that are to be related. The term “intervening class” is used here to name the

pattern that describes this approach. The name “intervening class” is used as the additional class

“intervenes” in the relationships between other classes.

The “intervening class” differs from the association class as the intervening class does break the

association between the classes where aswhereas the association class does not but instead sits to

one side. This can be seen in the following figure. A direct association between class A and C

appears the same at A and C regardless of the presence or absence of an association class where as

in the case of the “intervening class” there are associations between A and the “intervening class” B

and C and the “intervening class” B.

 Rec. ITU-T M.3020 (07/2011revision 2016) 71

Basic association
Note class A points a C and C at A

Association Class
Association where there is a need to represent: the
associations own features (i.e. that do not belong to
any of the connected classes):
• Some behavior and state
• Some additional data related to the association
Note that class A points a C and C at A

“Intervening” class
Where there is a complex assembly of state/data bound
to a number of associations.

Note that Class A and C point to B and potentially B
points to C and A.

Figure H-nn: Various association forms

The “intervening class” is essentially no different to any other class in that it may encapsulate

attributes, complex behaviour etc.

The following figure shows an instance view of both an association class form and an “intervening

class” form for a complex interrelationship

72 Rec. ITU-T M.3020 (07/2011revision 2016)

Association Class
Many instances of association class, one per
association instance.

“Intervening” class
One instance of intervening class that captures
complex association and intertwining between
Classes.
Also captures behaviour interaction such as
protection switching and state (e.g where class
A and C are TPs and class B is an SNC.

Figure H-nn: Instance view of "intervening class"

The case depicted above does not show interrelationships between the relationships. A practical

case from modeling of the relationships between Termination Points in a fixed network does show

this relationship interrelationship challenge. In this case the complexity of relationship is between

instances of the same class, the Termination Point (TP). The complexity is encapsulated in a

SubNetworkConnection (SNC) class.

 Rec. ITU-T M.3020 (07/2011revision 2016) 73

“Intervening class” instance view
One instance of intervening class that captures complex
association and intertwining between Classes.
Also captures behaviour interaction such as protection
switching and state.

Simplified SNC and TP case
An SNC can not exist without at least 2 TPs being
related.

Some simplifications: In this case the TP and SNC model
is assumed to be bidirectional only. The TPs have roles
with respect to the SNC but these are ignored here.
There are many other attributes and properties related
to protection that are ignored here.

Figure H-nn: SNC intervening in TP-TP relationship

The SNC also encapsulates the complex behaviour of switching and path selection as depicted

below.

Association Class
With protection switching rule
and state.

There is complex creation
transaction interrelationship
etc.

Figure 3: Complex relationship interrelationships

74 Rec. ITU-T M.3020 (07/2011revision 2016)

H.1.2 Usage in the non-transport domain

The choice of association class pattern or intervening class pattern is on a case-by-case basis.

The transport domain boundary is highlighted in the following figure.

Function
e.g.

eNodeB
function

Network Element

Link entity (connectivity e.g. X2)

Topological Link

3GPP Managed Function

Association/relationship

Optical fiber

NE with wireless access Wire-line NE

NE with
wireless
access

Management
Environment

Based on Connection Termination Point concept

Based on Physical Termination Point concept

Connection Termination Point

Physical Termination Point

“transport domain”

“non-transport domain”

Boundary between transport
and non-transport domains

Figure H-nn: Highlighting the boundary between transport and non-transport domains

H.1.3 Usage in the transport domain

The following guidelines must be applied to the models of the “transport domain”.

When considering interrelationships between classes the following guidelines should be applied:

• If considering all current and recognised potential future cases it is expected that the

relationship between two specific classes will be 0..1:0..1 then a simple association should

be used

– This may benefit from an association class to convey rules and parameters about the

association behaviour in complex cases.

• If there is recognised potential for cases currently or in future where there is a 0..*:0..*

between two specific classes then intervening classes should be used to encapsulate the

groupings etc. so as to convert it to 0..1:n..*.

– Note that the 0..1:n..* association may benefit from an association class to convey

rules and parameters about the association behaviour in complex cases but in the

instance form this can probably be ignored or folded into the intervening class

• In general it seems appropriate to use an association class when the properties on the

relationship instance cannot be obviously or reasonably folded into one of the classes at

either end of the association and when there is no interdependency between association

instances between a set of instances of the classes.

An example of usage of intervening class is the case of the TP-TP (TerminationPoint) relationship

(0..*:0..*) where the SNC (SubNetworkConnection) is added as the intervening class between

 Rec. ITU-T M.3020 (07/2011revision 2016) 75

multiple TPs, i.e. TP-SNC. Note that TP-SNC actually becomes 0..2:n..* due to directionality

encapsulation.

Considering the case of the adjacency relationship between PTPs it is known that although the

current common cases are 1:1 there are some current and many potential future case of 0..*:0..* and

hence a model that has an intervening class, i.e. the TopologicalLink, should be used.

For a degenerate instance cases of 0..*:0..* that happens to be 0..1:0..1 the intervening class pattern

should still be used:

• Using the 0..1:0..1 direct association in this degenerate case brings unnecessary variety to

the model and hence to the behaviour of the application (the 0..1:n..* model covers the

0..1:0..1 case with one single code form clearly)

• An instance of the 0..1:0..1 model may need to be migrated to 0..1:n..* as a result of some

change in the network forcing an unnecessary administrative action to transition the model

form where as in the 0..1:n..* form requires no essential change.

H.2 Use of “ExternalXyz” class

For further study.

76 Rec. ITU-T M.3020 (07/2011revision 2016)

Appendix I

Requirements example

(This appendix does not form an integral part of this Recommendation.)

NOTE – The following example is based on alarm management, but is used for illustrative purposes only

and not intended to be a complete or correct set of requirements for alarm management.

1 Concepts and background

Any evaluation of the NEs' and the overall network health status requires the detection of faults in

the network and, consequently, the notification of alarms to the OS (EM and/or NM).

2 Business level requirements

2.1 Requirements

Faults that may occur in the network can be grouped into one of the following categories:

– Hardware failures, i.e., the malfunction of some physical resource within a NE.

– Software problems, e.g., software bugs, database inconsistencies.

2.1.1 Fault detection

REQ-FM-FUN-01 The majority of the faults should have well-defined conditions for the

declaration of their presence or absence, i.e., fault occurrence and fault clearing conditions. Any

such incident shall be referred to in this appendix as an ADAC fault. The network entities should

be able to recognize when a previously detected ADAC fault is no longer present, i.e., the

clearing of the fault, using similar techniques as they use to detect the occurrence of the fault.

2.1.2 Clearing of alarms

The alarms originated in consequence of faults need to be cleared. To clear an alarm, it is

generally necessary to repair the corresponding fault.

…

REQ-FM-FUN-02 Each time an alarm is cleared, the Agent shall generate an appropriate clear

alarm event. A clear alarm is defined as an alarm.

2.1.3 Alarm forwarding and filtering

REQ-FM-FUN-03 For each detected fault, appropriate alarms (notifications of the fault) shall be

generated by the faulty network entity.

…

2.2 Actor roles

Managed system The entity performing an agent role.

Managing system The entity performing the manager role.

2.3 Telecommunication resources

The managed network equipment is viewed as relevant telecommunication resources in this

Recommendation.

 Rec. ITU-T M.3020 (07/2011revision 2016) 77

2.4 High-level use case diagrams

2.4.1 Report alarm

The first overview use case diagram in Figure I.1 shows the overall interaction of the alarm

interface.

The first overview use case diagram shows the interactions involved in reporting a detected

failure.

Managing
system

Report alarm
Managed
system

Communicates Instantiates

M.3020(11)_F.I.1

<<Notify dispatch>>

Figure I.1 – Report alarm

3 Specification level requirements

3.1 Requirements

There are no specification level requirements.

3.2 Actor roles

See subclause 2.2 of this template.

3.3 Telecommunication resources

See subclause 2.3 of this template.

3.4 Use cases

3.4.1 Fault notification

Use case stage Evolution/Specification
<<Uses>>

Related use

Goal (*) Upon detection of a failure condition, the managed system

sends an alarm report notification, through interface Q, of the

relevant type to the managing system.

Actors and Roles (*) The managing system is a consumer of notifications from the

managed system.

Telecom resources Any managed entity.

Assumptions A fault condition is detected.

Pre-conditions There is an open communication channel between the

managing system and the managed system.

Begins when A fault condition is detected.

Step 1 (*) Upon detection of a failure condition, an appropriate alarm

report or security alarm report is created.

Ends when Alarm report or security alarm report is emitted by the agent.

78 Rec. ITU-T M.3020 (07/2011revision 2016)

Use case stage Evolution/Specification
<<Uses>>

Related use

Exceptions Communication or process failure could result in a failure to

deliver the alarm report to the managing system. The alarm

synchronization use case covers this situation.

Post-conditions The managing system is informed of the fault condition in

the managed system.

Traceability (*) REQ-FM-FUN-01, REQ-FM-FUN-02, etc.

3.4.2 Alarm clear

…

3.4.3 Acknowledge alarm

…

 Rec. ITU-T M.3020 (07/2011revision 2016) 79

Appendix II

Analysis example[M24]

(This appendix does not form an integral part of this Recommendation.)

NOTE – The following example is based on alarm management, but is used for illustrative purposes only

and not intended to be a complete or correct set of requirements for alarm management.

1 Concepts and background

Any evaluation of the NEs' and the overall network health status requires the detection of faults in

the network and, consequently, the notification of alarms to the OS (EM and/or NM).

…

2 Information object classes

2.1 Information entities imported and local label

Label reference Local label

3GPP TS 32.302, information object class, NotificationIRP NotificationIRP

3GPP TS 32.302, interface, notificationIRPNotification NotificationIRPNotification

3GPP TS 32.622, information object class, IRPAgent IRPAgent

3GPP TS 32.312, information object class, ManagedGenericIRP ManagedGenericIRP

2.2 Class diagram

This subclause introduces the set of information object classes (IOCs) that encapsulate

information within the agent. The intent is to identify the information required for the

AlarmAgent implementation of its operations and notification emission. This subclause provides

the overview of all support object classes in UML. Subsequent subclauses provide more detailed

specification of various aspects of these support object classes.

80 Rec. ITU-T M.3020 (07/2011revision 2016)

2.2.1 Attributes and relationships

AlarmIRP
<<InformationObjectClass>>

MonitoredEntity
<<InformationObjectClass>>

AlarmList
<<InformationObjectClass>>

1

1..n

#identifyAlarmList
1

#identifyAlarmIRP
1..n

relation-AlarmIRP-AlarmList

CorrelatedInformation
source
notificationIdSet

<<InformationObjectClass>> Comment
commentTime
commentText
commentUserId
commentSystemId

<<InformationObjectClass>>

AlarmInformation
alarmId
notificationId
alarmRaisedTime
alarmClearedTime
alarmChangedTime
eventType
probableCause
perceivedSeverity
specificProblem
backedUpStatus
trendIndication
thresholdInfo
stateChangedDefinition
monitoredAttributes
proposedRepairActions
additionalText
additionalInformation
ackTime
ackUserId
ackSystemId
ackState
clearUserId
clearSystemId
vendorSpecificAlarmType

serviceUser

serviceProvider

securityAlarmDetector

<<InformationObjectClass>>

0..n

1

#identifyAlarmInformation

0..n

#identifyAlarmObject

1 relation-AlarmedObject-Al
armInformation

0..1

#identifyBackUpObject

0..1

#theBackUpObject

relation-BackUpObject-AlarmInfor
mation

0..n

#identifyAlarmInformation

0..n

#theAlarmInformation

relation-AlarmList-AlarmInformation

0..n #identifyCorrelatedInformation 0..n

#theAlarmInformation

relation-AlarmList-CorrelatedInformation

0..n #identifyComments 0..n

#theAlarmInformation

relation-AlarmList-Comment

Figure II.1 – Alarm management information object classes

 Rec. ITU-T M.3020 (07/2011revision 2016) 81

2.2.2 Inheritance

Figure II.2 – Alarm management IOC inheritance

2.3 Information object class definitions

Class name Qualifier Requirement IDs

AlarmInformation M REQ-FM-FUN-01, REQ-FM-FUN-02, etc.

AlarmList M REQ-FM-FUN-n

…

2.3.1 AlarmInformation

2.3.1.1 Definition

AlarmInformation contains information about an alarm condition of an alarmed MonitoredEntity.

….

2.3.1.2 Attributes

Attribute name
Support

qualifier

Read

qualifier

Write

qualifier
Requirement IDs

alarmed M M M

probableCause C M C

structuredProbableCause C M C

perceivedSeverity M M M

specificProblem O O O

…

…

ManagedGenericIRP

iRPVersions

operationNameProfiles

operationParameterProfiles

notificationNameProfiles

notificationParameterProfiles

<<InformationObjectClass>>

Imported classes

NotificationIRPNotification

<<Interface>>

AlarmIRP

<<InformationObjectClass>>

AlarmIRPNotifications_1

<<Interface>>

AlarmIRPNotification_2

<<Interface>>

AlarmIRPNotification_3

<<Interface>>

AlarmIRPNotification_4

<<Interface>>

82 Rec. ITU-T M.3020 (07/2011revision 2016)

2.3.1.3 State diagram

Alarms have states.

…

M.3020(11)_FII.3

unack&unclear ack&unclear

unack&clear

This is the terminal state (acknowledged and cleared)
This AlarmInformation no longer exists in the AlarmList.

The MO alarm's matching-criteria-attributes are not identical to the
matching-criteria-attributes of any AlarmInformation in AlarmList. See appendix for
the definition of matching-criteria-attributes.

MO emits alarm / IRPAgent creates a
new AlarmInformation. ^notifyNewAlarm

acknowledgeAlarm
^notifyAckStateChanged

MO PS level changes to
cleared
^notifyClearedAlarm

unacknowledgeAlarm

^notifyAckStateChange

MO PS changes to
cleared

^notifyClearedAlarm

MO PS changes & new level is
not cleared & IRPAgent supports

notifyChangedAlarm

^notifyChangedAlarm

acknowledgeAlarm
^notifyAckStateChanged

MO emits alarm & IRPAgent
supports notifyChangedAlarm

^notifyChangedAlarm

MO emits alarm & IRPAgent
does not support

notifyChangedAlarm

^notifyClearedAlarm,
notifyNewAlarm

MO PS changes & new level is not
cleared & IRPAgent does not
support notifyChangedAlarm

^notifyClearedAlarm,
notifyNewAlarm

Figure II.3 – Alarm information state diagram

2.3.2 AlarmList

2.4 Information relationships definition

Relationship
Support

qualifier
Requirement IDs

relation-AlarmIRP-AlarmList M REQ-FM-FUN-x

…

2.4.1 relation-AlarmIRP-AlarmList (M)

2.4.1.1 Definition

This represents the relationship between AlarmIRP and AlarmList.

 Rec. ITU-T M.3020 (07/2011revision 2016) 83

2.4.1.2 Roles

Name Definition

identifyAlarmIRP It represents the capability to obtain the identities of one or more AlarmIRP.

identifyAlarmList It represents the capability to obtain the identity of one AlarmList.

2.4.1.3 Constraint

There is no constraint for this relationship.

2.4.2 relation-AlarmList-AlarmInformation (M)

...

2.5 Information attribute definition

2.5.1 Definition and legal values

Name Definition
Information type/

Legal values

alarmed
It identifies one AlarmInformation in the

AlarmList.
INTEGER

notificationId
It identifies the notification that carries the

AlarmInformation.
INTEGER

ntfSusbcriptionState It indicates the activation state of a subscription

ENUMERATED/"suspended"

: the subscription is

suspended.

"notSuspended": the

subscription is active.

2.5.2 Constraints

Name Affected attribute(s) Definition

inv_notificationId notificationId NotificationIds shall be chosen to be unique across

all notifications of a particular managed object

(representing the NE) throughout the time that alarm

correlation is significant. The algorithm by which

alarm correlation is accomplished is outside the

scope of this IRP.

84 Rec. ITU-T M.3020 (07/2011revision 2016)

3 Interface definition

3.1 Class diagram representing interfaces

Figure II.4 – Alarm management IRP class diagram

AlarmIRP

<<InformationObjectClass>>

AlarmIRPOperations_1

+ getAlarmList()

+ acknowledgeAlarms()

<<Interface>>

AlarmIRPOperation_2

+ getAlarmCount()

<<Interface>>

AlarmIRPOperatio_3

+ unacknowledgeAlarms()

<<Interface>>

AlarmIRPOperation_4

+ setComment()

<<Interface>>

AlarmIRPNotifications_1

+ notifyNewAlarm()

+ notifyAckStateChanged()

+ notifyClearedAlarm()

+ notifyAlarmListRebuilt()

<<Interface>>

AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

AlarmIRPNotification_3

+ notifyComments()

<<Interface>>

AlarmIRPNotification_4

+ notifyPotentialFaultyAlarmList()

<<Interface>>

AlarmList

<<InformationObjectClass>>

11

0..10..1

0..10..1

0..10..1

11

0..10..1

0..10..1

0..10..1

AlarmIRPOperation_5

+ clearAlarms()

<<Interface>>

0..10..1

ManagedGenericIRP

iRPVers ions

operationNameProfiles

operationParameterProfiles

notificationNameProfiles

notificationParameterProfiles

<<InformationObjectClass>>

Imported classes

NotificationIRPNotification

<<Interface>>

AlarmIRP

<<InformationObjectClas s>>

AlarmIRPNotifications_1

<<Interface>>

AlarmIRPNotification_2

<<Interface>>

AlarmIRPNotification_3

<<Interface>>

AlarmIRPNotification_4

<<Interface>>

ManagedGenericIRP

iRPVers ions

operationNameProfiles

operationParameterProfiles

notificationNameProfiles

notificationParameterProfiles

<<InformationObjectClass>>

Imported classes

NotificationIRPNotification

<<Interface>>

AlarmIRP

<<InformationObjectClas s>>

AlarmIRPNotifications_1

<<Interface>>

AlarmIRPNotification_2

<<Interface>>

AlarmIRPNotification_3

<<Interface>>

AlarmIRPNotification_4

<<Interface>>

 Rec. ITU-T M.3020 (07/2011revision 2016) 85

3.2 Generic rules

Rule 1: Each operation with at least one input parameter supports a pre-condition

valid_input_parameter which indicates that all input parameters shall be valid with regard to their

information type. Additionally, each such operation supports an exception

operation_failed_invalid_input_parameter which is raised when pre-condition

valid_input_parameter is false. The exception has the same entry and exit state.

Rule 2: Each operation with at least one optional input parameter supports a set of pre-conditions

supported_optional_input_parameter_xxx where "xxx" is the name of the optional input

parameter and the pre-condition indicates that the operation supports the named optional input

parameter. Additionally, each such operation supports an exception

operation_failed_unsupported_optional_input_parameter_xxx which is raised when:

a) the pre-condition supported_optional_input_parameter_xxx is false; and

b) the named optional input parameter is carrying information.

The exception has the same entry and exit state.

Rule 3: Each operation shall support a generic exception operation_failed_internal_problem that

is raised when an internal problem occurs and the operation cannot be completed. The exception

has the same entry and exit state.

3.3 Interface AlarmIRPOperations_1 (O)

Operation Name Qualifier Requirement IDs

acknowledgeAlarms M REQ-FM-FUN-x, REQ-FM-FUN-y

getAlarmList M …

3.3.1 Operation acknowledgeAlarms (M)

3.3.1.1 Definition

The Manager invokes this operation to acknowledge one or more alarms.

3.3.1.2 Input parameters

Parameter

Name

Support

Qualifier

Information

Type/Legal Values
Comment

…

eventIdList M SET OF INTEGER/– The list of alarms to be acknowledged.

3.3.1.3 Output parameters

Parameter Name
Support

Qualifier

Matching Information/

Information Type/

Legal Values

Comment

…

Status M -- / ENUM /

"OperationSucceeded": If allAlarmsAcknowledged is

true,

"OperationPartiallySucceeded": If

someAlarmAcknowledged is true,

"OperationFailed": If operationFailed is true.

86 Rec. ITU-T M.3020 (07/2011revision 2016)

3.3.1.4 Pre-condition

atLeastOneValidId.

Assertion Name Definition

atLeastOneValidId The AlarmInformationReferenceList contains at least one identifier that

identifies one AlarmInformation in AlarmList, and this identified

AlarmInformation shall have its ackState indicating "unacknowledged" and, if

provided, an equal perceivedSeverity.

3.3.1.5 Post-condition

someAlarmAcknowledged OR allAlarmsAcknowledged.

Assertion Name Definition

someAlarmAcknowledged …

allAlarmsAcknowledged …

3.3.1.6 Exceptions

Name Definition

operation_failed Condition: Pre-condition is false or post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

3.3.2 Operation getAlarmList (M)

…

 Rec. ITU-T M.3020 (07/2011revision 2016) 87

Appendix III

Comparison with Recommendation ITU-T Z.601

(This appendix does not form an integral part of this Recommendation.)

This appendix provides information on the relationship between this Recommendation and

[b-ITU-T Z.601] that is used for the development of Recommendations in the ITU-T M.1400 series

of Recommendations.

While this Recommendation provides a methodology for specifying management interfaces

between two physical systems, [b-ITU-T Z.601] provides a framework for the development of one

system. This data architecture identifies candidate interfaces within one system as well as the

interfaces on the boundary of this system. These interfaces at the boundary will be between

systems.

The methodology specified by this Recommendation is primarily aimed at the development of a set

of management interface Recommendations rather than of individual systems. The data architecture

prescribes no requirements capture similar to the requirements phase, as it prescribes the

specification of individual systems only, not their purpose relative to an organization.

[b-ITU-T Z.601] focuses on specification of the external terminology and grammar as perceived by

the end users. This Recommendation focuses on specification of management interfaces, which may

not be perceived by the end users.

In this Recommendation, the requirements for the problem being solved fall into two classes. The

first class of requirements is referred to as business requirements; the second class is referred to as

specification requirements. The specification requirements may include requirements to support

end-user interaction at their human-computer interfaces. Some of these requirements may specify

syntactical requirements to be supported over any management interface. Syntactical requirements

correspond to external terminology schemata of the data architecture as described in

[b-ITU-T Z.601].

The output of the analysis phase will be an information model. This corresponds to a concept

schema of the data architecture as described in [b-ITU-T Z.601]. If the information models from the

analysis phase do not convey all the necessary information from the syntactical requirements, the

implementation design may need to include a mapping from the syntactical requirements.

The documentation from the implementation design phase will consist of two parts:

1) A technology-dependent data specification common for several interfaces, e.g., using

GDMO or CORBA IDL, corresponding to an internal terminology schema according to the

data architecture in [b-ITU-T Z.601].

2) A technology-dependent specification of each interface, e.g., using CMIP or CORBA IDL,

corresponding to a distribution schema according to the data architecture in

[b-ITU-T Z.601].

88 Rec. ITU-T M.3020 (07/2011revision 2016)

Appendix IV

Issues for further study

(This appendix does not form an integral part of this Recommendation.)

This appendix identifies known issues that are subject to further study.

IV.1 SOA[M25]

The approval of [ITU-T M.3060] (Principles for the management of next generation networks)

signalled a change from an object-oriented to a service-oriented approach to management. The

impact of this change will need to be studied to identify any changes required in future revisions of

this Recommendation.

IV.2 UML

This version of ITU-T M.3020 references UML version 1.52.4 in order to maintain alignment with

the corresponding 3GPP specifications. A revised ITU-T M.3020 should reference later versions of

UML:

– The OMG MOF meta-meta model integrates UML 2.x as a meta-model which is supported

by the mainstream industry tool vendors. Prior to UML 2.0, there was no overarching meta-meta

model and UML itself was not standard. MOF supports the addition and creation of other new

meta-models defined in a precise way via OCL which is a predicate calculus language.

– Both industry (telecoms, governments and military) and tool vendors are converging on the

OMG MOF model.

– The benefits of the MOF meta-meta model are that it supports a family of meta-models

which can be used to define object models, HCI relationships, various technology-specific

implementations and allows transformations between models to be undertaken in a standard way.

This is not achievable in UML 1.5 since UML 1.5 exists in isolation of a higher meta-model.

IV.3 Visibility

It has been suggested that the default visibility should be private for attributes and public for

operations in order to promote data encapsulation and reduce time and effort in defining the

implementation model.[M26]

IV.4 Type definitions[M27]

When writing a new specification based on this methodology, it is necessary to specify the types of

parameters and attributes. Formal type definitions are absent from the current version of this

Recommendation, so the definition of types might be different and inconsistent for the same

meaning in different specifications, e.g., for an array of integer, it might be defined as a list of

integers, or a sequence of integers, or a set of integers.

Annex E defines the types that can be used in the conceptual model.

 Rec. ITU-T M.3020 (07/2011revision 2016) 89

Appendix V

Additional UML usage samples

(This appendix does not form an integral part of this Recommendation.)

This appendix contains additional samples on the use of the UML described in Annex C.

V.1 Proxy class

V.1.1 First sample

This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note under

the UML diagram. All the listed IOCs, in the context of this sample, inherit from ManagedFunction

IOC.

The use of <<ProxyClass>> eliminates the need to draw multiple UML

<<InformationObjectClass>> boxes, i.e., those whose names are listed in the Note, in the UML

diagram.

NOTE – The YyyFunction <<ProxyClass>> represents AsFunction, AucFunction, BgFunction, etc.

<<ProxyClass>> Notation sample V.1

V.1.2 Second sample

This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note right

under the UML diagram. All the listed IOCs, in the context of this sample, have link (internal and

external) relations.

The actual names of the IOC represented by InternalYyyFunction <<ProxyClass>> and by the

ExternalYyyFunction <<ProxyClass>> are listed under the subclause of X.Y of the associated

YyyFunction. For example, under X.Y.1 for AsFunction, two paragraphs are added to list all peer

internal entities and external entities that are linked with AsFunction. See sample in quotation

below that is using AsFunction as a sample for YyyFunction.

The actual names of the IOC represented by Link_a_z <<ProxyClass>> and by ExternalLink_a_z

<<ProxyClass>> are listed under the subclause of X.Y of the associated YyyFunction. For example,

under X.Y.1 for AsFunction, two paragraphs are added to list the names of the IOCs represented by

Link_a_z and by ExternalLink_a_z. See the quoted text below that is using AsFunction as a sample

for YyyFunction.

"

ManagedFunction
(from TS 32.622)

<<InformationObjectClass>>

YyyFunction

<<ProxyClass>>

90 Rec. ITU-T M.3020 (07/2011revision 2016)

X.Y.1 AsFunction

X.Y.1.1 Definition

This IOC represents As functionality. For more information about the As, see [b-3GPP TS 23.002].

The linked InternalYyyFunction <<ProxyClass>> represents SlsFunction, CscfFunction,

HlrFunction ...

The linked ExternalYyyFunction <<ProxyClass>> represents …

The Link_a_z <<ProxyClass>> represents Link_As_Scscf, Link_Bgcf_Scscf …

The ExternalLink_a_z <<ProxyClass>> represents …

"

NOTE – The 'Yyy' of YyyFunction <<ProxyClass>> represents AsFunction, AucFunction, etc.

<<ProxyClass>> Notation sample V.2

ExternalYyyFuntion

<<ProxyClass>>

ExternalLink_a_z

<<ProxyClass>>

InternalYyyFunction

<<ProxyClass>>

YyyFunction

<<ProxyClass>>

Link_a_z

<<ProxyClass>>

 Rec. ITU-T M.3020 (07/2011revision 2016) 91

Appendix VI

Guidelines on requirements numbering

(This appendix does not form an integral part of this Recommendation.)

The format for requirements numbering is the following:

 REQ-Label-Category-Number

where "Label" is an abbreviation for the Recommendation (or part thereof). The set of labels is not

finite and not subject for standardization. The set of categories is defined in this Recommendation.

Some issues:

– How to structure the label in a large requirements specification?

– How to handle deletion and addition of requirements?

The following guidelines are found to be useful:

– Requirements should never be renumbered. The only exception to this case is the first

publication of a specification, but even in this case it may be better to avoid renumbering as

the specification may have been used also in its draft form.

– Given that requirements are not to be renumbered, it cannot be expected that the

requirements are numbered sequentially throughout the specification.

– The label can be used to divide the numbering into logical partitions. As an example, the

style of "A_B" is recommended to identify "B" as a logical partition of "A". However,

other styles can be used as long as the structure with "-" separating the fields of the

requirements number is maintained.

– Use of postfix or prefix notations, i.e., adding something in front of "Number" or following

"Number", are not recommended since the "Number" part is not intended to convey

semantic information.

– As an alternative to the "A_B" style, the authors of a specification may choose to assign a

number range to a group of requirements. This approach should be allowed.

92 Rec. ITU-T M.3020 (07/2011revision 2016)

Appendix VII

Stereotypes for naming purposes

(This appendix does not form an integral part of this Recommendation.)

The following diagram illustrates the various stereotypes for naming purposes.

a) The <<names>> with solid-diamond (see C.3.3) identifies:

 The naming class (close to the solid diamond) and a named class;

 The naming scheme is DN;

 The container (close to the solid diamond) and the content.

b) The <<names>> with other types of associations (and excluding those labelled “Not

Allowed”) identifies:

 The naming class (close to the hollow diamond or the source with regard to arrow

direction) and a named class (the target);

 The naming scheme is DN.

c) The <<namedBy>> with dependency (dotted arrowed line) identifies:

 The naming class (target with regard to arrow direction) and a named class (the

source);

 The naming scheme is DN.

Referring to the figure, RMA Phase 1 allows the form Class7<<names>>Class8.

The forms “in red” are not allowed.

The rest of the forms are “under investigation in Phase 2” since they all require an agreed standard

mechanism on handling (named) instances whose related naming instance have been destroyed.

They also lack use case support, thus far.[M28]

 Rec. ITU-T M.3020 (07/2011revision 2016) 93

Figure VII-1: Various forms of naming stereotypes

94 Rec. ITU-T M.3020 (07/2011revision 2016)

Bibliography

[b-ITU-T M.1401] Recommendation ITU-T M.1401 (2006), Formalization of interconnection

designations among operators' telecommunication networks.

[b-ITU-T M.1403] Recommendation ITU-T M.1403 (2007), Formalization of generic orders.

[b-ITU-T M.1404] Recommendation ITU-T M.1404 (2007), Formalization of orders for

interconnections among operators' networks.

[b-ITU-T Z.601] Recommendation ITU-T Z.601 (2007), Data architecture of one software

system.

[b-3GPP TS 23.002] 3GPP TS 23.002 (in force), Network architecture.

[b-3GPP TS 32.101] 3GPP TS 32.101 V10.0.0 (2010), Telecommunication management;

Principles and high level requirements.

[b-3GPP TS 32.150] 3GPP TS 32.150 V10.2.0 (2011), Telecommunication management;

Integration Reference Point (IRP) Concept and definitions.

[b-3GPP TS 32.151] 3GPP TS 32.151 V10.1.0 (2010), Telecommunication management;

Integration Reference Point (IRP) Information Service (IS) template.

[b-3GPP TS 32.157] 3GPP TS 32.157 V12.0.0 (2014), Telecommunication management;

Integration Reference Point (IRP) Information Service (IS) template.

[b-3GPP TS 32.152] 3GPP TS 32.152 V10.0.0 (2010), Telecommunication management;

Integration Reference Point (IRP) Information Service (IS) Unified

Modelling Language (UML) repertoire.

[b-3GPP TS 32.156] 3GPP TS 32.156 V12.0.0 (2014), Telecommunication management; Fixed

Mobile Convergence (FMC) model repertoire

[b-3GPP TS 32.302] 3GPP TS 32.302 V10.0.0 (2010), Telecommunication management;

Configuration Management (CM); Notification Integration Reference Point

(IRP); Information Service (IS).

Printed in Switzerland
Geneva, 2012

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

