1

3GPP TSG-T WG2 #4
TSGT2#4(99)545
Miami, 14-16 June 1999



CHANGE REQUEST No :

Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.



Technical Specification GSM / UMTS:
03.57
Version
1.10.1




Submitted to SMG

For approval

without presentation ("non-strategic")



list plenary meeting or STC here (
for information

with presentation ("strategic")




PT SMG CR cover form. Filename: crf26_3.doc

Proposed change affects:
SIM

ME
X
Network


(at least one should be marked with an X)

Work item:
MExE

Source:
Alcatel
Date: 
10/06/99

Subject:
Java part update (mandatory option)

Category: 
F
Correction

Release: 
Phase 2



A
Corresponds to a correction in an earlier release


Release 96


(one category 
B
Addition of feature


Release 97


and one release 
C
Functional modification of feature
X

Release 98
X

only shall be 
D
Editorial modification


Release 99


marked with an X)



UMTS


Reason for 
change:

6.2.1 :table 1

A part of java.io (steam,file) should be mandatory

If java.net is mandatory, a part of java.io shall be mandatory because it provides stream interface used to send data in traffic.

Java.io provides file, JAR file interface used in proposal to add, remove, replace certificates.

Calendar should be optional, the  feature may be not supported by device.

Datagram should be optional.

Clauses affected:


Other specs
Other releases of same spec

(  List of CRs:


affected:
Other core specifications

(  List of CRs:



MS test specifications / TBRs

(  List of CRs:



BSS test specifications

(  List of CRs:



O&M specifications

(  List of CRs:


Other 
comments:


6
Java MExE devices

Java MExE devices shall be based on the MExE API for Java, which defines the required and optional components of Java APIs that shall be used to realise a MExE compliant device. 

The MExE API for Java primarily defines the functions available to a Java-based MExE device such that services (specified in the form of Java classes and interfaces) can control such a device in a standardised way.

Many aspects of the MExE API specification are optional. Services and applications shall be able to determine the presence of optional parts of the functionality. When optional parts of the functionality are implemented, the MExE API shall be supported.

6.1
High level architecture


[image: image1.wmf]Required

PersonalJava APIs

Optional

PersonalJava APIs

Required

JavaPhone APIs

Optional

JavaPhone APIs

Optional Java APIs

MExE API

MExE Applications

JavaPhone API

Personal Java API


Figure 4: Basic functional architecture of a Java MExE device

The functional architecture of a Java MExE device is shown in figure 4. Java applets, applications, and services access functionality via the MExE API for Java. The MExE API is based on a combination of optional Java APIs approved by Sun Microsystems and the Wireless Profile of the JavaPhone API [4] as defined by the JavaPhone Expert Group. The JavaPhone API is based on the PersonalJava API [3] defined by Sun Microsystems.

6.2
High level functions

6.2.1
Optionality

The use of Java encourages development of modular interfaces and minimal required functionality.  Additional functionality is provided by optional APIs specified in terms of the Java language. In general, optionality is specified in terms of Java packages. Packages are containers for the highest level of functionality in the Java language. In some cases, optionality is specified in terms of Java classes and interfaces. Classes and interfaces are elements contained inside packages.

The following table 1 specifies the optionality of the Wireless Profile of the JavaPhone APIs. Within some of the packages, certain classes and methods may be individually specified as optional by the JavaPhone API specification.

JavaPhone API
Java package
Optionality

Addressbook
Javax.pim.addressbook
Mandatory

User Profile
Javax.pim.userprofile
Mandatory

Calendar
Javax.pim.calendar
Optional

Network
Java.net
Mandatory

Datagram
Javax.net.datagram
Optional

Power Monitor
Javax.power.monitor
Mandatory

Power Management
Javax.power.management
Optional

Install
Javax.install
Optional

Communications
Java.comm
Optional

SSL
Javax.net.ssl
Optional

JTAPI Core Package
Javax.telephony
Mandatory

JTAPI Core Capabilities Package
Javax.telephony.capabilities
Mandatory

JTAPI Core Events Package
Javax.telephony.events
Mandatory

JTAPI Call Control Package
Javax.telephony.callcontrol
Optional

JTAPI Call Control Capabilities Package
Javax.telephony.callcontrol.capabilities
Optional

JTAPI Call Control Events Package
Javax.telephony.callcontrol.events
Optional

JTAPI Phone Package
Javax.telephony.phone
Optional

JTAPI Phone Capabilities Package
Javax.telephony.phone.capabilities
Optional

JTAPI Phone Events Package
Javax.telephony.phone.events
Optional

JTAPI Mobile Package
Javax.telephony.mobile
Mandatory


Java.math
Optional


Java.rmi
Optional


Java.rmi.dgc
Optional


Java.rmi.registry
Optional


Java.rmi.server
Optional


Java.security
Optional


Java.security.interfaces
Optional


Java.sql
Optional


Java.io
Mandatory1

Table 1: Optionality of the Wireless Profile of the JavaPhone APIs

1 : At least stream interface for net, and file interface
6.2.2
Required and optional PersonalJava APIs

Java MExE devices shall support the PersonalJava specification [3]. The PersonalJava APIs provide a standardised and readily implementable execution environment as a means for applications, applets, and content:

· to access and personalise the user interface via the java.awt packages

· to utilise both Internet and Intranet connections via the java.net package

6.2.3
Required and optional JavaPhone APIs

The JavaPhone APIs extend the PersonalJava APIs to provide functionality unique to telephony devices. Java MExE devices shall support the Wireless Profile of the JavaPhone API specification [4]. Java MExE devices shall support all APIs specified as required by the Wireless Profile in the JavaPhone API specification. All APIs that are optional in the Wireless Profile shall be optional in Java MExE devices. 

6.2.3.1
Application installation

Java MexE devices shall support the following JAR file manifest entries (as described in the JavaPhone specification) as described below:

· Implementation-Title

the Implementation-Title shall be used in any textual description of the application which is displayed in the UI element used to launch the application. E.g. the text displayed with an icon. 

· Main-Icon

if icons are used as elements to launch the application, then the icon file within the JAR file named by the Main-Icon attribute shall be displayed, and may be scaled if desired. 

· Main-Class and Class-Path


when the application is launched, the MExE Java VM shall be supplied with the classpath and shall call the main() method in the class named by the Main-Class attribute.

6.2.3.2
Power

Java MExE devices shall support the Power Monitor package (javax.power.monitor) as specified by the JavaPhone API to access the power level of the device and receive notifications concerning changes in power states.

Note that the Power Monitor package does not specify the minimum required events that should be generated under certain circumstances. A MExE Java device shall at least implement the following event generation: 

· BatteryCritical

shall be generated when the battery is at a critically low level. 

· BatteryNormal

shall be generated when the battery is no longer low. 

All the other event generation should be supported by the implementation.

6.2.4
Required and optional MExE APIs

A Java MExE device shall not be required to support any other Java APIs.

A Java MExE device may optionally support any other Java APIs approved by Sun Microsystems, such as:

· OCF SmartCard API OpenCard, available from [21].  If the ME supports smartcards other than the SIM, and the smartcard is open to 3rd party applications, then the  opencard.core.terminal section of the OpenCard API may be used to access the card. 

6.2.5
Mandated services and applications

6.2.5.1 
WAP browser support

To provide backward compatibility to MExE classmark 1, i.e. allow access to services designed for MExE classmark 1 devices, classmark 2 devices must feature a pre-installed or pre-loaded WAP browser that is capable of rendering at least the following content formats:

· tokenised WML documents (“WML decks”)

· WMLscript bytecode

· A WAP service in a MExE classmark 2 MS shall execute in the same manner as it executes in a MExE classmark 1 MS.

A WAP service in a MExE classmark 2 MS shall execute in the same manner as it executes in a MExE classmark 1 MS.

Other WML formats (such as textual WML documents or textual WMLscripts) are optional.

The pre-installed/pre-loaded WAP browser may be upgraded, replaced or extended by transferring, a replacement, extension or plug-in mechanism to the MS.  Depending on user preferences identified in the user profile and the terminal capabilities, the pre-installed or pre-loaded WAP browser may be overwritten or the new browser stored in a different location.

6.2.5.2 
Network protocol support

Support for network protocols in Java MexE devices is specified in the following table 2:

Protocol
Optionality

HTTP/1.1 [9]
Mandatory

HTTPS
Mandatory

Gopher
Optional

ftp
Optional

mailto [25]
Mandatory

File
Optional

Table 2: Support for network protocols

6.2.6

Datagram recipient addressing

The Datagram API (as specified by JavaPhone) may resolve server/service names using a name resolution service. The MExE Java implementation shall at least be able to resolve names using the addressbook.

The implementation of the Datagram API shall support use of the addressbook to resolve names: The addressbook entries shall be searched for items whose name matches the server/service name by the Datagram API implementation in order to resolve names to actual addresses. It shall look for an item of type “FN" with a value equal to the server name, using the following syntax:

server_name: *mostchars

e.g. "The PIZZA Hut".

Then it shall search for aggregate fields named by the service name concatenated to "X-DATAGRAM-", the field name which is named according to the following syntax:

field_name


=
"X-DATAGRAM-" service_name

service_name


=
*mostchars

Then it shall use the value of the aggregate attributes which use this field. These strings shall specify in order, the preferred and available protocols and addresses for the named server/service.  The string value in each X-DATAGRAM… field shall be formatted as so (inspired by RFC 1738 [22]):

address



=
primary_name "{" primary_addr "}" *[ secondary_name "{" secondary_addr "}" ]

primary_name

=
wdp_name | udp_name | sms_name | any_name

primary_addr


=
internet_addr | phone_number | port | httpurl | *unreserved

secondary_name

=
sms_name | url_name | sms_center_name | ip_name | any_name

wdp_name


=
"WDP"

udp_name



=
"UDP"

sms_name



=
"SMS"

url_name



=
"URL"

sms_center_name
=
"CENTER"

ip_name



=
"IP"

any_name



=
1*alphadigit

secondary_addr

=
internet_addr | phone_number | port | httpurl | *unreserved

internet_addr


=
hostname | hostnumber

phone_number

=
*phonechar

httpurl




=
"http://" host [ "/" hpath [ "?" search ]]

host




=
hostname | hostnumber

hostname



=
*[ domainlabel "." ] toplabel

domainlabel


=
alphadigit | alphadigit *[ alphadigit | "-" ] alphadigit

toplabel



=
alpha | alpha *[ alphadigit | "-" ] alphadigit

hostnumber


=
digits "." digits "." digits "." digits

port




=
digits

hpath




=
hsegment *[ "/" hsegment ]

hsegment



=
[ "~" ] *[ uchar | ";" | ":" | "@" | "&" | "=" ]

search




=
*[ uchar | ";" | ":" | "@" | "&" | "=" ]

lowalpha



=
"a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |

"i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |

"q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |

"y" | "z"

hialpha



=
"A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |

"J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |

"S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

alphadigit



=
alpha | digit

alpha




=
lowalpha | hialpha

phonechar



=
"+" | digit | "#" | "*" | "C" | "D" | "c" | "d"

digits




=
1*digit

digit




=
"0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |

"8" | "9"

safe




=
"$" | "-" | "_" | "." | "+"

extra




=
"!" | "*" | "'" | "(" | ")" | ","

hex




=
digit | "A" | "B" | "C" | "D" | "E" | "F" |

"a" | "b" | "c" | "d" | "e" | "f"

escape




=
"%" hex hex

unreserved


=
alpha | digit | safe | extra

uchar




=
unreserved | escape

mostchars



=
unreserved | " "

As a minimum, the following transport/bearer combinations shall be supported if the device supports the bearer/transport combination: 

Transport/bearer combination
Value of primary_name
Syntax of primary_addr
Value of secondary_name
Syntax of secondary_addr

WDP over SMS
WDP
port
SMS
phone_number

SMS
SMS
Phone_number



WDP over HTTP
WDP
port
URL
httpurl

UDP over IP
UDP
port
IP
internet_addr

For example:

     WAP Datagram over SMS:
"WDP=358,SMS={+358503583862}"

     SMS:






"SMS={+358503583862}"

     WDP over HTTP:


"WDP={1234},URL={http://somewhere.on.the.web/path/name}"

     UDP over IP:




"UDP={1234},IP={147.23.120.2}"

If the service centre number is specified for SMS, then the secondary_name shall be "CENTER" and secondary_addr shall be the phone number. If it is not present, then it shall be derived from the default service center.





































_989235044.doc


Required PersonalJava APIs







Optional PersonalJava APIs







Required JavaPhone APIs







Optional JavaPhone APIs







Optional Java APIs







MExE API







MExE Applications











JavaPhone API







Personal Java API












