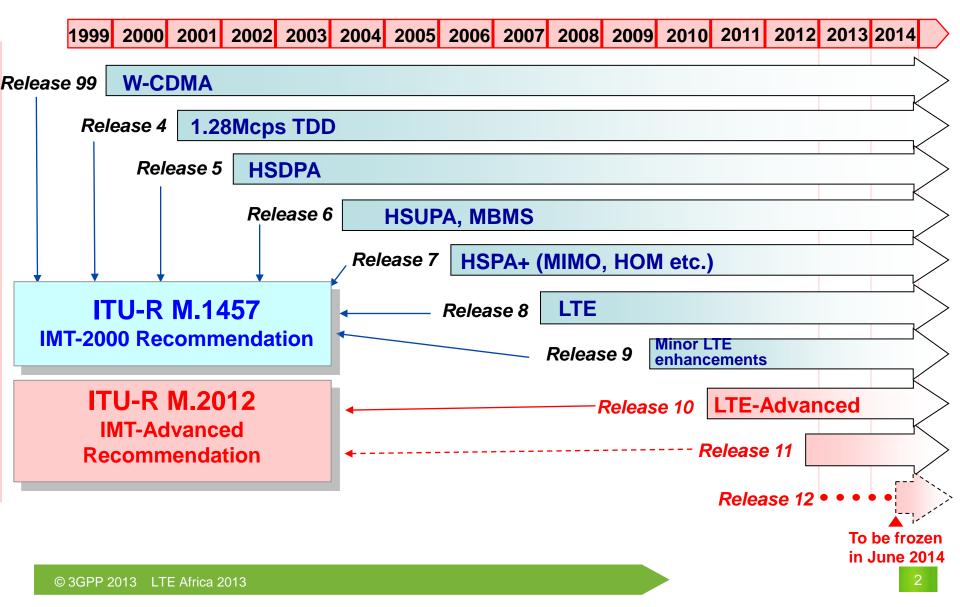


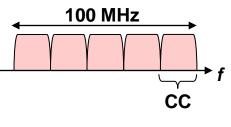
LTE Africa 2013

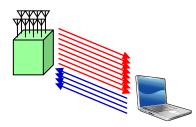


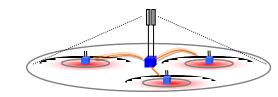
LTE Release 12 and Beyond

Takehiro Nakamura 3GPP TSG-RAN NTT DOCOMO

Release of 3GPP specifications

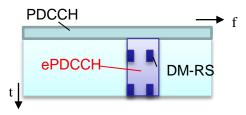

3GPP LTE Release 10 and 11

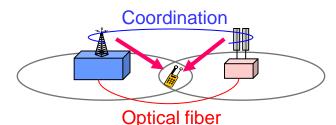

Key Features in Release 10



- Support of Wider Bandwidth(Carrier Aggregation)
 - Use of multiple component carriers(CC) to extend bandwidth up to 100 MHz
 - Common physical layer parameters between component carrier and LTE Rel-8 carrier
 - ← Improvement of peak data rate, backward compatibility with LTE Rel-8
- Advanced MIMO techniques
 - Extension to up to 8-layer transmission in downlink
 - Introduction of single-user MIMO up to 4-layer transmission in uplink
 - Enhancements of multi-user MIMO
 - ← Improvement of peak data rate and capacity
- Heterogeneous network and elCIC(enhanced Inter-Cell Interference Coordination)
 - Interference coordination for overlaid deployment of cells with different Tx power
 - ← Improvement of cell-edge throughput and coverage
- 🔊 Relay
 - Type 1 relay supports radio backhaul and creates a separate cell and appear as Rel. 8 LTE eNB to Rel. 8 LTE UEs

 \leftarrow Improvement of coverage and flexibility of service area extension





Key Features in Release 11 Physical layer aspects

- Carrier aggregation (CA) enhancements
 - Different TDD UL/DL configuration on different band
 - Multiple timing advances for UL CA
- Enhanced downlink control channel (E-PDCCH)
 - Enhanced DL control channel to support increased
 - control channel capacity, freq. domain ICIC, beamforming and/or diversity
- CoMP transmission and reception
 - CoMP for Homogeneous/Heterogeneous NW
 - Enhancement on DL/UL reference signal, control signal
 - Channel state information feedback and measurement
- Further enhanced inter-cell interference coordination (FeICIC)
 - Interference cancelation technique for UE (e.g., CRS canceller from Macro-cell)
- Improved minimum performance requirements for E-UTRA: Interference rejection
 - Interference rejection combining (IRC) UE receiver

Interfering Desired beam beam 2Rx IRC receiver

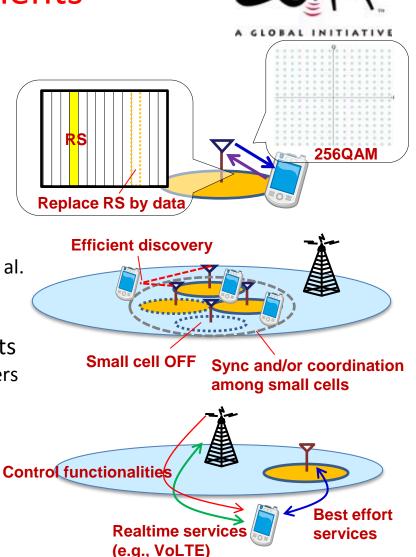
Key Features in Release 11 Higher layer aspects

- Enhancement of Minimization of Drive Tests (MDT)
 - Intention is to provide mechanisms to collect radio measurements together with location information from eNB/UE to reduce operator costs for performing manual drive tests
 - QoS measurements (e.g. throughput, traffic volume) added in Rel-11 specs
- RAN overload control for Machine-Type Communications (MTC)
 - Intention is to protect the NW from potentially very large number of MTC terminals
 - CN/RAN overload avoidance specific to MTC terminals added in Rel-11 specs
- Further self optimizing networks (SON) enhancements
 - Procedures for inter-RAT MRO added in Rel-11 specs
- Network Energy Saving
 - Procedures for inter-RAT energy saving added in Rel-11 specs
- LTE RAN Enhancements for Diverse Data Applications
 - Intention is to specify RAN improvements considering various data traffic, e.g. those generated by smartphones
 - Signaling for optimization of terminal battery consumption specified in Rel-11

3GPP LTE Release 12 (and Beyond?)

Release 12 Status Overview (Physical Layer Aspects in June, 2013)

🔊 Study Item

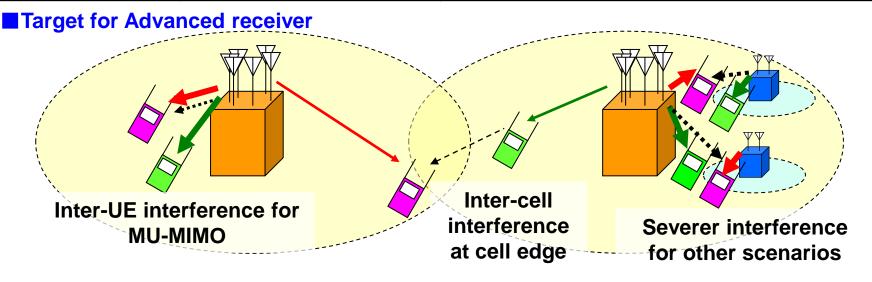

- Small Cell Enhancement
- 3D-channel model for Elevation Beamforming and Full Dimension-MIMO
- Network-Assisted Interference Cancellation and Suppression
- Device to Device (D2D) Proximity Services
 - Discovery/Communication
- Enhanced Coordination Multi-Point (CoMP) Transmission/Reception
- 🔊 Work Item
 - New Carrier Type (NCT)
 - Stand alone NCT/Non-stand alone NCT
 - Further enhancements to TDD for DL/UL Interference Management and Traffic Adaptation (eIMTA)
 - Further DL MIMO Enhancement
 - Low cost & enhanced coverage MTC UE
 - Low cost MTC
 - Coverage enhancement
 - TDD-FDD Carrier Aggregation
 - Coverage Enhancements

Small Cell Enhancements -PHY aspects-

n Objective

- Spectrum efficiency improvements
 - Higher order modulation (e.g., 256QAM)
 - Overhead reduction, control signaling enhancement
- Efficient small cell operation
 - Interference avoidance and coordination
 - Small cell ON/OFF, load balancing/shifting, et al.
 - Efficient small cell discovery
 - Radio Interface-based sync.
- Physical layer study for higher-layer aspects
 - Dual connectivity to macro and small cell layers
 - Mobility enhancements
- Study will be closed and specification works for identified technologies will start in Sep. 2013

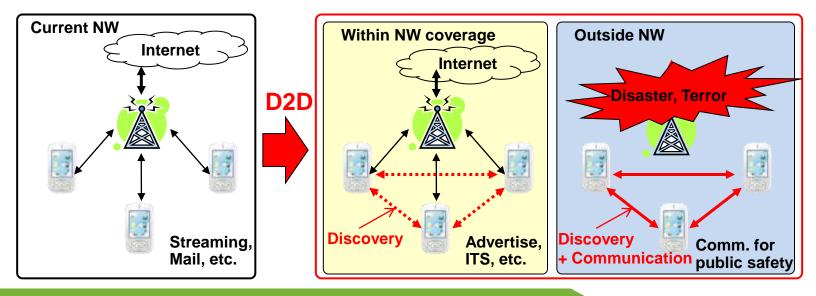
MIMO Enhancements



NW-Assisted Interference Cancellation and Suppression

51 6551611		
eceiver	Rel. 12 Advanced receiver	

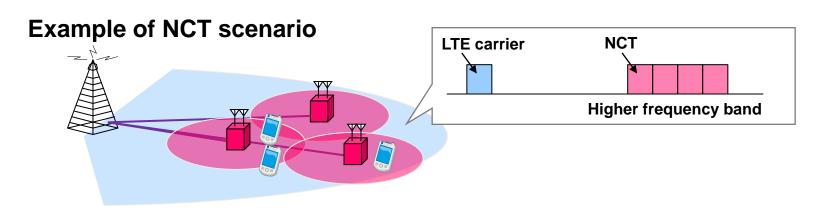
	Rel. 11 Advanced receiver	Rel. 12 Advanced receiver
Target for receiver	Interference limited areas,	All areas including cell edge
	i.e., cell edge	


Study on a variety of receiver types and need of interference information (NW-assisted receiver)

- Interference suppression: Enhancement of Rel-11 receiver
- Interference cancellation: Subtraction of interference replica from received signal, e.g., SIC

Device to Device (D2D) proximity service

- Two kinds of objective
 - Commercial use with NW coverage
 - Public safety/critical communication with/without NW coverage
- Two kinds of technical topics
 - D2D discovery
 - D2D communication

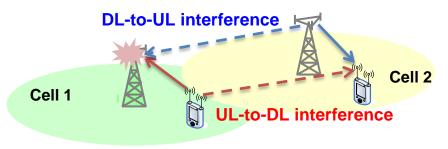

With NW Without NW coverage coverage **Required both** for public **Public safety** Discovery safety & nononly public safety **Required at** Commuleast for public Public safety only nication safety

New Carrier Type (NCT)

🔊 Objective

- Improve system performance allowing Non-backward compatible carrier (Non-support for legacy LTE UE)
 - Less frequent transmission of cell-specific reference signal (CRS)
- Identified advantages
 - Enhanced spectrum efficiency by reducing overhead signal
 - Improved support for HetNet by avoiding interference from CRS
 - Energy efficiency by not transmitting DL signal
- Evaluating benefit of stand-alone NCT (support for idle mode UE)

eIMTA* (Dynamic TDD)


* eIMTA: Further enhancements to LTE TDD for DL-UL interference management and traffic adaptation

Objective

- TDD UL-DL reconfiguration for traffic adaptation
- Interference mitigation with TDD UL-DL reconfiguration

Topics under discussion

- Reconfiguration mechanism
- Interference mitigation scheme

✓ Interference mitigation schemes

Scheme 1 Cell clustering	Scheme 2 Scheduling enhancement	
Scheme 3 Interference mitigation based on (F)elCIC	Scheme 4 Interference suppressing and mitigation	

LTE Operating Bands

FDD

עטו			
Band #	Frequency(MHz)	Remark	
33	1900-1920	3G core band	
34	2010-2025	3G core band	
35	1850-1910	PCS1900 uplink band	
36	1930-1990	PCS1900 downlink band	
37	1910-1930	PCS Center Gap	
38	2570-2620	3G extension band (EU, Africa, Asia, etc)	
39	1880-1920	TD-SCDMA band in China	
40	2300-2400	To be deployed in China	
41	2496-2690	US 2.6 GHz band	
42	3400-3600	EU 3.5GHz band	
43	3600-3800	EU 3.5GHz band	
44	698-806	APT 700	

Band	Frequency(UL/DL)(MHz)	Remark	
1	1920-1980/2110-2170	IMT Core band (EU, Africa, Asia, etc.)	
2	1850-1910/1930-1990	PCS1900 band (US, Canada, Americas)	
3	1710-1785/1805-1880	GSM1800 band (EU, Africa, Asia, etc.)	
4	1710-1755/2110-2155	AWS-1 (US, Canada, Americas)	
5	824-849/869-894	GSM850 band (US, Canada, Americas, Asia, etc.)	
6	830-840/875-885	Not applicable	
7	2500-2570/2620-2690	IMT extension band (EU, Africa, Asia, etc.)	
8	880-915/925-960	GSM900 band (EU, Africa, etc.)	
9	1749.9-1784.9/1844.9-1879.9	Japan	
10	1710-1770/2110-2170	Expanded Band 4	
11	1427.9-1447.9/ 1475.9-1495.9	Japan	
12	699-716/729-746	700 Lower in US	
13	777-787/746-756	700 Upper C in US	
14	788-798/758-768	700 Upper D in US	
17	704-716/734-746	700 Lower in US	
18	815-830/860-875	Japan	
19	830-845/875-890	Japan	
20	832-862/791-821	EU Digital Dividend	
21	1447.9-1462.9/1495.9-1510.9	Japan	
22	3410-3490/3510-3590	EU 3.5GHz band	
23	2000-2020/2180-2200	US S-band	
24	1626.5-1660.5/1525-1559	US L-band	
25	1850-1915/1930-1995	Expanded Band 2	
26	814-849/859-894	E850 Upper band	
27	807-824/852-869	E850 Lower band	
28	703-748/858-803	APT700	
29	NA/716-728	US DL only	
30	2305-2315 / 2350-2360	US LTE WCS	
31	451-458 / 461-468	Brazil LTE 450	

LTE Carrier Aggregation **RF Requirements**

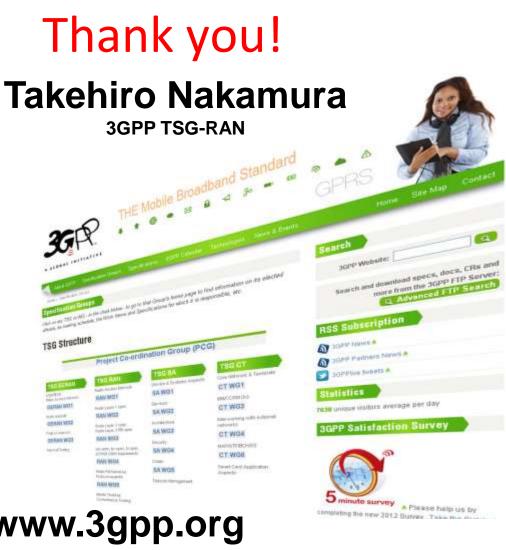
2 DL and 1 UL			
Inter	Inter-band		
Band Comb.	Band Comb.	contiguo	
1+5	10+5/10(set 2)	Band	
3+7	4+5	1 (set 1)	
4+13	4+7	40	
4+17	5+17	41	
7+20	8+20	1 (set 2	
5+12	11+18		
4+12	2+29	Intra-ban	
2+17	4+29	non-contigu	
3+5	1+8	Band	
10+5/10(set 1)	2+13	3	
3+20	3+19	4	
1+21	3+26	25	
1+19	3+28	7	
1+18	19+21		
3+8	23+29		

٦đ bus

2)

Intra-band non-contiguous	
Band	
3	
4	
25	
7	

Many Work Items are on going and to be specified


2 DL and 2 UL

On going for 5 classes

- A1. Low-high band combination without harmonic relation between bands or intermodulation problem
- A2. Low-high band combination with harmonic relation between bands
- A3. Low-low or high-high band combination without intermodulation problem (low order IM)
- A4. Low-low, low-high or high-high band combination with intermodulation problem (low order IM)
- A5. Combination except for A1 A4

3 DL and 1 UL

Work Items have been started from June 2013

More Information about 3GPP:

www.3gpp.org

contact@3gpp.org

A GLOBAL INITIATIVE