3GPP TSG-T2 #7 / ETSI SMG4

Ystad, SWEDEN, 22-26 November 1999
TSGT2#7(99)945

Agenda Item:

Source:
DESC

Title:
Dynamic Software Component Loading Platform

Document for:
Information

Dynamic Software Component Loading Platform

1. Intro

The system consists of three major parts:

· The Core, which provides the basic features,

· Components which provide real application functionality

· Contracts that define the interaction between components.

2. The Core

The Core should be considered as a kind of broker that brings together components that need or want to cooperate with one another.

Normally the Core manages a local component repository from which it can load components that have been requested by other components.

The core is available on many hardware platforms.

If the platform is powerful enough, the core also contains extensive application monitoring features (memory checking, event reporting, tracing API, several high-level data types, enhanced extension hooks…).

If on the other hand the platform is limited, the Core is completely stripped down to its bare essentials (Dynamic component localization and loading, exception handling and garbage collection)

The footprint of the Core in its most potent configuration is about 240 KB.

3. Components

Components on the other hand are real application parts. We have already built a big set of components like: raw communication, Client/Server framework, database access, Web browser interfacing, security, and compression…

Neither the Core nor the platform requires the presence of any of these components.

The Core can perform is task even if no application components are present locally because it can be extended with components that locate components over the network.

These components have the choice either to download the requested component and add it (potentially temporarily) to the Local repository or it can decide to use the component over the network using Proxy components.

These proxy components are no different from other component except perhaps for the fact that they can be generated automatically based on the contract (see hereafter).

There is no predefined algorithm for locating remote components. Therefor it can depend on the specific needs of the environment the Core operates in.

4. Contracts

Contracts are definitions that exactly define the calling convention between components.

Components can implement and/or use contracts.

If a component uses a contract it depends on the presence of a component that implements that contract to complete its functionality.

If a component implements a contract it becomes available to be called upon by other components.

Technically, contracts are include files defining the functions, the parameters and the return values that can be excepted from a component that implements that contract.

5. Adaptive

Since components only depend on the contracts that they use, the behavior of the complete application can be changed dramatically without interruption of the application.

To give an example, the communication channel might die and need to be replaced by another channel (even another protocol).

This substitution might occur without the other components in that application knowing about it. It depends of course on the ‘quality’ of the application how dynamic these things can happen.

Software that can adapt to any situation is called Adaptive Software.

The Core fully supports adaptiveness in such a way that components can by dynamically loaded and unloaded while the application continues. It is even possible to perform an upgrade of a particular component without application interruption.

6. Features & advantages

One source code for all platforms supported (including the Internet).

In order to avoid Upgrade Storms, component can implement multiple contract versions. This implies that components can be modified in such a way that old component do not need to be modified or redistributed.

Since the environment is implemented in C, it is small and as efficient as the underlying hardware.

Finally, the core will support application ticketing. This means that the core will track the use of components within an application and will be able to provide some kind of ‘cost’ of the execution of the application.

This could make it possible to perform application use billing similar to GSM airtime use.

7. Mobile devices

We believe it is possible to bring the Core on any mobile device. The size of the environment and is efficiency brings this guarantee.

However it strongly depends on the availability/quality of the availability of dynamic library loading in the underlying OS.

Since the Core runs on any platform, the environment could become truly present in any location on the network, linking services and front-end applications seamlessly together in a highly volatile world (like mobile environments)

Overview of features & functions:

Development Environment

We have created a software development environment in order to shape the software components.

This environment is/can be integrated with different popular development tools (e.g. MS Visual C++, Borland, …, Rational Rose).

One of the advantages is the short training time for an experienced C developer.

This environment has a proper uniform development structure, and maintains common code base between different OS implementations.

Allows for truly parallel development and parallel compilation for different Architecture/Target and SubTarget patterns.

Contracts

The Contracts define the functions that a component should implement.

They can also define the external data types that can be returned by one or more functions of the Contract

Components
· Are classes in the true object oriented sense

· Provide data hiding

· Provide implementation hiding and therefor code reuse

· Provide adaptive behavior

· Can contain multiple versions

· Provide code for functions that are used to establish implement for one or more Contracts

· Can be reused throughout multiple Contracts and Contract versions

At runtime look like dynamic libraries that can be loaded upon application request

The only environment known to the component are Contracts (used or implemented)

Dynamic Libraries
· Like components they implement a Contract (= Interface)

· An interface is a list of functions that are available

· Do NOT provide data hiding (Data is exposed)

· Are dynamically loaded when requested by the application

· Generally used for simple but generic functions (e.g. Date calculations) reduction of load time or code size of application

· System independency better maintenance

Represent themselves as dynamic libraries

Support Libraries
· Are standard OS libraries

· Can contain features that are always required e.g. the ADAPTIVE-CORE

· Generally use for Extreme efficiency: Chicken and egg problems

· Contexts Groups together related objects one execution context

· Allows for naming of objects

· Allows for global operations on objects iteration on all available instances

· Complete disposal of related objects

· Ideal for server applications and web enabled applications

CORE
It is a library, and not and engine although it has some active features/functionalities, that provides all the basic features:

· Loading/Unloading of components

· Loading/Unloading of dynamic libraries

· Basic data types

· Debug and event reporting

· API Error handling

· OS independency features

· Garbage collection

· Memory allocation

· Provides broker functionality

The CORE, which could be considered as a tiny broker, brings together and dismisses components by dynamic component loading on the Client, thus enabling assembly of applications during execution. The co-operation between Components is defined through Contracts. Thus allowing to change the behavior of applications.

Currently the technology is applicable for any platform supporting C. It is already available for a large range of platforms: ranging from WIN95 over NT to different UNIX versions. The concept could be ported to any other language/environment/technology.

Built in data types
The CORE implements (and uses) several more complex data types

· Dynamic arrays

· Pools

· Associative arrays

· Stacks

Background information

Our company is currently called DESC nv (www.desc.com), located in Antwerp (Belgium).

It is a privately hold company. We might change its name in the near future.

The technology/concept is a result of several years of work of 2 developers. The idea has started whilst they were working at the R&D department of a large corporation. There they had the opportunity to evaluate all kinds of technologies and to develop/sparkle new solutions.

As the concept and technology have just matured, we only started marketing since this summer.

We are curently not involved in any standards or workgroups. We are convinced our work could bring a working concept to be integrated into standards, especially for the wireless environment due to the small footprint of the CORE.

We believe we can bring a significant contribution to the world of wireless applications.
