3GPP TSG T WG2, SWG1 (MExE)
Tdoc T2-99802
Kyongju, Korean

4 – 6 October, 1999

Agenda Item:
MExE stage two : security

Source:
Alcatel Business Systems

Title:
Choice of PKCS#15 certificate object structure to store certificate in SIM

Document for:
Information and discussion

References :

[PKCS15]
PKCS #15 “Cryptographic Token Information Standard” version 1.0, RSA Laboratories, April 1999
URL: ftp://ftp.rsa.com/pub/pkcs/pkcs-15/pkcs15v1.doc
[Tdoc T2-99732]

Proposal CR to SMG9 for certificate storage in SIM
[WAPWTLS] “Wireless Application Protocol Transport Layer Security Specification”, WAP Forum, 30-April-1998
URL: http://www.wapforum.org/
[WAPWIM] “Wireless Application Protocol Identity Module Specification”, WAP Forum, draft version 05-Jul-1999
URL: http://www.wapforum.org/
[RFC 2459] Internet X.509 Public Key Infrastructure January 1999

Introduction

The aim of this Tdoc is to help people to take the good decision. You can fin hereafter an extract of PKCS15 ASN 1 syntax related to certificate, an extended view of this syntax more easy to read, an extract of An Electronic Identification of PKCS15 profile.

This Tdoc ends by an analysis and a proposal conclusion

1 Certificate objects PKCS#15 syntax extract

IMPORTS

OOBCertHash

 FROM PKIXCMP {iso(1) identified-organization(3) dod(6)

 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-cmp(9)};

-- Basic types

PKCS15Identifier ::= OCTET STRING (SIZE (0..pkcs15-ub-identifier))

PKCS15Reference ::= INTEGER (0..pkcs15-ub-reference)

PKCS15Label ::= UTF8String (SIZE(0..pkcs15-ub-label))

PKCS15ReferencedValue ::= CHOICE {

 path PKCS15Path,

 url PrintableString

 }

PKCS15Path ::= SEQUENCE {

 path OCTET STRING,

 index INTEGER (0..pkcs15-ub-index) OPTIONAL,

 length [0] INTEGER (0..pkcs15-ub-index) OPTIONAL

 } (WITH COMPONENTS {..., index PRESENT, length PRESENT}|

 WITH COMPONENTS {..., index ABSENT, length ABSENT})

PKCS15ObjectValue { Type } ::= CHOICE {

 indirect PKCS15ReferencedValue,

 direct [0] Type

 } (CONSTRAINED BY {-- if indirection is being used,

 -- then it is expected that the reference points

 -- either to an object of type -- Type -- or (key

 -- case) to a card-specific key file --})

PKCS15PathOrObjects {ObjectType} ::= CHOICE {

 path PKCS15Path,

 objects [0] SEQUENCE OF ObjectType

 }

-- Attribute types

PKCS15CommonObjectAttributes ::= SEQUENCE {

 label PKCS15Label OPTIONAL,

 flags PKCS15CommonObjectFlags OPTIONAL,

 authId PKCS15Identifier OPTIONAL,

 ... -- For future extensions

 } (CONSTRAINED BY {-- authId must be present in the IC card

 -- case if flags.private is set. It must equal an

 -- authID in one AuthRecord in the AODF -- })

PKCS15CommonObjectFlags ::= BIT STRING {

 private(0),

 modifiable (1)

 }

-- Identifier types

PKCS15KeyIdentifier ::= SEQUENCE {

 idType PKCS15KEY-IDENTIFIER.&id ({PKCS15KeyIdentifiers}),

 idValue PKCS15KEY-IDENTIFIER.&Value ({PKCS15KeyIdentifiers}{@idType})

 }

PKCS15KeyIdentifiers PKCS15KEY-IDENTIFIER ::= {

 pkcs15IssuerAndSerialNumber|

 pkcs15SubjectKeyIdentifier|

 pkcs15IssuerAndSerialNumberHash|

 pkcs15SubjectKeyHash|

 pkcs15IssuerKeyHash,

 ... -- For future extensions

 }

PKCS15KEY-IDENTIFIER ::= CLASS {

 &id INTEGER UNIQUE,

 &Value

} WITH SYNTAX {

 SYNTAX &Value IDENTIFIED BY &id

}

pkcs15IssuerAndSerialNumber PKCS15KEY-IDENTIFIER::=

 {SYNTAX PKCS15-OPAQUE.&Type IDENTIFIED BY 1}

 -- As defined in RFC [CMS]

pkcs15SubjectKeyIdentifier PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 2}

 -- From x509v3 certificate extension

pkcs15IssuerAndSerialNumberHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 3}

 -- Assumes SHA-1 hash of DER encoding of IssuerAndSerialNumber

pkcs15SubjectKeyHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 4}

 -- Hash method defined in Section 7.

pkcs15IssuerKeyHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 5}

 -- Hash method defined in Section 7.

PKCS15CommonPublicKeyAttributes ::= SEQUENCE {

 subjectName Name OPTIONAL,

 ... -- For future extensions

 }

PKCS15CommonCertificateAttributes ::= SEQUENCE {

 iD PKCS15Identifier,

 authority BOOLEAN DEFAULT FALSE,

 requestId PKCS15KeyIdentifier OPTIONAL,

 thumbprint [0] PKCS15OOBCertHash OPTIONAL,

 ... -- For future extensions

 }

-- PKCS15 Objects

PKCS15Object {ClassAttributes, SubClassAttributes, TypeAttributes} ::=

 SEQUENCE {

 commonObjectAttributes PKCS15CommonObjectAttributes,

 classAttributes ClassAttributes,

 subClassAttributes [0] SubClassAttributes OPTIONAL,

 typeAttributes [1] TypeAttributes

 }

PKCS15Certificate ::= CHOICE {

 x509Certificate PKCS15CertificateObject {

 PKCS15X509CertificateAttributes},

 x509AttributeCertificate [0] PKCS15CertificateObject {

 PKCS15X509AttributeCertificateAttributes},

 spkiCertificate [1] PKCS15CertificateObject {

 PKCS15SPKICertificateAttributes},

 pgpCertificate [2] PKCS15CertificateObject {

 PKCS15PGPCertificateAttributes},

 wtlsCertificate [3] PKCS15CertificateObject {

 PKCS15WTLSCertificateAttributes},

 x9-68Certificate [4] PKCS15CertificateObject {

 PKCS15X9-68CertificateAttributes},

 ... -- For future extensions

 }

PKCS15CertificateObject {CertAttributes} ::= PKCS15Object {

 PKCS15CommonCertificateAttributes,

 NULL,

 CertAttributes}

PKCS15X509CertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15X509Certificate },

 subject [0] Name OPTIONAL,

 issuer [1] Name OPTIONAL,

 serialNumber CertificateSerialNumber OPTIONAL,

 ... -- For future extensions

 }

PKCS15X509AttributeCertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15AttributeCertificate },

 issuer GeneralNames OPTIONAL,

 serialNumber CertificateSerialNumber OPTIONAL,

 attrTypes [0] SEQUENCE OF OBJECT IDENTIFIER OPTIONAL,

 ... -- For future extensions

 }

PKCS15SPKICertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15-OPAQUE.&Type },

 ... -- For future extensions

 }

PKCS15PGPCertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15-OPAQUE.&Type },

 ... -- For future extensions

 }

PKCS15WTLSCertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15-OPAQUE.&Type },

 ... -- For future extensions

 }

PKCS15X9-68CertificateAttributes ::= SEQUENCE {

 value PKCS15ObjectValue { PKCS15-OPAQUE.&Type },

 ... -- For future extensions

 }

Certificate objects PKCS#15 expanded syntax extract

{ -- sequence of certificate

x509Certificate,[0] x509AttributeCertificate,[1] spkiCertificate, [2] pgpCertificate, [3] wtlsCertificate,[4] x9-68Certificate : {

 commonObjectAttributes {

 label "" UTF8 string OPTIONAL,

 flags {private (0), modificable (1)} bit string OPTIONAL, --

 authId octet string OPTIONAL, --

 },

 classAttributes {

 iD octet string,

 authority boolean default not an authority,

 requestId {

idtype
integer

IdValue
octet string

pkcs15IssuerAndSerialNumber PKCS15KEY-IDENTIFIER::=

 {SYNTAX PKCS15-OPAQUE.&Type IDENTIFIED BY 1}

 -- As defined in RFC [CMS]

pkcs15SubjectKeyIdentifier PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 2}

 -- From x509v3 certificate extension

pkcs15IssuerAndSerialNumberHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 3}

 -- Assumes SHA-1 hash of DER encoding of IssuerAndSerialNumber

pkcs15SubjectKeyHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 4}

 -- Hash method defined in Section 7.

pkcs15IssuerKeyHash PKCS15KEY-IDENTIFIER ::=

 {SYNTAX OCTET STRING IDENTIFIED BY 5}

 -- Hash method defined in Section 7.

 } OPTIONAL,

 thumbprint
[0] OOBCertHash OPTIONAL, -- hash on to be signed certificate, used for secure certificate identification as CCM using

 },

 [1] typeAttributes {

 value indirect : path : {

 path

octet string, -- '4331'H Reference by file identifier

 index

integer OPTIONAL, -- ‘XXXX’H offset in file

 [0] length
integer OPTIONAL, -- ‘XXXX’H length in file
 }

 -- other optional attributes are defined for X509 certificate

 }

 },

}

2 An Electronic Identification Profile of PKCS #15 (Normative)

This section describes a profile of PKCS #15 suitable for electronic identification (EID) purposes and requirements for it. Implementations may claim compliance with this profile. The profile includes requirements both for tokens and for host-side applications making use of EID tokens.

2.1 PKCS #15 objects

Certificates: For each private key at least one corresponding certificate should be stored in the token. The certificates must be of type PKCS15X509Certificate. If an application issuer stores CA certificates on a token which supports the ISO/IEC 7816-4 logical file organization, and which has suitable file access mechanisms, then it is recommended that they are stored in a protected file. This file shall be pointed to by a CDF file which is only modifiable by the token issuer (or not modifiable at all). This implies usage of the trustedCertificates choice in the PKCS15Objects type. User certificates for which private keys exist on the token should be profiled in accordance with IETF RFC 2459. Host-side applications are required to recognize and be able to use the PKCS15X509Certificate type.

Authentication objects: As follows from the description above, in the case of an IC card capable of protecting files with authentication objects, at least one authentication object must be present on the card, protecting private objects. As stated above, a separate authentication object should be used for the signature-only key, if such a key exist. Any use of the signature-only private key shall require a new user authentication, if technically possible. In the case of PIN codes
, any positive verification of one PIN code shall not enable the use of security services associated with another PIN code. Consecutive and incorrect verifications of a certain user PIN code shall block all security services associated with that PIN code. It is left to the application issuers to decide the number of consecutive incorrect verifications that triggers a blocking of the token.

PINs must be at least 4 characters (BCD, UTF8 or ASCII) long.

When a PIN is blocked through after consecutive incorrect PIN verifications, the PIN may only be unblocked through a special unblocking procedure, defined by the application issuer.

2.2 Constraints on ASN.1 types

Unless otherwise mentioned, conforming applications are required to recognize
 and parse all OPTIONAL fields. The following constraints applies for tokens and applications claiming conformance to this EID profile:

PKCS15CommonObjectAttributes.label must be present for all certificate objects.

PKCS15CommonCertificateAttributes.requestID must be recognized by host-side applications but need not be interpreted.

PKCS15X509CertificateAttributes.subject must not be present.

PKCS15X509CertificateAttributes.issuer must not be present.

PKCS15X509CertificateAttributes.serialNumber must not be present.

Coding Analysis

Carl say :

Regarding the meta-data, we seem to have two approaches. One is to dream up our own meta-data representation; the other is to go with PKCS#15 which specifies the format of a "certificate directory file" EF(CDF) as a somewhat involved ASN.1 specs (which combined with its DER encoding makes it unambiguous).

An intermediate solution may be to use a fixed ASN1 coding structure to kept compatibility with PKCS#15 and direct access. But we lost flexibility. This solution is very dangerous from my point of view. If WIM integrated a new attribute in PKCS15, SIM and WIM descriptors files cannot be shared again.

2.3 PKCS#15 advantages

Compatible with CDF file used in WIM

More flexible, but SIM proposal is also flexible

Standard format of the market for certificate storage

Minimise legacy problem

ME has only one format to support when it provides SIM and WIM interface

SIM has not to duplicate descriptors files to provide SIM and WIM interface

Carl say :

The counter-argument is that PKCS#15 appears to be the commonly used data formats in the fixed wire world. And unless we want to transform data from one representation into another all the time; it does make sense to stick to one common format. And a non negligible number of certificates are likely to be issued in ASN.1 DER encodings, thus the ME/SIM will have to understand these certificates and be able to decode ASN.1 DER anyway. Also consider the case of using a same smart-card on a mobile and a PC: the formats should be the same.

2.4 Inconveniences

Carl say :

One can argue that the ASN.1 DER encoding of the formats specified in PKCS#15 is somewhat bulkier than an ad-hoc data encoding which would cover the 3 certificate formats we've discussed so far.

PKCS#15 request to read complete descriptor and provide an light ASN1 decoder.

ME foot print increasing before supporting WIM interface.

PKCS#15 request to read all descriptors to access one certificates attributes (time access increase). No direct access is provided.

Access time increasing following SIM/ME interface speed

Time schedule for ME manufacturer to provide this decoding.

SIM foot print increasing (PKCS#15 format is bigger than the one proposed in CR.

Request WIM and MExE convergence on PKCS#15 use.

Semantic Analysis

2.5 PKCS#15 certificate object attributes

Object common attributes :

Label

human name

Flags

private (CHVi authentication request) , modifiable

Authentication object identifier

reference to CHVi

Certificate common attributes :

identifier

used for correlation between certificate and private/public key : idem X509 certificates (may be a key hash)

Authority

CA certificate

Request identifier
Issuer and serial number SHA-1 hash, or issuer public key SHA-1 hash, or public key subject hash

Trumbprint

secure way to identify a certifcate : hash on to be signed certificate (internet)

Certificate attributes

Type of certificate
WTLS, X509, SPKI, PGP, X9.68

Value

direct value or indirect file path or URL, value is coded according to the related standard.

2.6 WAP WIM

WAP WIM support all attributes except Trumbprint.

Identifier is SHA-1 public key subject, but semantic do not content this information.

Request identifier is SHA-1 issuer public key hash (20 bytes).

WIM do not identify a domain

2.7 MExE requirements

MExE requirements are :

Identification of the domain : operator, third party, administrator

Easy way to chain certificate (internet requirement too)

Easy way to identify certificate (internet requirement too) consistent with CCM.

CA or not CA certificate

Protected access or not (to be study)

No copy of certificate in ME, but using of a certificate identifier

3 Conclusion

ME manufacturer shall support SIM certificate as soon as possible.

Minimise legacy with SIM and WIM/SIM

Limit data duplication in WIM/SIM

WIM support in SIM is only requested when client authentication is requested, so ME impact shall be limited.

The PKCS#15 solution seems to be the best technical solution, if this solution is well applied without compromises on semantic.

3.1 Proposal conclusion using PKCS#15

“Label” attribute is always present and free

Object is private (To be confirm) and not modifiable

Use “CHV1” as authentication identifier (To be confirm) without supporting PKCS#15 authentication file

“Identifier” attribute is always present and free

Use “Trumbprint” attribute to identify certificate and update CCM to use to be signed certificate instead of signed certificate.

Use “request identifier” attribute to identify public key subject : the value shall be the same as these use in issuer key identifier field of the certificates provided by this issuer (internet case)

Request to PKCS#15 a common certificate attribute to identify domain

Request to WAP to update WIM according MExE (identifier, request identifier, Trumpbprint)

Create in 11.11 a transparent file for certificate descriptor storage which refers to 23.057 for data content.

Add a normative annexe in 23.057 containing :

PKCS#15 certificate attributes short presentation

Which optional attributes are supported and how to use these attributes in MExE context

References to PKCS#15 for certificate object syntax abstract definition and coding (DER)

Certificate object abstract syntax expended as information

3.2 Proposal conclusion using specific GSM format

Create in 11.11 a file for each domain certificate descriptor based on CR proposal to SMG9 (Tdoc T2-99732)

Add a normative annexe in 23.057 or a paragraph containing :

How to use key identifier and certificate identifier

� Future versions of this profile may also include support for biometric authentication methods.

� 'Recognize' means "being able to proceed also when the field is present, but not necessarily being able to interpret the field's contents."

