3GPP TS 32.160 V16.2.0 (2020-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Management and orchestration;

Management service template

(Release 16)
 [image: image1.jpg]s

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP..
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

.

Keywords

management, service,template
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2020, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents

5Foreword

1
Scope
7
2
References
7
3
Definitions of terms, symbols and abbreviations
8
3.1
Terms
8
3.2
Symbols
8
3.3
 Abbreviations
8
4
Management service template (stage 1)
8
4.1
General
8
4.2
Template for high-level requirement specifications
9
4.3
Template for Management service specific requirement specifications
9
5
Management service template (stage 2)
10
5.1
General
10
5.1.1
General
10
5.1.2
Management service components
10
5.2
Template for NRM
10
5.3
Template for Management service operations and notifications
16
6
NRM Stage 3 definition rules
21
6.1
Mappings from stage 2 artefacts to stage 3 JSON schema
21
6.1.1
Usage of JSON schema
21
6.1.2
Concrete NRM class
21
6.1.3
Abstract class
22
6.1.4
Name containment
23
6.1.5
Recursive name containment
25
6.1.6
Inheritance
26
6.1.7
NRM class naming attribute "id"
27
6.1.8
NRM class attributes
27
6.1.9
Vendor specific extensions
27
6.1.10
Attribute support qualifier
27
6.1.11
Attribute properties
28
6.1.11.1
Introduction
28
6.1.11.2
Attribute property "multiplicity"
28
6.1.11.3
Attribute property "isUnique"
28
6.1.11.4
Attribute property "isOrdered"
29
6.1.11.5
Attribute property "defaultValue"
29
6.1.11.6
Attribute property "isNullable"
29
6.1.11.7
Attribute property "isInvariant"
29
6.1.11.8
Attribute property "isReadable" and "isWritable"
29
6.1.11.9
Attribute property "isNotifyable"
30
6.1.11.10
Attribute property "allowedValues"
30
6.2
Stage 3 YANG style and example
30
6.2.1
General Modeling Rules
30
6.2.1.1
Modeling Resources
30
6.2.1.2
Unique YANG Module names
30
6.2.1.3
Unique YANG Namespace
30
6.2.1.4
Unique YANG Module Prefixes
30
6.2.1.5
Use YANG Version 1.1
31
6.2.1.6
YANG Constructs Not to be Used – Not needed
31
6.2.1.7
Reuse Standards from Other Standard Organizations
31
6.2.1.8
Vendor Specific Model Changes
31
6.2.1.9
Model Correctness, checking
31
6.2.2
InformationObjectClass – abstract
32
6.2.2.1
Introduction
32
6.2.2.2
YANG mapping
32
6.2.3
Naming attribute
33
6.2.3.1
Introduction
33
6.2.3.2
Yang mapping
33
6.2.4
InformationObjectClass – concrete
33
6.2.4.0
Introduction
33
6.2.4.1
YANG mapping
33
6.2.5
Generalization relationship - inheritance from another class
33
6.2.5.1
Introduction
33
6.2.5.2
YANG mapping
34
6.2.6
Name containment
34
6.2.6.1
Introduction
34
6.2.6.2
YANG mapping
34
6.2.7
Recursive containment - reference based solution
35
6.2.8
Multi-root management tree
36
6.2.9
Alternative containment
36
6.2.10
Attribute – simple, single value
37
6.2.10.1
Introduction
37
6.2.10.2
YANG Mapping
37
6.2.11
Attribute – simple, multivalue
37
6.2.11.1
Introduction
37
6.2.11.2
YANG mapping
37
6.2.12
Attribute, structured
37
6.2.12.0
Introduction
37
6.2.12.1
YANG Mapping
37
6.2.13
defaultValue
38
6.2.13.1
Introduction
38
6.2.13.2
YANG mapping
38
6.2.14
multiplicity and cardinality
39
6.2.14.0
Introduction
39
6.2.14.1
YANG mapping
39
6.2.15
isNullable
39
6.2.15.0
Introduction
39
6.2.15.1
YANG mapping
39
6.2.16
dataType
39
6.2.16.0
Introduction
39
6.2.16.1
YANG mapping
39
6.2.17
enumeration
40
6.2.17.0
Introduction
40
6.2.17.1
YANG mapping
40
6.2.18
choice
40
6.2.18.0
Introduction
40
6.2.18.1
YANG mapping
40
6.2.19
isInvariant on attribute
40
6.2.19.1
YANG mapping
40
6.2.20
isReadable/isWritable
40
6.2.20.1
YANG mapping
40
6.2.21
isOrdered
41
6.2.21.1
YANG mapping
41
6.2.22
isUnique
41
6.2.22.1
YANG mapping
41
6.2.23
allowedValues
41
6.2.23.1
YANG mapping
41
6.2.24
Xor constraint
41
6.2.24.1
YANG mapping
41
6.2.25
ProxyClass
41
6.2.a.1
YANG mapping
41
Annex A (informative):
Change history
42

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

In the present document, certain modal verbs have the following meanings:

shall

indicates a mandatory requirement to do something

shall not
indicates an interdiction (prohibition) to do something

The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.

The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.

should

indicates a recommendation to do something

should not
indicates a recommendation not to do something

may

indicates permission to do something

need not
indicates permission not to do something

The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.

can

indicates that something is possible

cannot

indicates that something is impossible

The constructions "can" and "cannot" shall not to be used as substitutes for "may" and "need not".

will

indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document

will not

indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document

might
indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document

might not
indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document

In addition:

is
(or any other verb in the indicative mood) indicates a statement of fact

is not
(or any other negative verb in the indicative mood) indicates a statement of fact

The constructions "is" and "is not" do not indicate requirements.

1
Scope

The present document contains the templates to be used for the production of Management service component specifications type A, type B and type C [2].
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 28.533: "Management and orchestration; Architecture framework".

[3]
3GPP TS 32.156: "Telecommunication management; Fixed Mobile Convergence (FMC) Model Repertoire"
[4]
ITU-T Recommendation M.3020 (07/2017): "Management interface specification methodology".

[5]
3GPP TR 21.801: "Specification drafting rules".

[6]
3GPP TS 28.622: "Telecommunication management; Generic Network Resource Model (NRM) Integration Reference Point (IRP); Information Service (IS)".

[7]
3GPP TS 28.541: "Management and orchestration; 5G Network Resource Model (NRM); Stage 2 and stage 3".

[8]
3GPP TS 32.302: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP); Information Service (IS)".

[9]
3GPP TS 32.300: "Telecommunication management; Configuration Management (CM); Name convention for Managed Objects".
[10]
ITU-T Recommendation M.3020 (07/2011): "Management interface specification methodology" – Annex E "Information type definitions – type repertoire".
[11]
IETF RFC 8407: "Guidelines for Authors and Reviewers of Documents Containing YANG Data Models, October 2018".
[12]
3GPP TS 28.532: " Management and orchestration; Generic management services"

[13]
IETF RFC 8528: "YANG Schema mount "

[14]
OpenAPI: "OpenAPI 3.0.0 Specification", https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md.

[15]
draft-wright-json-schema-01 (October 2017): "JSON Schema: A Media Type for Describing JSON Documents".

[16]
draft-wright-json-schema-validation-01 (October 2017: "JSON Schema Validation: A Vocabulary for Structural Validation of JSON".
[17]
draft-wright-json-schema-hyperschema-01 (October 2017): "JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON.
[18]
IETF RFC 9950: "The YANG 1.1 Data Modeling Language, August 2016".
3
Definitions of terms, symbols and abbreviations
3.1
Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

3.2
Symbols

Void.

3.3

Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

C
Conditional

CM
Conditional Mandatory

CO
Conditional Optional

M
Mandatory

MnS
Management Service

NRM
Network Resource Model

O
Optional

4
Management service template (stage 1)

4.1
General

This template is mainly based on the requirements template (mainly Annex A) in the ITU-T M.3020 recommendation [4] and shall be used for the production of all requirement specifications for management and orchestration of 3GPP networks. The template contains two options: Option 1 specified in subclause 4.2, which shall be used for all high-level requirement specifications for management and orchestration of 3GPP networks, and option 2 specified in subclause 4.3, which shall be used for all Management Services (MnS) specific requirement specifications. When option 1 is selected for the production of high level requirement specifications, either the template for Business level requirements (R4.b), the template for Specification level requirements (R4.c) or both are used.

Instructions in italics below shall not be included in the requirements specifications.

The introductory clauses (from clause 1 to clause 3) for the requirements TS should be taken from the 3GPP TS template (i.e. not this requirements template).

Use the "Heading x" paragraph style for clause and sub-clauses in the Requirements TS.

Usage of fonts shall be according to the 3GPP drafting rules in TR 21.801 [5] for a TS (with some basic examples given in the 3GPP TS template).

4.2
Template for high-level requirement specifications

R4

Management service name

The Management service name above shall be replaced with the name of the Management Service (MnS) which is to be specified."
R4.a

Concepts and background

For production of the contents of this clause, follow the template instructions in ITU-T M.3020 [4] subclause A.2, template clause "1 Concepts and background".

R4.b

Business level requirements

For production of the contents of this subclause, follow the template instructions in ITU-T M.3020 [4] subclause A.2, template clause "2 Business level requirements".

Note on the Use case template: All occurrences of "(*)" in the first column "Use Case Stage" of the Use case template in table A.2, as well as the last row with a NOTE at the end of the table, shall not be included in the requirements TS as these are only template instructions to the TS author. For example, "Goal(*)" shall be converted to "Goal" in the TS. Likewise, for all occurrences of "(M|O)", a choice of M or O shall be made, leaving it as either "(M)" or "(O)" in the TS. For example, "Step n (M|O)" shall be converted to "Step n (M)" or "Step n (O)" in the TS.

R4.c

Specification level requirements

For production of the contents of this subclause, follow the template instructions in ITU-T M.3020 [4] subclause A.2, template clause "3 Specification level requirements".

Note on the Use case template: All occurrences of "(*)" in the first column "Use Case Stage" of the Use case template in table A.2, as well as the last row with a NOTE at the end of the table, shall not be included in the requirements TS as these are only template instructions to the TS author. For example, "Goal(*)" shall be converted to "Goal" in the TS. Likewise, for all occurrences of "(M|O)", a choice of M or O shall be made, leaving it as either "(M)" or "(O)" in the TS. For example, "Step n (M|O)" shall be converted to "Step n (M)" or "Step n (O)" in the TS.

4.3
Template for Management service specific requirement specifications

R4

Management service name

The Management service name above shall be replaced with the name of the Management Service (MnS) which is to be specified.
R4.1

Concepts and background

For production of the contents of this clause, follow the template instructions in ITU-T M.3020 [4] subclause A.3, template clause "1 Concepts and background".

R4.2

Requirements
For production of the contents of this subclause, follow the template instructions in ITU-T M.3020 [4] subclause A.3, template clause "2 Requirements".
5
Management service template (stage 2)

5.1
General

5.1.1
General

The present document contains the templates to be used, for the production of all Management Service (MnS) specifications.

Clause 5.2 is applicable for specification of MnS component type B (NRM).

Clause 5.3 is applicable for specification of MnS component type A (operations and notifications) and type C (alarm and performance information).

The MnS template uses qualifiers M, O, CM, CO and C. The semantics of these qualifiers are defined in [3].
The MnS template uses type definition as one characteristic to describe class attributes and operation/notification parameters. The valid type definitions that can be used and their semantics are defined in [3].
Usage of fonts for the specific cases of class/attribute names etc., in addition to the general font requirements in the 3GPP drafting rules in 3GPP TR 21.801 [5], shall be according to the following table.

Table 5.1.1-1

	Item
	Font

	Class names
	Courier New

	Attribute names
	Courier New

	Operation names
	Courier New

	Parameter names
	Courier New

	Assertion names
	Courier New

	Notification names
	Courier New

	Exception names
	Courier New

	State names
	Arial

	Matching Information
	Courier New

	Information Type
	Courier New

	Legal Values
	Courier New

	NOTE:
These font requirements do not apply to UML diagrams.

5.1.2
Management service components

A management service combines elements of management service components type A, B and C [1].

The template for NRM, see clause 5.2, applies to the specification of management service component type B.

The template for the Management service operations and notifications, see clause 5.3, applies to the specification of type A and type C.

5.2
Template for NRM

W4

Model

W4.1
Imported and associated information entities

W4.1.1
Imported information entities and local labels

This clause identifies a list of information entities (e.g. information object class, datatype, interface, attribute) that have been defined in other specifications and that are imported in the present (target) specification. All imported entities shall be treated as if they are defined locally in the target specification. One usage of import is for inheritance purpose.

Each element of this list is a pair (label reference, local label). The label reference contains the name of the original specification where the information entity is defined, the information entity type and its name. The local label contains the name of the information entity that appears in the target specification, and the entity name in the local label shall be kept identical to the name defined in the original specification. The local label may then be used throughout the target specification instead of that which appears in the label reference.

This information is provided in a table. An example of such a table is given here below:

	Label reference
	Local label

	TS 28.622 [6], information object class, Top
	Top

	TS 28.541 [7] information object class NSI
	NSI

W4.1.2
Associated information entities and local labels

This clause identifies a list of information entities (e.g. information object class, interface, attribute) that have been defined in other specifications and that are associated with the information entities defined in the present (target) specification. For the associated information entity, only its properties (e.g., DN (see TS 32.156 [3]), attribute (see TS 32.156 [3]) of an instance of the associated information entity) used as associated information needs to be supported locally in the target specification.

Each element of this list is a pair (label reference, local label). The label reference contains the name of the original specification where the information entity is defined, the information entity type and its name. The local label contains the name of the information entity that appears in the target specification. The local label may then be used throughout the target specification instead of that which appears in the label reference.

This information is provided in a table. An example of such a table is given here below:

	Label reference
	Local label

	TS 28.541 [7], IOC, GNBDUFunction
	GNBDUFunction

W4.2
Class diagram

W4.2.1
Relationships

This first set of diagrams represents all classes and datatypes defined in this MnS with all their relationships, including relationships with imported information entities (if any). These diagrams shall contain class cardinalities (for associations as well as containment relationships) and may also contain role names. These shall be UML compliant class diagrams (see also TS 32.156 [3]).

Characteristics (attributes, relationships) of imported information entities need not to be repeated in the diagrams. Allowable classes are specified in TS 32.156 [3].

Use this as the first paragraph: "This clause depicts the set of classes (e.g. IOCs) that encapsulates the information relevant for this MnS. This clause provides an overview of the relationships between relevant classes in UML. Subsequent clauses provide more detailed specification of various aspects of these classes."

W4.2.2
Inheritance

This second set of diagrams represents the inheritance hierarchy of all classes defined in this specification. These diagrams do not need to contain the complete inheritance hierarchy but shall at least contain the parent classes of all classes defined in the present document. By default, a class inherits from the class "top".

Characteristics (attributes, relationships) of imported classes need not to be repeated in the diagrams.

NOTE:
some inheritance relationships presented in clause W4.2.2 may be repeated in clause W4.2.1 to enhance readability.

Use "This subclause depicts the inheritance relationships." as the first paragraph.
W4.3
Class definitions

Each class, with its stereotype name, is defined using the following structure.

Inherited items (attributes etc.) shall not be shown, as they are defined in the parent class(es) and thus valid for the subclass.

W4.3.a
ClassName <<StereotypeName>>
StereotypeName is mandatory to be included in the clause header, except for the stereotype Information Object Class, for which it shall not be included in the clause header.

An example of a Class is Subnetwork of stereotype Information Object Class. The heading of sub-clause W4.3.a for SubNetwork would look as follows:

W4.3.a SubNetwork
An example of a Class is SliceProfile of stereotype data type. The heading of W4.3.a for SliceProfile would look as follows:

W4.3.a SliceProfile <<dataType>>
The various stereotypes can be found in TS 32.156 [3].

The "a" represents a number, starting at 1 and increasing by 1 with each new definition of a class.

W4.3.a.1
Definition

This clause is written in natural language. The <definition> clause refers to the class itself.

Optionally, information on traceability back to one or more requirements supported by this class may be defined here, in the following form:

	Referenced TS
	Requirement label
	Comment

	TS 28.xyz [xy]
	REQ-SM-CON-23
	Optional clarification

	TS 28.xyz [xy]
	REQ-SM-FUN-11
	Optional clarification

W4.3.a.2
Attributes

This clause presents the list of attributes, which are the manageable properties of the class. Each attribute is characterised by some of the attribute properties (see TS 32.156 [3]), i.e. supportQualifier, isReadable, isWritable, isInvariant and isNotifyable.

The legal values and their semantics for attribute properties are defined in TS 32.156 [3].
This information is provided in a table.

An example below indicates
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	eNodeBId
	M
	T
	F
	T
	T

Another example below indicates that the attribute password1 is not readable, is writable, is not an invariant and no notifyAttributeValueChange will be emitted when the attribute value is changed.

	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	 password1
	O
	F
	T
	F
	F

Another example below indicates that the attribute password2 and password1 (in example above) have the same qualifiers for the shown properties except that of isReadable. In the case of password1, the standard specification determines the qualifier to be M, i.e. it is readable. In the case of password2, the standard specification does not make a determination. The vendor would make the determination if the attribute is readable or not readable.

	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	 password2
	O
	O
	T
	F
	F

In case there is one or more attributes related to role (see clause 5.2.9 of TS 32.156 [3]), the attributes related to role shall be specified at the bottom of the table with a divider "Attribute related to role", as shown in the following example:

	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	aTMChannelTerminationPointid
	M
	T
	F
	T
	T

	…
	
	
	
	
	

	…
	
	
	
	
	

	Attribute related to role
	
	
	
	
	

	theATMPathTerminationPoint
	M
	T
	F
	F
	T

	theIubLink
	M
	T
	F
	F
	T

This clause shall state "None." when there is no attribute to define.
W4.3.a.3
Attribute constraints

This clause presents constraints for the attributes, and one use is to present the predicates for conditional qualifiers (CM/CO).

This information is provided in a table. An example of such a table is given here below:

	Name
	Definition

	configuredMaxTxPower CM support qualifier
	Condition: The sector-carrier has a downlink [4].

	sNSSAIList CM support qualifier
	Condition: Network slicing feature is supported [4].

This clause shall state "None." when there is no attribute constraint to define.

W4.3.a.4
Notifications

This clause, for this class, presents one of the following options:

a)
The class defines (and independent from those inherited) the support of a set of notifications that is identical to that defined in clause W4.5. In such case, use "The common notifications defined in clause W4.5 are valid for this class, without exceptions or additions." as the lone sentence of this clause.

b)
The class defines (and independent from those inherited) the support of a set of notifications that is a superset of that defined in clause W4.5. In such case, use "The common notifications defined in clause W4.5 are valid for this IOC. In addition, the following set of notification is also valid." as the lone paragraph of this clause. Then, define the ‘additional’ notifications in a table. See clause W4.5 for the notification table format.

c)
The class defines (and independent from those inherited) the support of a set of notifications that is not identical to, nor a superset of, that defined in clause W4.5. In such case, use "The common notifications defined in clause W4.5 are not valid for this IOC. The set of notifications defined in the following table is valid." as the lone paragraph of this clause. Specify the set of notifications in a table. See clause W4.5 for the notification table format.

d)
The class does not define (and independent from those inherited) the support of any notification. In such case, use "There is no notification defined." as the lone sentence of this clause.

The notifications identified (i.e. option-a, option-b and option-c above) in this clause are notifications that may be emitted by the MnS producer, where the "object class" and "object instance" parameters of the notification header (see note 2) of these notifications identifies an instance of the class (or its direct or indirect derived class) defined by the encapsulating clause (i.e. clause W4.3.a).

The notifications identified (i.e. option-a and option-b above) in this clause, may originate from implementation object(s) whose identifier may or may not be the same as that carried in the notification parameters "object class" and "object instance". Hence the identification of notifications in this clause does not imply nor identify those notifications as being originated from an instance of the class (or its direct or indirect derived class) defined by the encapsulating clause (i.e. clause W4.3.a).

This clause shall state "This class does not support any notification." (see option-c) when there is no notification defined for this class. (Note that if its parent class has defined some notifications, the implementation of this class is capable of emitting those inherited defined notifications.)

The notification header is defined in TS 32.302 [8].

The qualifier of a notification, specified in Notification Table, indicates if an implementation may generate a notification carrying the DN of the subject class. The qualifier of a notification, specified in an MnS producer interface, indicates if an implementation of the MnS may generate such notification in general.
An MnS consumer may receive notification-XYZ that carries DN (the "object class" and "object instance") of class-ABC instance if and only if:

a)
The class-ABC Notification Table defines the notification-XYZ and

b)
The class-ABC instance implementation supports this notification-XYZ and

c)
An MnS defines the notification-XYZ and

d)
The MnS implementation supports this notification-XYZ.

W4.3.a.5
State diagram

This subclause contains state diagrams. A state diagram of an information object class defines permitted states of this information object class and the transitions between those states. A state is expressed in terms of individual attribute values or a combination of attribute values or involvement in relationships of the information object class being defined. This shall be a UML compliant state diagram.

This subclause shall state "None." when there is no State diagram defined.
W4.5
Attribute definitions

W4.5.1
Attribute properties

It has a lone paragraph "The following table defines the properties of attributes that are specified in the present document. ".

Each information attribute is defined using the following structure.

Inherited attributes shall not be shown, as they are defined in the parent class(es) and thus valid for this class.
An attribute has properties (see TS 32.156 [3]). Some properties of an attribute are defined in W4.3.a.2 (e.g. Support Qualifier). The remaining properties of an attribute (e.g. documentation, default value) are defined here.

The information is provided in a table. In case a) attributes of the same name are specified in more than one class and b) the attributes have different properties, then the attribute names (first column) should be prefixed with the class name followed by a period.

An example is given below:

	Attribute Name
	Documentation and Allowed Values
	Properties

	xyzId
	It identifies …

allowedValues: …

	type: Integer

multiplicity: …

isOrdered: …

isUnique: …

defaultValue: …

isNullable: False

	Abc.state
	It indicates …

allowedValues:
"ON": the state is on;

"OFF": the state is off.

	type: <<enumeration>>

multiplicity: 1

isOrdered: N/A
isUnique: N/A
defaultValue: False
isNullable: False

	Zyz.state
	It indicates …

allowedValues:
"HIGH": the state is high;

"MEDIUM": the state is medium;

"LOW": the state is low.

	type: <<enumeration>>

multiplicity: 1

isOrdered: N/A

isUnique: N/A

defaultValue: False

isNullable: False

	abc
	It defines…
allowedValues: …

	type: …

multiplicity: …

isOrdered: …

isUnique: …

defaultValue: …

isNullable: …

In case there is one or more attributes related to role (see clause 5.2.9 of TS 32.156 [3]), the attributes related to role shall be specified at the bottom of the table with a divider "Attribute related to role". See example below.

	Attribute Name
	Documentation and Allowed Values
	Properties

	abc
	It defines…
allowedValues: …

	type: PlmnId
multiplicity: …

isOrdered: …

isUnique: …

defaultValue: …

isNullable: …

	Attribute related to role
	
	

	aEnd
	It defines…
allowedValues: Values to be conformant to TS 32.300 [9] …
	type: DN

multiplicity: …

isOrdered: …

isUnique: …

defaultValue: …

isNullable: False

This clause shall state "None." if there is no attribute to define.

W4.5.2
Constraints
This clause indicates whether there are any constraints affecting attributes. Each constraint is defined by a triplet (propertyName, affectedAttributes, propertyDefinition). PropertyDefinitions are expressed in natural language.

An example is given here below:

	Name
	Affected attribute(s)
	Definition

	inv_TimerConstraints
	ntfTimeTickTimer
	The ntfTimeTickTimer is lower than or equal to ntfTimeTick.

This clause shall state "None." if there is no constraint.
W4.6
Common notifications

This clause presents notifications that may be referred to by any class defined in the specification. This information is provided in tables.

W4.6.1
Alarm notifications

The following quoted text shall be copied as the only paragraph of this clause.

"This clause presents a list of notifications, defined in TS 28.532 [12], that an MnS consumer may receive. The notification header attribute objectClass/objectInstance, defined in TS 32.302 [7], shall capture the DN of an instance of a class defined in the present document."

The information is provided in a table. The following is an example.

	Name
	Qualifier
	Notes

	notifyNewAlarm
	M
	--

W4.6.2
Configuration notifications

The following quoted text shall be copied as the only paragraph of this clause.

"This clause presents a list of notifications, defined in TS 28.532 [12], that an MnS consumer may receive. The notification header attribute objectClass/objectInstance, defined in TS 32.302 [8], shall capture the DN of an instance of a class defined in the present document."

The information is provided in a table. The following is an example.

	Name
	Qualifier
	Notes

	notifyMOIAttributeValueChange
	O
	--

	notifyMOICreation
	O
	--

	notifyMOIDeletion
	O
	--

5.3
Template for Management service operations and notifications

Y4
Overview

Yb
Management service name

Management service name should be replaced with the name of the Management Service (MnS).

"b" represents a number, starting at 1 and increasing by 1 with each new definition of a Management Service.

Yb.1
Operations and notifications

Yb.1.a
Operation OperationName (supportQualifier)

OperationName is the name of the operation followed by a qualifier indicating whether the operation is Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional (C).

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an operation.

Yb.1.a.1
Definition

Yb.1.a.1.1
Description
This subclause shall be written in natural language.

Information on traceability back to one or more requirements supported by this operation should also be defined here, in the following form:

	Referenced TS
	Requirement label
	Comment

	3GPP TS 32.xyz [xy]
	REQ-SM-CON-23
	Optional clarification

	3GPP TS 32.xyz [xy]
	REQ-SM-FUN-11
	Optional clarification

Yb.1.a.1.2
Pre-condition

A pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-condition shall be true before the operation is invoked. An example is given here below:

notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed
Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the pre-condition are provided in a table. An example of such a table is given here below:

	Assertion Name
	Definition

	notificationCategoriesNotAllSubscribed
	At least one notificationCategory identified in the notificationCategories input parameter is supported by an MnS producer and is not a member of the ntfNotificationCategorySet attribute of an NtfSubscription which is involved in a subscription relationship with the NtfSubscriber identified by the managerReference input parameter.

	notificationCategoriesParameterAbsentAndNotAllSubscribed
	The notificationCategories input parameter is absent and at least one notificationCategory supported by MnS producer is not a member of the ntfNotificationCategorySet attribute of an ntfSsubscription which is involved in a subscription relationship with the NtfSubscriber identified by the managerReference input parameter.

Yb.1.a.1.3
Post-condition

A post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The post-condition shall be true after the completion of the operation. When nothing is said in a post-condition regarding an information entity, the assumption is that this information entity has not changed compared to what is stated in the
pre-condition. An example is given here below:

subscriptionDeleted OR allSubscriptionDeleted
Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the post-condition shall be provided in a table. An example of such a table is given here below:

	Assertion Name
	Definition

	subscriptionDeleted
	The ntfSubscription identified by subscriptionId input parameter is no more involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter and has been deleted. If this ntfSubscriber has no more ntfSubscription, it is deleted as well.

	allSubscriptionDeleted
	In the case subscriptionId input parameter was absent, the ntfSubscriber identified by the managerReference input parameter is no more involved in any subscription relationship and is deleted, the corresponding ntfSubscription have been deleted as well.

Yb.1.a.1.4
Exceptions

List of exceptions that can be raised by the operation. Each element shall be a tuple (exceptionName, condition, ReturnedInformation, exitState).

Yb.1.a.1.4.c

exceptionName

ExceptionName is the name of an exception.

"c" represents a number, starting at 1 and increasing by 1 with each new definition of an exception.

This information shall be provided in a table. An example of such a table is given here below:

	Exception Name
	Definition

	ope_failed_existing_subscription
	Condition: (notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed) not verified.

Returned information: output parameter status is set to OperationFailedExistingSubscription.

Exit state: Entry State.

NOTE: An example of an exception can be a situation where an operation is raised and the required information between a consumer and producer cannot be conveyed via the input and output parameters.

Yb.1.a.2
Input parameters

List of input parameters of the operation. Each element shall be a tuple (Parameter Name, Support Qualifier, Information Type (see [10] and note 1) and an optional list of Legal Values supported by the parameter, Comment). Legal Values for the Support Qualifier are: Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional (C).

This information shall be provided in a table. An example of such a table is given here below:

	Parameter Name
	Support Qualifier
	Information Type / Legal Values
	Comment

	eventIdList
	M
	SET OF INTEGER / --

	One or more event identifiers

NOTE:
Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal Value Semantics applies to several values in which case the definition can be provided only once. When the Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

Yb.1.a.3
Output parameters

List of output parameters of the operation. Each element tuple (Parameter Name, Support Qualifier, Matching Information / Information Type (see [10]) (Note 1) and an optional list of Legal Values supported by the parameter, Comment). Legal Values for the Support Qualifier are: Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional (C).

This information shall be provided in a table. An example of such a table is given here below:

	Parameter Name
	Support Qualifier
	Matching Information /
Information Type / Legal Values
	Comment

	eventTime
	M
	AlarmInformation.alarmRaisedTime /
GeneralizedTime / --
	The parameter carries the

· alarmRaisedTime in case notificationType carries notifyNewAlarm,

· alarmChangedTime in case notificationType carries notifyChangedAlarm,

· alarmClearedTime in case notificationType carries notifyClearedAlarm.

NOTE:
Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal Value Semantics applies to several values in which case the definition can be provided only once. When the Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

This table shall also include a special parameter ’status’ to indicate the completion status of the operation (success, partial success, failure reason etc.).
Yb.1.a.4
Result

Yb.1.a.4,1
Error messages

This subclause presents error messages in case the operation is not successful.

This subclause does not need to be present when there are no error messages to define.
Yb.1.a.4,2
Constraints

This subclause presents constraints for the operation or its parameters.

This subclause does not need to be present when there are no constraints to define.
Yb.1.a
Notification NotificationName (supportQualifier)

NotificationName shall be the name of the notification followed by a qualifier indicating whether the notification is Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO) or SS-Conditional (C).

"a" represents a number, starting at 1 and increasing by 1 with each new definition of a notification.

Yb.1.a.1
Definition

This subclause shall be written in natural language.

Information on traceability back to one or more requirements supported by this notification should also be defined here, in the following form:

	Referenced TS
	Requirement label
	Comment

	3GPP TS 32.xyz [xy]
	REQ-SM-CON-23
	Optional clarification

	3GPP TS 32.xyz [xy]
	REQ-SM-FUN-11
	Optional clarification

Yb.1.a.2
Input parameters

List of input parameters of the notification. Each element is a tuple (Parameter Name, Qualifiers, Matching Information / Information Type (see [10]) (Note 1) and an optional list of Legal Values supported by the parameter, Comment).

The column "Qualifiers" contains the two qualifiers, Support Qualifier and Filtering Qualifier, separated by a comma. The Support Qualifier indicates whether the attribute is Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional (C). The Filtering Qualifier indicates whether the parameter of the notification can be filtered or not. Values are Yes (Y) or No (N).

This information shall be provided in a table. An example of such a table is given here below:

	Parameter Name
	Qualifiers
	Matching Information /
Information Type / Legal Values
	Comment

	managerReference
	M,Y
	ntfSubscriber.ntfManagerReference / STRING / --
	It specifies the reference of the consumer to which notifications shall be sent.

	alarmType
	M,Y
	AlarmInformation.eventType / ENUMERATED /
"Communications Alarm": a communication error alarm.

"Processing Error Alarm": a processing error alarm.

"Environmental Alarm": an environmental violation alarm.
"Quality Of Service Alarm": a quality of service violation alarm.

"Equipment Alarm": an alarm related to equipment malfunction.
	

NOTE:
Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal Value Semantics applies to several values in which case the definition can be provided only once. When the Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

Yb.1.a.3
Triggering event

The triggering event for the notification to be sent is the transition from the information state defined by the "from state" subclause to the information state defined by the "to state" subclause.

Yb.1.a.3.1

From state

This subclause is a collection of assertions joined by AND, OR, and NOT logical operators. An example is given here below:

alarmMatched AND alarmInformationNotCleared
Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state "from state" are provided in a table. An example of such a table is given here below:
	Assertion Name
	Definition

	alarmMatched
	The matching-criteria-attributes of the newly generated network alarm has values that are identical (matches) with ones in one AlarmInformation in AlarmList.

	alarmInformationNotCleared
	The perceivedSeverity of the newly generated network alarm is not Cleared.

Yb.1.a.3.2

To state

This subclause contains a collection of assertions joined by AND, OR and NOT logical operators. When nothing is said in a to-state regarding an information entity, the assumption is that this information entity has not changed compared to what is stated in the from-state. An example is given here below:

resetAcknowledgementInformation AND perceivedSeverityUpdated

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state "to state" are provided in a table. An example of such a table is given here below:
	Assertion Name
	Definition

	resetAcknowledgementInformation
	The matched AlarmInformation identified in inv_alarmMatched in pre-condition has been updated according to the following rule:
ackTime, ackUserId and ackSystemId are updated to contain no information; ackState is updated to "unacknowledged".

	perceivedSeverityUpdated
	The perceivedSeverity attribute of matched AlarmInformation identified in inv_alarmMatched in pre-condition has been updated.

Yb.2
Managed information
6
NRM Stage 3 definition rules

6.1
Mappings from stage 2 artefacts to stage 3 JSON schema

6.1.1
Usage of JSON schema

JSON schema is used to describe a set of valid schema documents sent over the wire in HTTP request and response messages of the ProvMnS. JSON schema does not describe the concrete implementation of the NRM on the producer.

6.1.2
Concrete NRM class

A NRM class (managed object class) is represented by a JSON object. The properties of the JSON object are the NRM class attributes and the name contained NRM classes.

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {}

}
	{

}

In the following example the class has an "attributeA" of type "string" and an "attributeB" of type "number".

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {

 "attributeA": {"type": "string"},

 "attributeB": {"type": "number"}

 }

}
	{

 "attributeA": "ABC",

 "attributeB": 45

}

The JSON object representing the class instance is preceded by a key equal to the class name.

In the following example the class name is "classA". Attributes are omitted for the sake of simplicity.

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {

 "classA": {

 "type": "object",

 "properties": {}

 }

 }

}
	{

 "classA": {}

}

Multiple managed object instances of the same class are represented using a JSON array, where each item of the array is a JSON object with a managed object class instance representation.

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {}

 }

 }

 }

}
	{

 "classA": [
 {},

 {},

 {}

]

}

When the class represents the root of the containment tree in a document only one array item is allowed. The root class shall therefore have always the "minItems" and "maxItems" keywords present and the values equal to "1", in case a JSON array is used.

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "minItems": 1,

 "maxItems": 1,

 "items": {

 "type": "object",

 "properties": {}

 }

 }

 }

}
	{

 "classA": [

 {}

]

}

6.1.3
Abstract class

Abstract classes shall be defined in a "definitions" object and referenced in the schema of the concrete class using the "$ref" keyword.

In the following example the abstract class can be instantiated once.

	JSON schema
	JSON document example

	{

 "definitions": {

 "abstractClassA": {

 "type": "object",

 "properties": {}

 }

 },

 "type": "object",

 "properties": {

 "classA": {

 "$ref": "#/definitions/abstractClassA"

 }

 }

}
	{

 "classA": {}

}

In the following example the abstract class can be instantiated zero or more times.

	JSON schema
	JSON document example

	{

 "definitions": {

 "abstractClassA": {

 "type": "object",

 "properties": {}

 }

 },

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/abstractClassA"

 }

 }

 }

}
	{

 "classA": [

 {},

 {},

 {}

]

}

Abstract classes can be defined as well in separate files. Assume a file with the name "myDefinitions.json" includes the "definitions" object with the definition of "abstractClassA".

	JSON schema
	JSON document example

	{

 "definitions": {

 "abstractClassA": {

 "type": "object",

 "properties": {}

 }

 }

}
	

The definition of "abstractClassA" is then referenced like

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "$ref": "myDefinitions.json#/definitions/abstractClassA"

 }

 }

 }

}
	{

 "classA": [

 {},

 {},

 {}

]

}

6.1.4
Name containment

Name contained NRM class instances are modeled as property of the containing class. The name of the property is the class name. The value is an array with manged object class representations of that class. Cardinality of the name containment relationship is specified using the "minItems" and "maxItems" keywords.

If the maximum number of items is unbounded, the "maxItems" keyword shall be omitted. If the minimum number of items is 0, the "minItems" keyword can be omitted.

The contained class shall not be listed as required property. This allows omitting the property representing the contained class instances completely in a JSON document instead of having an empty array.

In the following example an instance of "classA" name contains 1…1000 instances of "classB".

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "classB": {

 "type": "array",

 "minItems": 1,

 "maxItems": 1000,

 "items": {

 "type": "object",

 "properties": {}

 }

 }

 }

 }

 }

 }

}
	{

 "classA": [

 {

 "classB": [

 {},

 {}

]

 }

]

}

Managed objects class instances of more than one class can be name contained.

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "classB": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {}

 }

 },

 "classC": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {}

 }

 }

 }

 }

 }

 }

}
	{

 "classA": [

 {

 "classB": [

 {},

 {}

]

 },

 {

 "classC": [

 {},

 {},

 {}

]

 }

]

}

The contained managed object classes may be defined as abstract classes first, and then referenced.

	JSON schema
	JSON document example

	{

 "definitions": {

 "classB-SingleAbstract": {

 "type": "object",

 "properties": {}

 },

 "classC-SingleAbstract ": {

 "type": "object",

 "properties": {}

 }
 },

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "classB": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/classB-SingleAbstract"

 }

 },

 "classC": {

 "type": "array",

 "items": {

 "$ref": "#/definitions/classC-SingleAbstract"

 }

 }

 }

 }

 }

 }

}
	{

 "classA": [

 {

 "classB": [

 {},

 {}

]

 },

 {

 "classC": [

 {},

 {},

 {}

]

 }

]

}

or, when multiple class instance representations of the same class are contained, then

	JSON schema
	JSON document example

	{

 "definitions": {

 "classB-MultipleAbstract": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {}

 }

 },

 "classC-MultipleAbstract": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {}

 }

 }

 },

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "classB": {

 "$ref": "#/definitions/classB-MultipleAbstract"

 },

 "classC": {

 "$ref": "#/definitions/classC-MultipleAbstract"

 }

 }

 }

 }

 }

}
	{

 "classA": [

 {

 "classB": [

 {},

 {}

]

 },

 {

 "classC": [

 {},

 {},

 {}

]

 }

]

}

6.1.5
Recursive name containment

Classes may name contain themselves. This shall be modeled in JSON schema with recursion. Recursion requires using a "definitions" object with the definition of an abstract class.

In the following example each instance of "classA" contains zero or one instance of "classA".

	JSON schema
	JSON document example

	{

 "definitions": {

 "ClassA-Abstract": {

 "type": "object",

 "properties": {

 "classA": {

 "$ref": "#/definitions/ClassA-Abstract"

 }

 }

 }

 },

 "type": "object",

 "properties": {

 "classA": {

 "$ref": "#/definitions/ClassA-Abstract"

 }

 }

}
	{

 "classA": {

 "classA": {

 "classA": {}

 }

 }

}

In the following example each instance of "classA" contains zero or more instances of "classA".

	JSON schema
	JSON document example

	{

 "definitions": {

 "ClassA-MultipleAbstract": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "classA": {

 "$ref": "#/definitions/ClassA-MultipleAbstract"

 }

 }

 }

 }

 },

 "type": "object",

 "properties": {

 "classA": {

 "$ref": "#/definitions/ClassA-MultipleAbstract"

 }

 }

}
	{

 "classA": [

 {

 "classA": [

 {},

 {}

]

 },

 {

 "classA": [

 {

 "classA": [

 {}

]

 },

 {},

 {}

]

 }

]

}

6.1.6
Inheritance

JSON schema does not have the concept of inheritance. Inheritance can be emulated by the composition of schemas with the "allOf" keyword.

In the following example the attribute "attrB" is added to the attribute "attrA" of "classA-Abstract".

	JSON schema
	JSON document example

	{

 "definitions": {

 "classA-Abstract": {

 "type": "object",

 "properties": {

 "attrA": {

 "type": "string"

 }

 }

 }

 },

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "allOf": [

 {

 "$ref": "#/definitions/classA-Abstract"

 },

 {

 "type": "object",

 "properties": {

 "attrB": {

 "type": "number"

 }

 }

 }

]

 }

 }

 }

}
	{

 "classA": [

 {

 "attrA": "ABC",

 "attrB": 5

 },

 {

 "attrA": "DEF",

 "attrB": 4

 },

 {

 "attrA": "GHI",

 "attrB": 23

 }
]

}

The other possibility is to specify the inherited attribute directly along with the added attributes, thus having no inheritenace or any emulation thereof in NRM stage 3 definitions.

6.1.7
NRM class naming attribute "id"

The naming attribute "id" is mapped to a required property of the class object, where the key is "id" and the type is "string".

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "type": "object",

 "required": [

 "id"

],

 "properties": {

 "id": {

 "type": "string"

 }

 }

 }

 }

 }

}
	{

 "classA": [

 {

 "id": "1"

 },

 {

 "id": "2"

 },

 {

 "id": "3"

 }

]

}

6.1.8
NRM class attributes

NRM class attributes other than the naming attribute "id" shall be carried as properties in an "attributes" object.

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "type": "object",

 "required": [

 "id"

],

 "properties": {

 "id": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {}

 }

 }

 }

 }

 }

}
	{

 "classA": [

 {

 "id": "1",

 "attributes": {}

 },

 {

 "id": "2",

 "attributes": {}

 },

 {

 "id": "2",

 "attributes": {}

 }

]

}

The class attributes are name/value pairs (properties) of the "attributes" object.

6.1.9
Vendor specific extensions

Vendor-specific attributes shall be added to standardized JSON schemas using the mechanism in clause 6.1.6 "Inheritance".

6.1.10
Attribute support qualifier

The attribute support qualifier is defined in clause 6 of TS 32.156 [3]. This qualifier specifies a requirement for the MnS producer.

Attributes may or may not be present in a JSON document carried in a HTTP request or response message, no matter what their support qualifier in the NRM is. For this reason, no qualification is required for attributes in the JSON schema for NRMs. By default, the properties defined by the "properties" keyword are not required and can be omitted in a document instance.

However, some attributes like the "id" naming attribute shall be always present when a managed object class instance is carried in a HTTP request or response. Mandatory attributes shall be listed as array items in the value of the "required" keyword.

	JSON schema
	JSON document example

	{

 "type": "object",

 "properties": {

 "classA": {

 "type": "array",

 "items": {

 "type": "object",

 "required": [

 "id"

],

 "properties": {

 "id": {

 "type": "string"

 }

 }

 }

 }

 }

}
	{

 "classA": [

 {

 "id": "1"

 },

 {

 "id": "2"

 },

 {

 "id": "3"

 }

]

}

6.1.11
Attribute properties

6.1.11.1
Introduction

The attribute properties are defined in clause 5.2.1.1 of TS 32.156 [3]. They reflect properties of the attributes exhibited by the MnS producer. Their purpose is not to specify requirements for the attribute when transferred over the wire. For this reason, care should be taken when mapping attribute properties to JSON schema keywords.

6.1.11.2
Attribute property "multiplicity"

Attributes of scalar type with multiplicity equal to "1" are mapped to a name/value pair whose value is either a number, a string or one of the literal names false, null or true.

Attributes of scalar type with nultiplicity bigger than "1" are mapped to a name/value pair whose value is a JSON array, and the array items are either a number, a string or one of the literal names false, null or true.

Attributes of structured type with multiplicity equal to "1" are mapped to a single name/value pair whose value is a JSON object, whose properties are described by the structured type.

Attributes of structured type with multiplicity greater than "1" are mapped to a name/value pair whose value is a JSON array, and the items are JSON objects, whose properties are described by the structured type.

6.1.11.3
Attribute property "isUnique"

The semantics of his attribute property is mapped to the "uniqueItems" keyword with a value set to true.

{

 "properties": {

 "flower": {

 "type": "array",

 "uniqueItems": true,

 "items": {

 "type": "string"

 }

 }

 }

}

6.1.11.4
Attribute property "isOrdered"

This attribute property is a requirement for the MnS producer and not mapped to any JSON schema keyword.

6.1.11.5
Attribute property "defaultValue"

This attribute property is a requirement for the MnS producer and not mapped to any JSON schema keyword.

Note:
The OpenApi Specification [14] defines the "default" keyword. This default value represents what would be assumed by the consumer of the input as the value of the schema if a value is not provided in the consumed JSON instance document. The sematics of default in the OpenApi Specification [14] is hence different from the semantics of default in TS 32.156 [3].

6.1.11.6
Attribute property "isNullable"

The semantics of this attribute property is mapped to the "nullable" keyword with a value set to true.

Example:

{

 "properties": {

 "flower": {

 "type": "string",

 "nullable": true

 }

 }

}

Note:
The "nullable" keyword is defined only in the OpenApi Specification [14]. JSON schema as defined in [15], [16], [17] does not specify this keyword.

6.1.11.7
Attribute property "isInvariant"

This attribute property is a requirement for the MnS producer and not mapped to any JSON schema keyword.

6.1.11.8
Attribute property "isReadable" and "isWritable"

The semantics of these properties are mapped to the "readOnly" and "writeOnly" keywords with the values set according to the following table. The default value of the "readOnly" and "writeOnly" keywords is boolean "false".

	Stage 2 statement
	Stage 2 semantic
	Stage 3 statements
	Stage 3 semantic

	isReadable=True (default)

isWritable=True (default)
	Attribute can be read.

Attribute can be written.
	readOnly=False (default)

writeOnly=False (default)
	Attribute can be read.

Attribute can be written.

	isReadable=True (default) isWritable=False
	Attribute can be read.

Attribute cannot be written.
	readOnly=True

writeOnly=False (default)
	Attribute can be read.

Attribute cannot be written.

	isReadable=False isWritable=True (default)
	Attribute cannot be read.

Attribute can be written.
	readOnly=False (default)

writeOnly=True
	Attribute cannot be read.

Attribute can be written.

	isReadable=False isWritable=False
	Attribute cannot be read.

Attribute cannot be written.
	readOnly=True

writeOnly=True
	Attribute cannot be read.

Attribute cannot be written.

If "writeOnly" for an attribute has a value of boolean "true", it indicates that the attribute shall never be present in instance documents sent by the MnS producer to the MnS consumer.

If "readOnly" for an attribute has a value of boolean "true", it indicates that the attribute shall never be present in instance documents sent by the the MnS consumer to the MnS producer.

Example:

{

 "properties": {

 "flower": {

 "type": "string",

 "readOnly": true,

 "writeOnly": false

 }

 }

}

6.1.11.9
Attribute property "isNotifyable"

This attribute property is a requirement for the MnS producer and not mapped to any JSON schema keyword.

6.1.11.10
Attribute property "allowedValues"

Allowed values for "string" are specified using the "minLength", "maxLength" and "pattern" keywords.

Allowed values for "number" and "integer" are specified using the "multipleOf", "maximum", "exclusiveMaximum", "minimum" and "exclusiveMinimum" keywords.

Allowed values of any type can be restricted by using the "enum" and "const" keywords.

6.2
Stage 3 YANG style and example

The next clause defines general rules for YANG modules. The following clauses specify how specific Stage to constructs should be mapped to YANG. Each clause may include the following clauses:

-
The clause of Reference [3] for which mapping is specified.

-
An example model that will be mapped.

-
Mapping rules.

-
An example of the resulting YANG statements.
6.2.1
General Modeling Rules

6.2.1.1
Modeling Resources

Resources shall be modeled as YANG data nodes (leaf, leaf-list, container, list) instead of Classes and Attributes. Specific operations shall be modelled as YANG actions.

6.2.1.2
Unique YANG Module names

The names of 3GPP YANG modules shall start with the "_3gpp" prefix.

6.2.1.3
Unique YANG Namespace

The namespace of a 3GPP YANG module's namespace shall have the following form:

 urn:3gpp:saX:<module-name>

saX denotes the group creating the relevant YANG model e.g. "sa5"
Reference: https://tools.ietf.org/html/rfc8407#section-4.9 [11].
6.2.1.4
Unique YANG Module Prefixes

3GPP YANG Modules shall use prefixes ending with "3gpp". Prefixes should be short preferably not longer than 10 characters.
e.g. prefix nrmtype -> prefix nrmtype3gpp

Note:
To ensure that the prefix (in the yang prefix statement) is globally unique a prefix-suffix is used. While global uniqueness of prefixes is not mandatory most SW implementations have problems and need workarounds in case conflicting prefixes are found.

6.2.1.5
Use YANG Version 1.1

YANG version 1.1 shall be used.

6.2.1.6
YANG Constructs Not to be Used – Not needed

The following YANG constructs shall not be used in 3GPP YANG models as they are not available in the Stage 2 modeling terminology, thus not needed.

-
Anydata

-
AnyXml

-
Rpc – use actions instead

-
Deviation

6.2.1.7
Reuse Standards from Other Standard Organizations

Whenever there is a suitable existing standard from another standard organization or industry forum its usage should be preferred before defining a 3GPP model covering the same scope. E.g. ietf-types, ietf-inet-types

3GPP models shall link to and reference YANG models from other standard organizations/industry forum whenever applicable.

6.2.1.8
Vendor Specific Model Changes

Vendors shall not modify 3GPP YANG modules either by changing the original file or by adding vendor specific YANG modules that contain deviations targeting parts of a 3GPP module. Only the following exceptions are allowed from the above rule:

-
Deviations that maintain backwards compatibility as defined in RFC 7950 [18] are allowed

-
Marking as "not supported" any model element that is optional to support as defined by the 3GPP stage 2 supportQualifier is allowed.

Vendors extensions shall be done in separate YANG modules; they do not impact compliance.

6.2.1.9
Model Correctness, checking

3GPP YANG modules shall be checked with the pyang tool. See: PYANG an extensible YANG validator and converter
The "pyang –-strict" command shall be run with no errors returned.
"pyang —lint" should also be run against all 3GPP YANG modules. Errors and warning produced by the "pyang –lint" checks should be removed. However, as these errors/warnings do not affect the corretness or functionality of the YANG module, and in some cases the changes needed to remove them would actually degrade readability, it is not a required to remove the errors/warnings produced by the "pyang –lint".

6.2.1.a
YANG modules in technical specifications

When YANG modules are listed in Technical specifications, they shall always be listed with their revisions in the format _3gpp-module-xyz@2019-12-24.yang.
If a module’s text is included in a technical specification, each YANG module should be contained in a separate subclause.

6.2.1.b
Module header statements

A module’s organization and description statements shall be present. The organization shall include the string "3GPP"

6.2.1.c
Provide description and reference statements

A "description" statement should be present for each YANG schema node. As an exception: for individual leafs, leaf-lists, enums, case statements, typedef statements, where the schema node’s name describes the node sufficiently, the "description" may be omitted.

A "reference"substatement to the module statement shall be present that specifies the technical specification where the YANG module is defined. In order to easily list with a “grep” command YANG modules belonging to a specific technical specification, the format of the first line of this reference statement shall start exactly with:

-
new-line followed by

-
the string ‘ reference ”3GPP TS ‘

 (that is 2 leading spaces + reference + 1 space + a double quote + 3GPP TS + 1 more space) followed by

-
the number of the technical specification.
E.g." reference "3GPP TS 28.622".
6.2.1.d
YANG module revisions

A separate "revision" statement shall be present for each published version of a module. The revision statement shall contain a reference substatement listing the numbers of all 3GPP change requests and any other documents that resulted in the creation of the new revision.

NOTE:
If multiple change requests modify the new revision of a YANG module, the content of the reference substatements can be merged.
6.2.1.e
Don’t use YANG statements with their default meaning

YANG statements config, mandatory, max-elements, min-elements, ordered-by, status, yin-element have a specific meaning even if they are absent. The default meaning for these statements should not be explicitly declared in a YANG Module.

E.g. if the mandatory statement is missing that is equivalent to the situation where "mandatory false" is specified; it does not change the meaning of the YANG module, it just makes it longer.
6.2.2
InformationObjectClass – abstract
6.2.2.1
Introduction

Reference [3] clause 5.4.2

6.2.2.2
YANG mapping

An abstract class shall be mapped to a "grouping". The name of the "grouping" will be <IocName>Grp. The "grouping" shall contain all attributes of the class. The naming attribute shall only be contained as a YANG comment, because all other attributes will be contained in a YANG "non-presence container" named "attributes", however the "key leaf" is contained immediately by the "list", it cannot be inside a child "container".

// abstract class MyClass_

grouping MyClass_Grp {

 // contains all contained attributes

 // the leaf of the namingAttribute is either not included or

 // included only as a comment not as a real definition

 // leaf id {

 // type string;

 // description "naming attribute of the IOC";

 // }

 leaf attribute1 {..}

 leaf-list attribute2 {..}

}

6.2.3
Naming attribute

6.2.3.1
Introduction

Reference [3] clause 3.1

6.2.3.2
Yang mapping

The "leaf" that is mapped from the naming attribute shall be used in the YANG "key" statement. This is usually called "id" as defined in the Top_ class in TS 28.620 Umbrella Information Model (UIM), clause 4.3.8.

6.2.4
InformationObjectClass – concrete
6.2.4.0
Introduction
Reference [3] clause 5.3.2

6.2.4.1
YANG mapping

A concrete class shall be mapped to a "list" that "uses" a "grouping". The "grouping" shall be named <IocName>Grp. It shall contain all attributes of the class in the same manner as the "grouping" for an abstract class. The "list" shall be named <IocName>. The NamingAttribute shall be used as a key. All other attributes shall be placed inside a "container" named "attributes". The "container attributes" will facilitate asking for all attributes of an object instance with a simple subtree or XPath filter.

//concrete class

grouping MyConcreteClassGrp {

 // contains all attributes in the same manner as

 // a grouping for abstract class

}

list MyConcreteClass {

 key namingAttribute; // usually named ‘id’

 leaf namingAttribute {…}

 container attributes {

 uses MyConcreteClassGrp ;

 }

 //YANG lists representing contained classes

}

6.2.5
Generalization relationship - inheritance from another class

6.2.5.1
Introduction

Reference [3] clause 5.2.5

Example model: Class MyManagedFunction inherits from class ManagedFunction.

6.2.5.2
YANG mapping

Generalization/Inheritance relationships are mapped to the inheriting class using the "grouping" of the inherited class in its own "grouping".

// Inheritance
grouping ManagedFunctionGrp {

 // Attributes of ManagedFunction

}

grouping MyManagedFunctionGrp {

 uses ManagedFunctionGrp;

 //additional attributes

}

list MyManagedFunction {

 key id;

 leaf id {}

 container attributes {

 uses MyManagedFunctionGrp;

 }

}

6.2.6
Name containment

6.2.6.1
Introduction

Reference [3] clause 5.2.4 - Composite aggregation association relationship

Example model: The classes ManagedElement and MyClass are defined in YANG module TS1. According to the stage2 definition ManagedElement contains MyClass.Another YANG module (TS2) defines class GnodeB. According to the stage2 definition ManagedElement contains GnodeB.

6.2.6.2
YANG mapping

The containment of classes defined in the same YANG module is mapped as embedded "lists".

Containment of classes defined in different YANG modules is mapped using the "augment" statement.

// Class containment

module TS1 {
 grouping MyClassGrp {

 // subnetwork attributes

 }

 grouping ManagedElementGrp {

 // managedElement attributes

 }

 list ManagedElement {

 key id;

 leaf id {}

 attributes {

 use ManagedElementGrp;

 }

 list MyClass {

 key id;

 leaf id {}

 attributes {

 uses MyClassGrp;

 }

 }

 // place to insert/augment managedFunctions e.g. EnodeB

 }

}

module TS2 {

 import _TS1 { prefix ts1; };

 grouping GNodeBGrp {

 // GNodeB attributes

 }

 augment /ts1:ManagedElement {

 list GNodeB {

 key id;

 leaf id {}

 attributes {

 uses GNodeBGrp;

 }

 // lists representing child classes in the same module

 }

 }

}

6.2.7
Recursive containment - reference based solution

The NRM information object class stage 2 definition contains one case where a class contains itself (so called recursive containment): the It is the SubNetwork class.

The name containment that a class has with itself in the stage 2 definition shall be modeled using a pair of "leaf-list" references between the instances of the class. The references shall be named "leaf-list parents {…}" and "leaf-list containedChildren {…}". Note the 2 reference "leaf-lists" should be defined directly under the "list" defining the class not in its "grouping" because the "path" statements are specific to each class, so the "leaf-lists" must not be inherited.

 list SubNetwork {

 key id;

 leaf id {..}

 container attributes {

 uses SubNetworkGrp;

 leaf-list parents {

 description "Reference to all containg SubNetwork instances

 in strict order from the root subnetwork down to the immediate

 parent subnetwork.

 If subnetworks form a containment hierarchy this is

 modeled using references between the child SubNetwork and the parent

 SubNetworks.

 This reference MUST NOT be present for the top level SubNetwork and

 MUST be present for other SubNetworks.";

 type leafref {

 path "../../../SubNetwork/id";

 }

 }

 leaf-list containedChildren{

 description "Reference to all directly contained SubNetwork instances.

 If subnetworks form a containment hierarchy this is

 modeled using references between the child SubNetwork and the parent

 SubNetwork.";

 type leafref {

 path "../../../SubNetwork/id";

 }

 }

 }

The following instance data example shows how the reference values specify the SubNetwork hierarchy:

Top level: subnet=root

 | \ +----------------+

 | +--------+ |

 | | |

Level 1: subnet=A1 subnet=B1 subnet=C1

 | \ +----------------+

 | +--------+ |

 | | |

Level 2: subnet=A2 subnet=B2 subnet=C2

 | \ +----------------+

 | +--------+ |

 | | |

Level 3: subnet=A3 subnet=B3 subnet=C3

Top level: id=root parents=null containedChildren= A1,B1,C1

Level 1: id=A1,(B1,C1) parents=root containedChildren = A2,B2,C2

Level 2: id=A2,(B2,C2) parents=root,A1 containedChildren = A3,B3,C3

Level 3: id=A3,(B3,C3) parents=root,A1,A2 containedChildren = A4,B4

When reading/writing self-contained classes only the last such class instance needs to be specified in the Netconf request as that uniquely identifies the exact instance. The following Netconf request could be used to retrieve all attributes of SubNetwork=root, SubNetwork=A1, SubNetwork=B2, NRFrequency=22

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <get-config>

 <source>

 <running/>

 </source>

 <!-- SubNetwork=root, SubNetwork=A1, SubNetwork=B2, NRFrequency=22 -->

 <filter type="subtree"/>

 <SubNetwork>

 <id>B2</id>

 <NRFrequency>

 <id>22</>

 <attributes/>

 </NRFrequency>

 </SubNetwork>

 </get-config>

 </rpc>

There is no need to specify the ancestors SubNetwork=root, SubNetwork=A1 as any subNetwork can be addressed directly.

6.2.8
Multi-root management tree

YANG supports multi-rooted managed models natively; the standardized IETF models have many root "list"/"container" nodes.

6.2.9
Alternative containment

Stage 2 models allows multiple different name-containment hierarchies. A particular name-containment hierarchy implemented by a specific vendor/product can be discovered in run-time, by reading the content of the ietf-yang-library and the ietf-yang-schema mount modules.

YANG provides multiple possible methods to model alternative containment hierarchies.

In cases where the number of YANG modules affected by the alternative containment is small, the use of a feature-controlled augmentation is proposed.

 augment "/SubNetwork" {

 if-feature ExternalsUnderSubNetwork ;

 uses ExternalNRCellCUWrapper;

 }

In cases where the number of YANG modules affected by the alternative containment is large (cca. more than 8), the following mapping is proposed (using the optional containment of SubNetwork and ManagedElement as an example):

-
If the ManagedElement is a root class, no further documentation or implementation steps are required.

-
If the ManagedElement shall be contained under Subnetwork it shall be mounted under the SubNetwork "list" using the YANG schema mount mechanism as described in RFC8528.[13]

Mounted schemas will appear in Netconf, the CLI and management GUIs as if they were part of a common containment hierarchy.

Yang Schema Mount provides vendor the flexibility of arranging the containment tree in accordance of operator intention, and provides a way for a consumer to discover the actual mount and containment hierarchy in run-time.

6.2.10
Attribute – simple, single value

6.2.10.1
Introduction

Reference TS 32.156 [3] clause 5.2.1

The multiplicity of the attribute is either 0..1 or 1..1. Whether zero is allowed is defined by the isNullable=true/false property.

6.2.10.2
YANG Mapping

Non-structured single value attributes are mapped to a "leaf".

// attribute single value, nonstructured

leaf myAttribute { type xxx; }
6.2.11
Attribute – simple, multivalue

6.2.11.1
Introduction

Reference [3] clause 5.2.1
The multiplicity of the attribute may be greater than 1.

6.2.11.2
YANG mapping

If the attribute is isUnique=true or isWritable=false it is mapped to a leaf-list.

If the attribute is isUnique=false and isWritable=true map it to a list with an additional dummy index. The name of the list shall be <attributeName>Wrap. The name of the dummyIndex shall be idx and shall have a type uint32 or uint64.

// Attribute multivalue, non-structured

// attribute is unique or read-only

leaf-list mySimpleMultivalueAttribute1 { type xxx; }

// attribute is non-unique and read-write

list mySimpleMultivalueAttribute2Wrap {

 key idx;

 leaf idx { type uint32 ; }

 leaf mySimpleMultivalueAttribute2 {type xxx;}

6.2.12
Attribute, structured
6.2.12.0
Introduction
Reference TS 32.156 [3] clause 5.2.1

6.2.12.1
YANG Mapping

Structured attributes are mapped to a grouping containing member parts; and a list using the grouping. (Structured attributes that are not used in multiple places may define the member parts directly in the list.)

// attribute, structured, isUnique=true OR isWritable=false

grouping pLMNIdGrp {

 description "PLMN-Id= Mobile Country Codes (MCC) &

 Mobile Network Codes(MNC)";

 leaf MCC {

 type t_mcc;

}

 leaf MNC {

 type t_mnc;

}

}

list pLMNIdList {

 key "MCC MNC";

 config true;

 description "a list of PLMN-Ids";

 ordered-by user;

 uses pLMNIdGrp;

}

// attribute, structured, isUnique=true, isWritable=true

list pLMNIdList {

 key "idx";

 leaf idx { type uint32 ; };

 leaf member1 { type xxx ; }

 leaf member2 { type yyy ; }

}

If the attribute is isUnique=true in YANG all member parts should be specified as keys. If it is known that one or a subset of members are unique without considering the rest of the members, it is allowed to specify only the unique subset as keys.

If the attribute is isUnique=false and isWritable=false, the YANG "key" statement is not used. YANG allows defining ReadOnly lists without a key.

If the attribute is isUnique=false and isWritable=true an additional dummy index shall be defined in YANG. The name of the dummyIndex shall be idx and shall have a type uint32 or uint64.

6.2.13
defaultValue

6.2.13.1
Introduction

Reference TS 32.156 [3] clause 5.2.1.1.
The 3GPP/UML defaultValue has a different meaning then the YANG "default" statement.

The 3GPP defaultValue could be considered an initialValue as it has effect only at object creation. If the attribute is later deleted the 3GPP defaultValue has no effect. In YANG the "default" is always used whenever a leaf/leaf-list does not have a value: both at creation of the parent object and if the leaf/leaf-list is deleted (set to null in 3GPP operation).

Note:
The 3GPP defaultValue is not used for structured attributes. In YANG there is no default value for containers or list entries.

6.2.13.2
YANG mapping

For a simple isNullable=false attribute use the YANG "default" statement.

For a simple isNullable=true attribute map the 3GPP defaultValue to the 3GPP YANG "yext3gpp:initial-value", extension. (Defined in the _3gpp-yang-extensions module). The initial-value property should also be included in the data node’s "description" statement.

Note 1:
For simple attributes that are isUnique=false and isWriteable=true that are mapped to YANG lists neither the YANG default nor the "yext3gpp:initial-value", statement can be used. The 3GPP default shall be documented only in the description text.

Note 2:
extensions are not understood or enforced by standard YANG tools, they need extra SW implementation.

6.2.14
multiplicity and cardinality
6.2.14.0
Introduction
Reference TS 32.156 [3] clause 5.2.1.1

Reference TS 32.156 [3] clause 5.2.8

6.2.14.1
YANG mapping

Multiplicity of attributes mapped to a list or leaf-list shall be mapped to the "min-elements" and "max-elements" YANG statements.

Cardinality for containment of classes shall be mapped to "min-elements" and "max-elements" on the list representing the child objects.

Cardinality for reference relationships shall be mapped to "min-elements" and "max-elements" on the reference attributes representing the reference.

6.2.15
isNullable
6.2.15.0
Introduction
Reference TS 32.156 [3] clause 5.2.1.1

6.2.15.1
YANG mapping

isNullable=true for attributes that are mapped to a leaf shall be mapped to a "mandatory false;" YANG statement.

isNullable=false for attributes that are mapped to a leaf shall be mapped to a "mandatory true;" YANG statement.

isNullable=true for an attribute that is mapped to a list or leaf-lists shall be mapped to "min-elements X; (where X is greater than zero.)

isNullable=true for an attribute that is mapped to a list or leaf-lists shall be mapped to "min-elements 0;". However if the minimum multiplicity of the attribute is greater than zero then an additional "must" statement shall be added forbidding any multiplicity values between 1 and the minimum multiplicity (but allowing zero and the minimum).

Note:
YANG/Netconf does not differentiate between a non-existent (NULL) sequence and a sequence with zero elements. However this distinction would be very confusing for the operator, so better not use it.

6.2.16
dataType
6.2.16.0
Introduction
Reference TS 32.156 [3] clause 5.3.4

Reference TS 32.156 [3] clause 5.4.3

6.2.16.1
YANG mapping

Mapping for predefined datatypes shall be the following:

-
integer -> One of the 8 YANG integer types

-
string - > string

-
Boolean -> Boolean

3GPP user-defined datatypes shall be mapped to the YANG "typedef" statement.

6.2.17
enumeration
6.2.17.0
Introduction
Reference TS 32.156 [3] clause 5.3.5

6.2.17.1
YANG mapping

The 3GPP enumeration datatype shall be mapped to the YANG "enumeration" YANG type.

6.2.18
choice
6.2.18.0
Introduction
Reference TS 32.156 [3] clause 5.3.6

6.2.18.1
YANG mapping

The 3GPP choice stereotype shall be mapped to a Yang "choice" statement.
6.2.19
isInvariant on attribute

Reference [TS 32.156 [3] Model repertoire] clause 5.2.1.1
6.2.19.1
YANG mapping

Attributes with the property isWritable=false shall be mapped to YANG "config false;" leafs/leaf-lists/lists. Config=false nodes are controlled by the system. The user cannot change them at all; isInvariant=true is implied.

Attributes with the properties isWritable=true AND isInvariant=false shall be mapped to YANG "config true;" leafs/leaf-lists/lists.

Attributes with the properties isWritable=true AND isInvariant=true shall be mapped to YANG "config true;" leafs/leaf-lists/lists marked with the "yext3gpp:isInvariant" extension defined in the YANG module _3gpp-common-yang-extensions.yang in 3GPP TS 28.632.

NOTE: The combination of isInvariant=true AND isWritable=true can not be represented in YANG. YANG does not differentiate between the initial setting and a subsequent changing of an attribute. 3GPP defined the invariant extension statement to mark this 3GPP property. Generally, extensions are not understood or enforced by standard YANG tools, they need extra SW implementation.

6.2.20
isReadable/isWritable

Reference [TS 32.156 [3] Model repertoire] clause 5.2.1.1
6.2.20.1
YANG mapping

isReadable=false attributes can not be represented in YANG. Assumed not to be a problem. A YANG extension could be defined to handle it if needed.

Attributes with the properties isReadable=true AND isWritable=false shall be mapped to YANG config=false leafs/leaf-lists/lists. As config=false is inherited down the containment tree, it should not be placed on each leaf, leaf-list, etc. once the containing list/container is marked config false;

Attributes with the properties isReadable=true AND isWritable=true shall be mapped to YANG config=true leafs/leaf-lists/lists. "config true;" should not be explicitly declared as that is the default case.
6.2.21
isOrdered

Reference [TS 32.156 [3] Model repertoire] clause 5.2.1.1
6.2.21.1
YANG mapping

The property isOrdered=true shall be mapped to the "ordered-by user ;" YANG statement.

6.2.22
isUnique

Reference [TS 32.156 [3] Model repertoire] clause 5.2.1.1
6.2.22.1
YANG mapping

The property isUnique=True shall be mapped to the YANG "unique" statement. Leaf-list are always unique in YANG, no marking needed.
6.2.23
allowedValues

Reference [TS 32.156 [3] Model repertoire] clause 5.2.1.1
6.2.23.1
YANG mapping

For attributes with a type=integer or a user-defined type based on integers allowedValues shall be mapped to a YANG "range" statement with specific values.

For attributes with a type=string or a user-defined type based on string allowedValues shall be mapped either to an enumerated YANG type or to a sting with alternatives defined using the YANG "pattern" statement.
For attributes with a type=enumeration or a user-defined type based on enumeration allowedValues shall be mapped to a YANG enumeration type restricted with YANG "enum" substatements. (https://tools.ietf.org/html/rfc7950#section-9.6.3)
6.2.24
Xor constraint

Reference [TS 32.156 [3] Model repertoire] clause 5.2.10

6.2.24.1
YANG mapping

Model elements with a Xor constraint shall be mapped to the YANG "choice" statement.
6.2.25
ProxyClass
Reference [TS 32.156 [3] Model repertoire] clause 5.3.1

6.2.a.1
YANG mapping

A proxyclass is not directly mapped to YANG. A proxyclass represents a number of specific classes. Attributes, links, methods (or operations), and interactions that are present in the proxyclass shall be modelled in the represented specific classes.
Annex A (informative):
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2019-09
	SA#85
	
	
	
	
	Change control version
	16.0.0

	2019-12
	SA#86
	SP-190172
	0001
	-
	F
	Implement Edithelp comments
	16.1.0

	2019-12
	SA#86
	SP-190172
	0002
	-
	F
	Solutions for Editor's notes (Not implemented due to CR clash (MCC)
	16.1.0

	2019-12
	SA#86
	SP-190172
	0003
	1
	F
	Resolution of Editors Note in clause W4.3 Class definitions(not implemented due to CR clash (MCC)
	16.1.0

	2019-12
	SA#86
	SP-191166
	0004
	2
	B
	Additions to YANG style Guide
	16.1.0

	2020-03
	SA#87E
	SP-200169
	0005
	-
	B
	YANG Guidelines Update
	16.2.0

	2020-03
	SA#87E
	SP-200172
	0006
	-
	F
	Remove incorrect example from constraints table
	16.2.0

	2020-03
	SA#87E
	SP-200172
	0007
	-
	F
	Resolution of Editors Note in clause W4.3 Class definitions
	16.2.0

