3GPP TS 26.173 V14.0.0 (2017-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

ANSI-C code for the

Adaptive Multi-Rate - Wideband (AMR-WB) speech codec

(Release 14)

[image: image1.emf]

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

GSM, UMTS, codec, LTE
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

1
Scope
5
2
References
5
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
5
4
C code structure
6
4.1
Contents of the C source code
6
4.2
Program execution
6
4.3
Code hierarchy
6
4.5
Variables, constants and tables
10
4.5.1
Description of constants used in the C-code
11
4.5.2
Description of fixed tables used in the C-code
11
4.5.3
Static variables used in the C-code
12
5
Homing procedure
15
6
File formats
15
6.1
Speech file (encoder input / decoder output)
15
6.2
Mode control file (encoder input)
15
6.3
Parameter bitstream file (encoder output / decoder input)
16
Default 3GPP format:
16
ITU format (activated with command line parameter -itu)
17
MIME/file storage format (activated with command line parameter -mime)
17
Annex A (informative):
Change history
18

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document contains an electronic copy of the ANSI‑C code for the Adaptive Multi-Rate Wideband codec. The ANSI‑C code is necessary for a bit exact implementation of the Adaptive Multi Rate Wideband speech transcoder (3GPP TS 26.190 [2]), Voice Activity Detection (3GPP TS 26.194 [6]), comfort noise (3GPP TS 26.192 [4]), source controlled rate operation (3GPP TS 26.193 [5]) and example solutions for substituting and muting of lost frames (3GPP TS 26.191 [3]).

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 26.174: "AMR Wideband Speech Codec; Test sequences".

[2]
3GPP TS 26.190: "AMR Wideband Speech Codec; Speech transcoding".

[3]
3GPP TS 26.191: "AMR Wideband Speech Codec; Substitution and muting of lost frames".

[4]
3GPP TS 26.192: "AMR Wideband Speech Codec; Comfort noise aspects".

[5]
3GPP TS 26.193: "AMR Wideband Speech Codec; Source controlled rate operation".

[6]
3GPP TS 26.194: "AMR Wideband Speech Codec; Voice Activity Detection".

[7]
RFC 3267 “A Real-Time Transport Protocol (RTP) Payload Format and File Storage Format for Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs, June 2002.

3
Definitions and abbreviations

3.1
Definitions

Definition of terms used in the present document, can be found in 3GPP TS 26.190 [2], 3GPP TS 26.191 [3], 3GPP TS 26.192 [4], 3GPP TS 26.193 [5] and 3GPP TS 26.194 [6].

3.2
Abbreviations

For the purpose of the present document, the following abbreviations apply:

AMR-WB
Adaptive Multi-Rate Wideband

ANSI
American National Standards Institute

ETS
European Telecommunication Standard

GSM
Global System for Mobile communications

I/O
Input/Output

RAM
Random Access Memory

ROM
Read Only Memory

4
C code structure

This clause gives an overview of the structure of the bit‑exact C code and provides an overview of the contents and organization of the C code attached to this document.

The C code has been verified on the following systems:

-
Sun Microsystems workstations and GNU gcc compiler

-
HP workstations and cc compiler

-
IBM PC compatible computers with Windows NT4 operating system and GNU gcc compiler.

ANSI‑C was selected as the programming language because portability was desirable.

4.1
Contents of the C source code

The C code distribution has all files in the root level.

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files. The ROM data is contained mostly in files with suffix "tab".

The C code distribution also contains one speech coder installation verification data file, "spch_dos.inp". The reference encoder output file is named "spch_dos.cod", the reference decoder input file is named "spch_dos.dec" and the reference decoder output file is named "spch_dos.out". These four files are formatted such that they are correct for an IBM PC/AT compatible computer. The same files with reversed byte order of the 16 bit words are named "spch_unx.inp", "spch_unx.cod", "spch_unx.dec" and "spch_unx.out", respectively.

Final verification is to be performed using the GSM Adaptive Multi-Rate Wideband test sequences described in 3GPP TS 26.174 [1].

Makefiles are provided for the platforms in which the C code has been verified (listed above). Once the software is installed, this directory will have a compiled version of encoder and decoder (the bit-exact C executables of the speech codec) and all the object files.

4.2
Program execution

The GSM Adaptive Multi-Rate Wideband codec is implemented in two programs:

-
(encoder) speech encoder;

-
(decoder) speech decoder.

The programs should be called like:

-
encoder [encoder options] <speech input file> <parameter file>;

-
decoder <parameter file> <speech output file>.

The speech files contain 16-bit linear encoded PCM speech samples and the parameter files contain encoded speech data and some additional flags.

The encoder and decoder options will be explained by running the applications without input arguments. See the file readme.txt for more information on how to run the encoder and decoder programs.

4.3
Code hierarchy

Tables 1 to 3 are call graphs that show the functions used in the speech codec, including the functions of VAD, DTX, and comfort noise generation.

Each column represents a call level and each cell a function. The functions contain calls to the functions in rightwards neighbouring cells. The time order in the call graphs is from the top downwards as the processing of a frame advances. All standard C functions: printf(), fwrite(), etc. have been omitted. Also, no basic operations (add(), L_add(), mac(), etc.) or double precision extended operations (e.g. L_Extract()) appear in the graphs. The initialization of the static RAM (i.e. calling the _init functions) is also omitted.

The basic operations are not counted as extending the depth, therefore the deepest level in this software is level 6.

The encoder call graph is broken down into two separate call graphs, Table 1 to 2.

Table 1: Speech encoder call structure

	coder
	Copy
	
	
	
	

	
	Decim_12k8
	Down_samp
	Interpol (function)
	
	

	
	
	Copy
	
	
	

	
	Set_zero
	
	
	
	

	
	HP50_12k8
	
	
	
	

	
	Scale_sig
	
	
	
	

	
	wb_vad
	Filter_bank
	Filter5
	
	

	
	
	
	Filter3
	
	

	
	
	
	Level_calculation
	
	

	
	
	vad_decision
	Ilog2
	
	

	
	
	
	Noise_estimate_update
	update_cntrl
	

	
	
	
	hangover_addition
	
	

	
	
	Estimate_Speech
	
	
	

	
	tx_dtx_handler
	
	
	
	

	
	Parm_serial
	
	
	
	

	
	Autocorr
	
	
	
	

	
	Lag_window
	
	
	
	

	
	Levinson
	
	
	
	

	
	Az_isp
	Chebps2
	
	
	

	
	Int_isp
	Isp_Az
	Get_isp_pol
	
	

	
	Isp_isf
	
	
	
	

	
	Gp_clip_test_isf
	
	
	
	

	
	Weight_a
	
	
	
	

	
	Residu
	
	
	
	

	
	Deemph2
	
	
	
	

	
	LP_Decim2
	
	
	
	

	
	Scale_mem_Hp_wsp
	
	
	
	

	
	Pitch_med_ol
	Hp_wsp
	
	
	

	
	
	Isqrt_n
	
	
	

	
	wb_vad_tone_detection
	
	
	
	

	
	Med_olag
	median5
	
	
	

	
	dtx_buffer
	Copy
	
	
	

	
	dtx_enc
	Find_frame_indices
	
	
	

	
	
	Aver_isf_history
	
	
	

	
	
	Qisf_ns
	Sub_VQ
	
	

	
	
	
	Disf_ns
	Reorder_isf
	

	
	
	Parm_serial
	
	
	

	
	
	Pow2
	
	
	

	
	
	Random
	
	
	

	
	
	Dot_product12
	
	
	

	
	
	Isqrt_n
	
	
	

	
	Isf_isp
	
	
	
	

	
	Isp_Az
	Get_isp_pol
	
	
	

	
	Synthesis
	Copy
	
	
	

	
	
	Syn_filt_32
	
	
	

	
	
	Deemph_32
	
	
	

	
	
	HP50_12k8
	
	
	

	
	
	Random
	
	
	

	
	
	Scale_sig
	
	
	

	
	
	Dot_product12
	
	
	

	
	
	Isqrt_n
	
	
	

	
	
	HP400_12k8
	
	
	

	
	
	Weight_a
	
	
	

	
	
	Syn_filt
	
	
	

	
	
	Filt_6k_7k
	
	
	

	
	Reset_encoder
	Set_zero
	
	
	

	
	
	Init_gp_clip
	
	
	

	
	
	Init_Phase_dispersion
	Set_zero
	
	

	
	Qpisf_2s_36b
	VQ_stage1
	
	
	

	
	
	Sub_VQ
	
	
	

	
	
	Dpisf_2s_36b
	Reorder_isf
	
	

	
	Qpisf_2s_46b
	VQ_stage1
	
	
	

	
	
	Sub_VQ
	
	
	

	
	
	Dpisf_2s_46b
	Reorder_isf
	
	

	
	Syn_filt
	
	
	
	

	
	Preemph2
	
	
	
	

	
	Pitch_fr4
	Norm_Corr
	Convolve
	
	

	
	
	
	Isqrt_n
	
	

	
	
	Interpol_4
	
	
	

	
	Gp_clip
	
	
	
	

	
	Pred_lt4
	
	
	
	

	
	Convolve
	
	
	
	

	
	G_pitch
	Dot_product12
	
	
	

	
	Updt_tar
	
	
	
	

	
	Preemph
	
	
	
	

	
	Pit_shrp
	
	
	
	

	
	Cor_h_x
	
	
	
	

	
	ACELP_2t64_fx
	Dot_product12
	
	
	

	
	
	Isqrt_n
	
	
	

	
	ACELP_4t64_fx
	See Table 2
	
	
	

	
	Q_gain2
	Dot_product12
	
	
	

	
	
	Pow2
	
	
	

	
	Gp_clip_test_gain_pit
	
	
	
	

	
	voice_factor
	Dot_product12
	
	
	

Table 2: ACELP_4t64_fx call structure

	ACELP_4t64_fx
	Dot_product12
	
	
	
	

	
	Isqrt_n
	
	
	
	

	
	cor_h_vec
	
	
	
	

	
	search_ixiy
	
	
	
	

	
	quant_1p_N1
	
	
	
	

	
	quant_2p_2N1
	
	
	
	

	
	quant_3p_3N1
	quant_2p_2N1
	
	
	

	
	
	quant_1p_N1
	
	
	

	
	quant_4p_4N
	quant_4p_4N1
	Quant_2p_2N1
	
	

	
	
	quant_1p_N1
	
	
	

	
	
	quant_3p_3N1
	Quant_2p_2N1
	
	

	
	
	
	Quant_1p_N1
	
	

	
	
	quant_2p_2N1
	
	
	

	
	quant_5p_5N
	quant_3p_3N1
	Quant_2p_2N1
	
	

	
	
	
	Quant_1p_N1
	
	

	
	
	quant_2p_2N1
	
	
	

	
	quant_6p_6N_2
	quant_5p_5N
	Quant_3p_3N1
	quant_2p_2N1
	

	
	
	
	
	Quant_1p_N1
	

	
	
	
	quant_2p_2N1
	
	

	
	
	quant_1p_N1
	
	
	

	
	
	quant_4p_4N
	quant_4p_4N1
	quant_2p_2N1
	

	
	
	
	quant_1p_N1
	
	

	
	
	
	quant_3p_3N1
	quant_2p_2N1
	

	
	
	
	
	quant_1p_N1
	

	
	
	
	quant_2p_2N1
	
	

	
	
	quant_2p_2N1
	
	
	

	
	
	quant_3p_3N1
	quant_2p_2N1
	
	

	
	
	
	Quant_1p_N1
	
	

Table 3: Speech decoder call structure

	decoder
	Rx_dtx_handler
	
	
	
	

	
	Dtx_dec
	Copy
	
	
	

	
	
	Disf_ns
	Reorder_isf
	
	

	
	
	Serial_parm
	
	
	

	
	
	Pow2
	
	
	

	
	
	Random
	
	
	

	
	
	Dot_product12
	
	
	

	
	
	Isqrt_n
	
	
	

	
	Serial_parm
	
	
	
	

	
	Isf_isp
	
	
	
	

	
	Isp_Az
	Get_isp_pol
	
	
	

	
	Copy
	
	
	
	

	
	Synthesis
	Copy
	
	
	

	
	
	Syn_filt_32
	
	
	

	
	
	Deemph_32
	
	
	

	
	
	HP50_12k8
	
	
	

	
	
	Oversamp_16k
	Copy
	
	

	
	
	
	Up_samp
	Interpol
	

	
	
	Random
	
	
	

	
	
	Scale_sig
	
	
	

	
	
	Dot_product12
	
	
	

	
	
	Isqrt_n
	
	
	

	
	
	HP400_12k8
	
	
	

	
	
	Isf_Extrapolation
	Isf_isp
	
	

	
	
	Isp_Az
	Get_isp_pol
	
	

	
	
	Weight_a
	
	
	

	
	
	Syn_filt
	
	
	

	
	
	Filt_6k_7k
	Copy
	
	

	
	
	Filt_7k
	Copy
	
	

	
	Reset_decoder
	Set_zero
	
	
	

	
	
	Init_Phase_dispersion
	Set_zero
	
	

	
	Dpisf_2s_36b
	Reorder_isf
	
	
	

	
	Dpisf_2s_46b
	Reorder_isf
	
	
	

	
	Int_isp
	Isp_Az
	Get_isp_pol
	
	

	
	Lagconc
	insertion_sort
	Insert
	
	

	
	
	Random
	
	
	

	
	Pred_lt4
	
	
	
	

	
	Random
	
	
	
	

	
	DEC_ACELP_2t64_fx
	
	
	
	

	
	DEC_ACELP_4t64_fx
	dec_1p_N1
	
	
	

	
	
	add_pulses
	
	
	

	
	
	dec_2p_2N1
	
	
	

	
	
	dec_3p_3N1
	Dec_2p_2N1
	
	

	
	
	
	dec_1p_N1
	
	

	
	
	dec_4p_4N
	dec_4p_4N1
	dec_2p_2N1
	

	
	
	
	dec_1p_N1
	
	

	
	
	
	Dec_3p_3N1
	Dec_2p_2N1
	

	
	
	
	
	Dec_1p_N1
	

	
	
	
	Dec_2p_2N1
	
	

	
	
	dec_5p_5N
	dec_3p_3N1
	Dec_2p_2N1
	

	
	
	
	
	Dec_1p_N1
	

	
	
	
	Dec_2p_2N1
	
	

	
	
	dec_6p_6N_2
	Dec_5p_5N
	dec_3p_3N1
	Dec_2p_2N1

	
	
	
	
	
	Dec_1p_N1

	
	
	
	
	dec_2p_2N1
	

	
	
	
	dec_1p_N1
	
	

	
	
	
	dec_4p_4N
	dec_4p_4N1
	dec_2p_2N1

	
	
	
	
	dec_1p_N1
	

	
	
	
	
	Dec_3p_3N1
	Dec_2p_2N1

	
	
	
	
	
	Dec_1p_N1

	
	
	
	
	Dec_2p_2N1
	

	
	
	
	dec_2p_2N1
	
	

	
	
	
	dec_3p_3N1
	Dec_2p_2N1
	

	
	
	
	
	Dec_1p_N1
	

	
	Preemph
	
	
	
	

	
	Pit_shrp
	
	
	
	

	
	D_gain2
	Dot_product12
	
	
	

	
	
	Isqrt_n
	
	
	

	
	
	Median5
	
	
	

	
	
	Pow2
	
	
	

	
	Scale_sig
	
	
	
	

	
	voice_factor
	Dot_product12
	
	
	

	
	Phase_dispersion
	Set_zero
	
	
	

	
	Agc2
	Isqrt
	Isqrt_n
	
	

	
	Set_zero
	
	
	
	

	
	Dtx_dec_activity_update
	Copy
	
	
	

4.5
Variables, constants and tables

The data types of variables and tables used in the fixed point implementation are signed integers in 2's complement representation, defined by:

-
Word16
16 bit variable;

-
Word32
32 bit variable.

4.5.1
Description of constants used in the C-code

This subclause contains a listing of all global constants defined in cnst.h.

Table 5: Global constants

	Constant
	Value
	Description

	L_TOTAL
	384
	total size of speech buffer.

	L_WINDOW
	384
	window size in LP analysis

	L_NEXT
	64
	Look-ahead size

	L_FRAME
	256
	frame size in 12.8 kHz

	L_FRAME16k
	320
	frame size in 16 kHz

	L_SUBFR
	64
	Subframe size in 12.8 kHz

	L_SUBFR16k
	80
	Subframe size in 16 kHz

	NB_SUBFR
	4
	Number of subframes

	M16k
	20
	order of LP filter in high-band synthesis in 6.60 mode

	M
	16
	order of LP filter

	L_FILT16k
	15
	Delay of down-sampling filter in 16 kHz

	L_FILT
	12
	Delay of down-sampling filter in 12.8 kHz

	GP_CLIP
	15565
	Pitch gain clipping

	PIT_SHARP
	27853
	pitch sharpening factor

	PIT_MIN
	34
	minimum pitch lag (all modes)

	PIT_FR2
	128
	Minimum pitch lag with resolution ½

	PIT_FR1_9b
	160
	Minimum pitch lag with resolution for 9 bit quantization

	PIT_FR1_8b
	92
	Minimum pitch lag with resolution for 8 bit quantization

	PIT_MAX
	231
	maximum pitch lag

	L_INTERPOL
	(16+1)
	length of filter for interpolation

	OPL_DECIM
	2
	Decimation in open-loop pitch analysis

	PREEMPH_FAC
	22282
	preemphasis factor

	GAMMA1
	30147
	Weighting factor (numerator)

	TILT_FAC
	22282
	tilt factor (denominator)

	Q_MAX
	8
	scaling max for signal

	RANDOM_INITSEED
	21845
	random init value

	L_MEANBUF
	3
	Size of ISF buffer

	ONE_PER_MEANBUF
	10923
	Inverse of L_MEANBUF

4.5.2
Description of fixed tables used in the C-code

This section contains a listing of all fixed tables sorted by source file name and table name. All table data is declared as Word16.

Table 6: Fixed tables

	File
	Table name
	Length
	Description

	C4t64fx.c
	Tipos
	36
	starting points of iterations

	Cod_main.c
	HP_gain
	16
	High band gain table for 23.85 kbit/s mode

	Cod_main.c
	Interpol_frac
	4
	LPC interpolation coefficients

	Cod_main.c
	Isp_init
	16
	isp tables for initialization

	Cod_main.c
	Isf_init
	16
	isf tables for initialization

	D_gain2.c
	cdown_unusable
	7
	attenuation factors for codebook gain in lost frames

	D_gain2.c
	cdown_usable
	7
	attenuation factors for codebook gain in bad frames

	D_gain2.c
	pdown_unusable
	7
	attenuation factors for adaptive codebook gain in lost frames

	D_gain2.c
	pdown_usable
	7
	attenuation factors for adaptive codebook gain in bad frames

	D_gain2.c
	Pred
	4
	algebraic code book gain MA predictor coefficients

	Dec_main.c
	HP_gain
	16
	High band gain table for 23.85 kbit/s mode

	Dec_main.c
	Interpol_frac
	4
	LPC interpolation coefficients

	Dec_main.c
	Isp_init
	16
	isp tables for initialization

	Dec_main.c
	Isf_init
	16
	isf tables for initialization

	Decim54.c
	fir_down
	120
	Downsample FIR filter coefficients

	Decim54.c
	fir_up
	120
	Upsample FIR filter coefficients

	Dtx.c
	en_adjust
	9
	Energy scaling factor for each mode during comfort noise

	Grid100.tab
	grid
	101
	grid points at wich Chebyshev polynomials

	Ham_wind.tab
	Window
	384
	LP analysis window

	Hp400.c
	A
	3
	HP filter coefficients (denominator) in higher band energy estimation

	Hp400.c
	B
	3
	HP filter coefficients (numerator) in higher band energy estimation

	Hp50.c
	A
	3
	HP filter coefficients (denominator) in pre-filtering

	Hp50.c
	B
	3
	HP filter coefficients (numerator) in pre-filtering

	Hp6k.c
	Fir_6k_7k
	31
	Bandpass FIR filter coefficients for higher band generation

	Hp7k.c
	Fir_7k
	31
	Bandpass FIR filter coefficients for higher band in 23.85 kbit/s mode

	Hp_wsp.c
	A
	3
	HP filter coefficients (denominator) in open-loop lag gain computation

	Hp_wsp.c
	B
	3
	HP filter coefficients (numerator) in open-loop lag gain computation

	Isp_isf.tab
	slope
	128
	table to compute cos(x) in Lsf_lsp()

	Isp_isf.tab
	Table
	129
	table to compute acos(x) in Lsp_lsf()

	Lag_wind.tab
	lag_h
	16
	high part of the lag window table

	Lag_wind.tab
	lag_l
	16
	low part of the lag window table

	Lp_dec2.c
	h_fir
	5
	HP FIR filter coefficients in open-loop lag search

	Math_op.c
	table_isqrt
	49
	table used in inverse square root computation

	Math_op.c
	table_pow2
	33
	table used in power of two computation

	P_med_ol.tab
	Corrweight
	199
	weighting of the correlation function in open loop LTP search

	Ph_disp.c
	ph_imp_low
	64
	phase dispersion impulse response

	Ph_disp.c
	ph_imp_mid
	64
	phase dispersion impulse response

	Pitch_fr4.c
	inter4_1
	32
	interpolation filter coefficients

	Pred_lt4.c
	inter4_2
	128
	interpolation filter coefficients

	Q_gain2.c
	pred
	4
	algebraic code book gain MA predictor coefficients

	Q_gain2.tab
	t_qua_gain6b
	2*64
	gain quantization table for 6-bit gain quantization

	Q_gain2.tab
	t_qua_gain7b
	2*128
	gain quantization table for 7-bit gain quantization

	Qisf_ns.tab
	dico1_isf_noise
	2*64
	1st ISF quantizer for comfort noise

	Qisf_ns.tab
	dico2_isf_noise
	3*64
	2nd ISF quantizer for comfort noise

	Qisf_ns.tab
	Dico3_isf_noise
	3*64
	3rd LSF quantizer for comfort noise

	Qisf_ns.tab
	Dico4_isf_noise
	4*32
	4th LSF quantizer for comfort noise

	Qisf_ns.tab
	Dico5_isf_noise
	4*32
	5th LSF quantizer for comfort noise

	Qisf_ns.tab
	mean_isf_noise
	16
	ISF mean for comfort noise

	Qpisf_2s.tab
	dico1_isf
	9*256
	1st ISF quantizer of the 1st stage

	Qpisf_2s.tab
	Dico2_isf
	7*256
	2nd ISF quantizer of the 1st stage

	Qpisf_2s.tab
	Dico21_isf
	3*64
	1st ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Qpisf_2s.tab
	Dico21_isf_36b
	5*128
	1st ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)

	Qpisf_2s.tab
	Dico22_isf
	3*128
	2nd ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Qpisf_2s.tab
	Dico22_isf_36b
	4*128
	2nd ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)

	Qpisf_2s.tab
	Dico23_isf
	3*128
	3rd ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Qpisf_2s.tab
	Dico23_isf_36b
	7*64
	3rd ISF quantizer of the 2nd stage (the 6.60 kbit/s mode)

	Qpisf_2s.tab
	Dico24_isf
	3*32
	4th ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Qpisf_2s.tab
	Dico25_isf
	4*32
	5th ISF quantizer of the 2nd stage (not the 6.60 kbit/s mode)

	Qpisf_2s.tab
	Mean_isf
	16
	ISF mean

4.5.3
Static variables used in the C-code

In this section two tables that specify the static variables for the speech encoder and decoder respectively are shown. All static variables are declared within a C struct.
Table 7: Speech encoder static variables

	Struct name
	Variable
	Type[Length]
	Description

	Coder_State
	mem_decim
	Word16[30]
	Decimation filter memory

	
	mem_sig_in
	Word16[6]
	Prefilter memory

	
	mem_preemph
	Word16
	Preemphasis filter memory

	
	old_speech
	Word16[128]
	speech buffer

	
	old_wsp
	Word16[115]
	buffer holding spectral weighted speech

	
	old_exc
	Word16[248]
	excitation vector

	
	mem_levinson
	Word16[18]
	Levinson memories

	
	Ispold
	Word16[16]
	Old ISP vector

	
	ispold_q
	Word16[16]
	Old quantized ISP vector

	
	past_isfq
	Word16[16]
	past quantized ISF prediction error

	
	mem_wsp
	Word16
	Open-loop LTP deemphasis filter memory

	
	mem_decim2
	Word16[3]
	Open-loop LTP decimation filter memory

	
	mem_w0
	Word16
	weighting filter memory (applied to error signal)

	
	mem_syn
	Word16[16]
	synthesis filter memory

	
	tilt_code
	Word16
	Preemhasis filter memory

	
	old_wsp_max
	Word16
	Open loop scaling factor

	
	old_wsp_shift
	Word16
	Maximum open loop scaling factor

	
	Q_old
	Word16
	Old scaling factor

	
	Q_max
	Word16[2]
	Maximum scaling factor

	
	gp_clip
	Word16[2]
	memory of pitch clipping

	
	qua_gain
	Word16[4]
	Gain quantization memory

	
	old_T0_med
	Word16
	weighted open loop pitch lag

	
	ol_gain
	Word16
	Open-loop gain

	
	ada_w
	Word16
	weigthing level depeding on open loop pitch gain

	
	ol_wght_flg
	Word16
	switches lag weighting on and off

	
	old_ol_lag
	Word16[5]
	Open loop lag history

	
	hp_wsp_mem
	Word16[9]
	Open-loop lag gain filter memory

	
	old_hp_wsp
	Word16[243]
	Open-loop lag

	
	vadSt
	VadVars*
	see below in this table

	
	dtx_encSt
	dtx_encState*
	see below in this table

	
	first_frame
	Word16
	First frame indicator

	
	Isfold
	Word16[16]
	Old ISF vector

	
	L_gc_thres
	Word16
	Noise enhancer threshold

	
	mem_syn_hi
	Word16[16]
	synthesis filter memory (most significant word)

	
	mem_syn_lo
	Word16[16]
	synthesis filter memory (least significant word)

	
	mem_deemph
	Word16
	Deemphasis filter memory

	
	mem_sig_out
	Word16[6]
	HP filter memory in the synthesis

	
	mem_hp400
	Word16[6]
	HP filter memory

	
	mem_oversamp
	Word16[2*12]
	Oversampling filter memory

	
	mem_syn_hf
	Word16[16]
	Higher band synthesis filter memory

	
	mem_hf
	Word16[30]
	Estimated BP filter memory (23.85 kbit/s mode)

	
	mem_hf2
	Word16[30]
	Input BP filter memory (23.85 kbit/s mode)

	
	mem_hf3
	Word16[30]
	Input LP filter memory (23.85 kbit/s mode)

	
	seed2
	Word16
	Random generation seed

	
	disp_mem
	Word16[8]
	Phase dispersion memory

	
	vad_hist
	Word16
	VAD history

	
	Gain_alpha
	Word16
	Higher band gain weighting factor (23.85 kbit/s mode)

	dtx_encState
	Isf_hist
	Word16[128]
	LSP history (8 frames)

	
	Log_en_hist
	Word16[8]
	logarithmic frame energy history (8 frames)

	
	Hist_ptr
	Word16
	pointer to the cyclic history vectors

	
	Log_en_index
	Word16
	Index for logarithmic energy

	
	Cng_seed
	Word16
	Comfort noise excitation seed

	
	D
	Word16[28]
	ISF history distance matrix

	
	sumD
	Word16[8]
	Sum of ISF history distances

	
	dtxHangoverCount
	Word16
	is decreased in DTX hangover period

	
	decAnaElapsedCount
	Word16
	counter for elapsed speech frames in DTX

	vadState1
	bckr_est
	Word16[12]
	background noise estimate

	
	ave_level
	Word16[12]
	averaged input components for stationary estimation

	
	old_level
	Word16[12]
	input levels of the previous frame

	
	sub_level
	Word16[12]
	input levels calculated at the end of a frame (lookahead)

	
	a_data5
	Word16[5][2]
	memory for the filter bank

	
	a_data3
	Word16[6]
	memory for the filter bank

	
	burst_count
	Word16
	counts length of a speech burst

	
	Hang_count
	Word16
	hangover counter

	
	Stat_count
	Word16
	stationary counter

	
	Vadreg
	Word16
	15 flags for intermediate VAD decisions

	
	Tone_flag
	Word16
	15 flags for tone detection

	
	sp_est_cnt
	Word16
	Speech level estimation counter

	
	Sp_max
	Word16
	Maximum signal level

	
	sp_max_cnt
	Word16
	Maximum level estimation counter

	
	Speech_level
	Word16
	Speech level

	
	prev_pow_sum
	Word16
	Power of previous frame

Table 8: Speech decoder static variables

	Struct name
	Variable
	Type[Length]
	Description

	Decoder_State
	old_exc
	Word16[248]
	excitation vector

	
	ispold
	Word16[16]
	Old ISP vector

	
	isfold
	Word16[16]
	Old ISF vector

	
	isf_buf
	Word16[48]
	ISF vector history

	
	past_isfq
	Word16[16]
	past quantized ISF prediction error

	
	tilt_code
	Word16
	Preemhasis filter memory

	
	Q_old
	Word16
	Old scaling factor

	
	Qsubfr
	Word16
	Scaling factor history

	
	L_gc_thres
	Word16
	Noise enhancer threshold

	
	mem_syn_hi
	Word16[16]
	synthesis filter memory (most significant word)

	
	mem_syn_lo
	Word16[16]
	synthesis filter memory (least significant word)

	
	mem_deemph
	Word16
	Deemphasis filter memory

	
	mem_sig_out
	Word16[6]
	HP filter memory in the synthesis

	
	mem_oversamp
	Word16[24]
	Oversampling filter memory

	
	mem_syn_hf
	Word16[20]
	Higher band synthesis filter memory

	
	mem_hf
	Word16[30]
	Estimated BP filter memory (23.85 kbit/s mode)

	
	mem_hf2
	Word16[30]
	Input BP filter memory (23.85 kbit/s mode)

	
	mem_hf3
	Word16[30]
	Input LP filter memory (23.85 kbit/s mode)

	
	seed
	Word16
	Random code generation seed for bad frames

	
	seed2
	Word16
	Random generation seed for higher band

	
	old_T0
	Word16
	Old LTP lag (integer part)

	
	old_T0_frac
	Word16
	Old LTP lag (fraction part)

	
	lag_hist
	Word16[5]
	LTP lag history

	
	dec_gain
	Word16[23]
	Gain decoding memory

	
	seed3
	Word16
	Random LTP lag generation seed for bad frames

	
	disp_mem
	Word16[8]
	Phase dispersion memory

	
	mem_hp400
	Word16[6]
	HP filter memory

	
	prev_bfi
	Word16
	Previous BFI

	
	state
	Word16
	BGH state machine memory

	
	first_frame
	Word16
	First frame indicator

	
	dtx_decSt
	dtx_decState*
	see below in this table

	
	Vad_hist
	Word16
	VAD history

	dtx_decState
	Since_last_sid
	Word16
	number of frames since last SID frame

	
	true_sid_period_inv
	Word16
	inverse of true SID update rate

	
	log_en
	Word16
	logarithmic frame energy

	
	old_log_en
	Word16
	previous value of log_en

	
	isf
	Word16[16]
	ISF vector

	
	Isf_old
	Word16[16]
	Previous ISF vector

	
	Cng_seed
	Word16
	Comfort noise excitation seed

	
	Isf_hist
	Word16[128]
	ISF vector history (8 frames)

	
	Log_en_hist
	Word16[8]
	logarithmic frame energy history

	
	Hist_ptr
	Word16
	index to beginning of LSF history

	
	dtxHangoverCount
	Word16
	counts down in hangover period

	
	DecAnaElapsedCount
	Word16
	counts elapsed speech frames after DTX

	
	sid_frame
	Word16
	flags SID frames

	
	valid_data
	Word16
	flags SID frames containing valid data

	
	log_en_adjust
	Word16
	mode-dependent frame energy adjustment

	
	dtxHangoverAdded
	Word16
	flags hangover period at end of speech

	
	dtxGlobalState
	Word16
	DTX state flags

	
	data_updated
	Word16
	flags CNI updates

5
Homing procedure

The principles of the homing procedures are described in [2]. This specification only includes a detailed description of the 9 decoder homing frames. For each AMR-WB codec mode, the corresponding decoder homing frame has a fixed set of parameters. The parameters in serial format are packed into parameters in 15-bit-long format where the first serial bit is inserted into most significant bit in the 15-bit-long format. These 15-bit-long parameters do not represent real speech parameters, but they decrease memory consumption compared to the speech parameters. Table 9 shows the homing frame in 15-bit-long format for different modes. In the decoder, the received speech parameters in serial format are first converted into 15-bit-long format. Then the obtained parameters are compared against the homing frame table values (Table 9).

Table 9: Table values for the decoder homing frame in 15-bit-long format for different modes

	Mode
	Value (MSB=b0)

	0
	3168, 29954, 29213, 16121, 64, 13440, 30624, 16430, 19008

	1
	3168, 31665, 9943, 9123, 15599, 4358, 20248, 2048, 17040, 27787, 16816, 13888

	2
	3168, 31665, 9943, 9128, 3647, 8129, 30930, 27926, 18880, 12319, 496, 1042, 4061, 20446, 25629, 28069, 13948

	3
	3168, 31665, 9943, 9131, 24815, 655, 26616, 26764, 7238, 19136, 6144, 88, 4158, 25733, 30567, 30494, 221, 20321, 17823

	4
	3168, 31665, 9943, 9131, 24815, 700, 3824, 7271, 26400, 9528, 6594, 26112, 108, 2068, 12867, 16317, 23035, 24632, 7528, 1752, 6759, 24576

	5
	3168, 31665, 9943, 9135, 14787, 14423, 30477, 24927, 25345, 30154, 916, 5728, 18978, 2048, 528, 16449, 2436, 3581, 23527, 29479, 8237, 16810, 27091, 19052, 0

	6
	3168, 31665, 9943, 9129, 8637, 31807, 24646, 736, 28643, 2977, 2566, 25564, 12930, 13960, 2048, 834, 3270, 4100, 26920, 16237, 31227, 17667, 15059, 20589, 30249, 29123, 0

	7
	3168, 31665, 9943, 9132, 16748, 3202, 28179, 16317, 30590, 15857, 19960, 8818, 21711, 21538, 4260, 16690, 20224, 3666, 4194, 9497, 16320, 15388, 5755, 31551, 14080, 3574, 15932, 50, 23392, 26053, 31216

	8
	3168, 31665, 9943, 9134, 24776, 5857, 18475, 28535, 29662, 14321, 16725, 4396, 29353, 10003, 17068, 20504, 720, 0, 8465, 12581, 28863, 24774, 9709, 26043, 7941, 27649, 13965, 15236, 18026, 22047, 16681, 3968

6
File formats

This section describes the file formats used by the encoder and decoder programs. The test sequences defined in [1 also use the file formats described here.

6.1
Speech file (encoder input / decoder output)

Speech files read by the encoder and written by the decoder consist of 16-bit words where each word contains a 14-bit, left aligned speech sample. The byte order depends on the host architecture (e.g. MSByte first on SUN workstations, LSByte first on PCs etc.). Both the encoder and the decoder program process complete frames (of 320 samples) only.

This means that the encoder will only process n frames if the length of the input file is n*320 + k words, while the files produced by the decoder will always have a length of n*320 words.

6.2
Mode control file (encoder input)

The encoder program can optionally read in a mode control file which specifies the encoding mode for each frame of speech processed. The file is a text file containing one number per speech frame. Each line contains one of the mode numbers 0-8.

6.3
Parameter bitstream file (encoder output / decoder input)

The files produced by the speech encoder/expected by the speech decoder contain an arbitrary number of frames in the following available formats.

NOTE ON DEFAULT 3GPP AND ITU BITSTREAM FORMATS:

ITU stream format gives very limited possibilities to distinguish NO_DATA and SID_FIRST frame types at the beginning of a stream. In some very limited cases for which some instance between encoder and decoder cuts of the first hangover period frames (e.g. handovers, editing of the stream), the output of the decoder is different depending on the stream format, ITU or default 3GPP.

Default 3GPP format:

This is the default format used in 3GPP. This format shall be used when the codec is tested against the test vectors.

	TYPE_OF_FRAME_TYPE
	FRAME_TYPE
	MODE
	B1
	B2
	…
	Bnn

Each box corresponds to one Word16 value in the bitstream file, for a total of 3+nn words or 6+2nn bytes per frame, where nn is the number of encoded bits in the frame. Each encoded bit is represented as follows: Bit 0 = 0xff81, Bit 1 = 0x007f. The fields have the following meaning:

TYPE_OF_FRAME_TYPE
transmit frame type, which is one of
TX_TYPE
(0x6b21)
RX_TYPE
(0x6b20)

If TYPE_OF_FRAME_TYPE is TX_TYPE,

FRAME_TYPE
transmit frame type, which is one of
TX_SPEECH
(0x0000)
TX_SID_FIRST
(0x0001)
TX_SID_UPDATE
(0x0002)
TX_NO_DATA
(0x0003)

If TYPE_OF_FRAME_TYPE is RX_TYPE,

FRAME_TYPE
transmit frame type, which is one of
RX_SPEECH_GOOD
(0x0000)
RX_SPEECH_PROBABLY_DEGRADED
(0x0001)
RX_SPEECH_LOST
(0x0002)
RX_SPEECH_BAD
(0x0003)
RX_SID_FIRST
(0x0004)
RX_SID_UPDATE
(0x0005)
RX_SID_BAD
(0x0006)
RX_NO_DATA
(0x0007)

B0…B2nn
speech encoder parameter bits (i.e. the bitstream itself). Each Bx either has the value 0x0081 (for bit 0) or 0x007F (for bit 1).

MODE_INFO
encoding mode information, which is one of
6.60 kbit/s mode
(0x0000)
8.85 kbit/s mode
(0x0001)
12.65 kbit/s mode
(0x0002)
14.25 kbit/s mode
(0x0003)
15.85 kbit/s mode
(0x0004)
18.25 kbit/s mode
(0x0005)
19.85 kbit/s mode
(0x0006)
23.05 kbit/s mode
(0x0007)
23.85 kbit/s mode
(0x0008)

As indicated in section 6.1 above, the byte order depends on the host architecture.

ITU format (activated with command line parameter -itu)

	SYNC_WORD
	DATA_LENGTH
	B1
	B2
	…
	Bnn

Each box corresponds to one Word16 value in the bitstream file, for a total of 2+nn words or 4+2nn bytes per frame, where nn is the number of encoded bits in the frame. Each encoded bit is represented as follows: Bit 0 = 0x007f, Bit 1 = 0x0081. The fields have the following meaning:

SYNC_WORD

Word to ensure correct frame synchronization between the encoder and the decoder. It is also used to indicate the occurrences of bad frames.

In the encoder output:
(0x6b21)
In the decoder input:
Good frames (0x6b21)

Bad frames (0x6b20)

DATA_LENGTH

Length of the speech data. Codec mode and frame type is extracted in the decoder using this parameter:

	DATA
_LENGTH
	
PREVIOUS FRAME
	
CODEC MODE
	
FRAMETYPE

	0
	RX_SPEECH_GOOD/ RX_SPEECH_LOST
	DTX
	RX_SID_FIRST

	0
	OTHER THAN

RX_SPEECH_GOOD/
RX_SPEECH_LOST
	DTX
	RX_NO_DATA

	35
	 -
	DTX
	RX_SID_UPDATE

	132
	-
	6.60 kbit/s
	RX_SPEECH_GOOD/
RX_SPEECH_LOST

	177
	-
	8.85 kbit/s
	RX_SPEECH_GOOD/
RX_SPEECH_LOST

	253
	-
	12.65 kbit/s
	RX_SPEECH_GOOD/
RX_SPEECH_LOST

	285
	-
	14.25 kbit/s
	RX_SPEECH_GOOD/
RX_SPEECH_LOST

	317
	-
	15.85 kbit/s
	RX_SPEECH_GOOD/
RX_SPEECH_LOST

	365
	-
	18.25 kbit/s
	RX_SPEECH_GOOD/
RX_SPEECH_LOST

	397
	-
	19.85 kbit/s
	RX_SPEECH_GOOD/
RX_SPEECH_LOST

	461
	-
	23.05 kbit/s
	RX_SPEECH_GOOD/
RX_SPEECH_LOST

	477
	-
	23.85 kbit/s
	RX_SPEECH_GOOD/
RX_SPEECH_LOST

MIME/file storage format (activated with command line parameter -mime)

Detailed description of the AMR-WB single channel MIME/file storage format can be found in [7] (sections 5.1 and 5.3). This format is used e.g. by the Multimedia Messaging Service (MMS).

Annex A (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	03-2001
	11
	SP-010083
	
	
	Version 2.0.0 provided for approval
	
	5.0.0

	06-2001
	12
	SP-010307
	001
	1
	Unnecessary printing in Az_isp-function
	5.0.0
	5.1.0

	06-2001
	12
	SP-010307
	002
	1
	Overflow in isp_az.c
	5.0.0
	5.1.0

	06-2001
	12
	SP-010307
	003
	1
	Error in the ISF extrapolation in 6.60 kbit/s mode
	5.0.0
	5.1.0

	06-2001
	12
	SP-010307
	004
	1
	14-bit masking to decoder
	5.0.0
	5.1.0

	06-2001
	12
	SP-010307
	005
	1
	Correction of the homing function
	5.0.0
	5.1.0

	06-2001
	12
	SP-010307
	006
	1
	Fixed codebook initialisation
	5.0.0
	5.1.0

	06-2001
	
	
	
	
	Minor editorial to cover page
	5.1.0
	5.1.1

	09-2001
	13
	SP-010455
	007
	
	Error in the C-code of the encoder homing function
	5.1.1
	5.2.0

	09-2001
	13
	SP-010455
	008
	
	Inconsistency in the file format description
	5.1.1
	5.2.0

	12-2001
	14
	SP-010699
	009
	
	Incorrect mode usage during DTX
	5.2.0
	5.3.0

	12-2001
	14
	SP-010699
	010
	
	Correction of decoder homing function for 23.85 kbit/s mode
	5.2.0
	5.3.0

	03-2002
	15
	SP-020081
	011
	2
	Correction of mode reading and memory usage
	5.3.0
	5.4.0

	03-2002
	15
	SP-020081
	012
	
	Correction of pitch calculation of AMR-WB encoder
	5.3.0
	5.4.0

	03-2002
	15
	SP-020081
	013
	
	Error concealment of high band gain in 23.85 kbit/s mode
	5.3.0
	5.4.0

	12-2002
	18
	SP-020692
	014
	
	Correction of ambiguous expression in the AMR-WB C-Code
	5.4.0
	5.5.0

	03-2003
	19
	SP-030089
	015
	2
	Harmonization of 3GPP TS 26.173 and ITU-T G.722.2 C-codes
	5.5.0
	5.6.0

	03-2003
	19
	SP-030089
	016
	
	Correction for handling of RX_NO_DATA frames
	5.5.0
	5.6.0

	06-2003
	20
	SP-030216
	017
	1
	MMS compatible input/output option for fixed-point AMR-WB source code
	5.6.0
	5.7.0

	
	
	
	
	
	Added file containing the C-code accidentally omitted from previous version
	5.7.0
	5.7.1

	09-2003
	21
	SP-030446
	019
	
	Possible decoder LPC coefficients overflow
	5.7.1
	5.8.0

	12-2004
	26
	SP-040844
	020
	1
	Incorrect definition of vector nb_of_bits
	5.8.0
	6.0.0

	12-2006
	34
	SP-060846
	0023
	1
	Correction to bug in ITU-T bitstream format in the presence of frame erasures
	6.0.0
	6.1.0

	03-2007
	35
	SP-070023
	0025
	1
	Correct text specification to be aligned with the C-code
	6.1.0
	6.2.0

	03-2007
	35
	SP-070029
	0026
	
	Correction in AMR decoder to avoid division by zero in RX-DTX Handling
	6.2.0
	7.0.0

	09-2007
	37
	SP-070626
	0029
	1
	Robust operation of AMRWB-decoder
	7.0.0
	7.1.0

	12-2008
	42
	
	
	
	Version for Release 8
	7.1.0
	8.0.0

	12-2009
	46
	
	
	
	Version for Release 9
	8.0.0
	9.0.0

	03-2011
	51
	
	
	
	Version for Release 10
	9.0.0
	10.0.0

	09-2012
	57
	
	
	
	Version for Release 11
	10.0.0
	11.0.0

	09-2014
	65
	
	
	
	Version for Release 12
	11.0.0
	12.0.0

	03-2015
	67
	SP-150094
	0030
	2
	Correction on AMR-WB (noise energy initialization)
	12.0.0
	12.1.0

	03-2015
	67
	SP-150094
	0031
	2
	Correction on AMR-WB (out-of-bound memory access)
	12.0.0
	12.1.0

	12-2015
	70
	
	
	
	Version for Release 13
	12.1.0
	13.0.0

	03-2016
	71
	SP-160077
	0032
	1
	Correction of AMR-WB
	13.0.0
	13.1.0

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2017-03
	75
	
	
	
	
	Version for Release 14
	14.0.0

image1.jpeg

_1288078025.doc
[image: image1.jpg]K oy

