[bookmark: OLE_LINK1][bookmark: OLE_LINK2]3GPP TSG-SA WG4 Meeting #133-e						S4-251333
Online, 18 – 25 July 2025

Source:	vivo
Title:	[FS_ULBC] Considerations on measuring ULBC complexity
Agenda item:	7.9
Document for:	DISCUSSION and AGREEMENT

1. Introduction
For the standardization of the new ULBC [1] codec, establishing a fair and relevant method for evaluating complexity is essential. While traditional metrics like WMOPS [2] are less applicable to modern AI-driven codecs, theoretical metrics such as Multiply-Accumulate Operations (MACs) or Floating Point Operations (FLOPs) offer a useful starting point for understanding a model's computational load.
However, as we move from theory to practice, it is worthwhile to consider how these theoretical figures translate to on-device performance. A potential gap can emerge between a model's FLOPs count and its actual execution speed, particularly given the diverse and fragmented hardware ecosystem of mobile devices. For instance, reliance on specific NPU capabilities for acceleration raises questions about consistent performance on devices that may lack such support, necessitating a fallback to CPU execution.
To better understand this relationship, this paper looks at a real-world example of an AI audio codec. We tested how it runs on both a computer and a mobile phone. The results show that there can be a big and surprising difference between the complexity numbers on paper and how the codec actually performs. Because of this, we think it could be helpful for the ULBC standard to consider real-world test results when defining complexity rules. This could help make sure the codec works well and provides a good experience for all users.
2. Considerations on AI Codec Complexity
When thinking about the complexity of AI codecs, it is helpful to look at how they work on real mobile phones. A model's theoretical FLOPs count is a good first guess of its computational needs. However, this number alone might not show the full picture of how it will actually perform or how much battery it will use on a real device.
A codec's on-device performance is often affected by many other things. These can include the speed of the device's memory, the specific AI operations that the hardware (NPU) supports, and how well the software tools work [3]. As our analysis later will show, these factors can make a big difference.
The mobile AI hardware landscape is also quite diverse. Major companies like Qualcomm [4], MediaTek [5], HiSilicon [6], and Apple [7] all make different types of NPUs with their own software. This means a codec that is designed to run fast on one type of NPU might not run as well on another. It is also worth considering that the ULBC codec may need to be used on a wide range of devices, including more entry-level phones that may not have a dedicated NPU or have very limited NPU capabilities.
For all these reasons, ensuring a good and consistent experience for every user is important. This is why it is valuable to also test a codec's performance on a standard CPU (e.g., Armv8). For devices without a proper NPU, the CPU performance is not just a fallback, it is the primary mode of operation. Therefore, a reliable CPU baseline helps ensure that the codec is widely accessible. The following sections will explore this idea with concrete test data.
3. Complexity Analysis of an existing AI Codec
To investigate the relationship between theoretical complexity and practical performance, we conducted a detailed analysis of a publicly available AI codec, DAC (Descriptive Audio Codec) [8]. For this analysis, we used the methodology described in Section 3.1 and a pretrained model from [11], which has a 44.1 kHz sample rate and an 8-kbps codec bitrate.
3.1. Methodology for Complexity Analysis
To provide objective and reproducible data, a standardized benchmarking methodology was employed. The methodology involves using the ONNX Runtime library [3], a high-performance inference engine for to executing execute AI models on diverse target hardware. This approach allows for complexity performance measurement across different "execution providers." For this analysis, we used the standard CPU backend, which runs the model on the main processor and serves as a universal baseline. We also used the and NNAPI (Neural Networks API) [3] backend, which is Android's interface for offloading AI workloads to specialized hardware accelerators like NPUs.
For all tests, the original, unmodified pretrained model from reference [11] was used. No changes were made to the model architecture or its parameters, and no retraining was performed. The model's fully convolutional architecture allows it to process variable-length inputs; the different frame sizes tested were achieved simply by varying the length of the input audio sample provided to the model. Furthermore, no quantization (e.g., to INT8 or INT16) was applied. The original float model was used for all execution providers, including NNAPI, as quantizing this type of generative audio model can be challenging due to its sensitivity to precision.
The method is designed to measure key complexity indicators by processing audio frames of various durations. For each test configuration, warm-up iterations are performed before collecting detailed statistics over multiple runs. The primary metric gathered is the Real-Time Factor (RTF), calculated for the full end-to-end pipeline as well as for individual components (e.g., encoder and decoder stages). This allows for a comprehensive analysis of both overall complexity performance and potential bottlenecks within the model architecture.
3.2. Theoretical Complexity Analysis
The theoretical computational load of the DAC model was analyzed using two established profiling libraries, ptflops and thop [9][10], to cross-verify the results. The complexity scales with the audio frame size, increasing from approximately 1.9 GFLOPs for a 20ms frame to 45.8 GFLOPs for a 320ms frame, as shown in Figure 1. The complexity metric we are using here (GFLOPs) represents the total number of floating-point operations required to process a single input frame of a given length. The results from both tools were highly consistent. The model has 76.9M parameters, resulting in a model size of 293 MB (with encoder and decoder).
[image:]
Figure 1: DAC Model Theoretical Complexity Comparison
3.3. Real-World Inference Performance Analysis
To see how the DAC model performs in the real world, we tested it on two very different types of devices. We chose a powerful high-end desktop computer to see how fast it could run in an ideal case. We also tested it on a high-end mobile phone, which is closer to what users will actually have. This helps us understand the performance gap between a best-case scenario and a typical use case.
For our main measurement, we used the Real-Time Factor (RTF). This is an important metric because an RTF lower than 1.0 means the codec can process audio in real-time, like during a phone call. A lower RTF is always better.
3.4. Key Findings
Our tests gave us some important insights into how the codec performs in the real world. These findings are shown in the figures below and help explain why just looking at theoretical numbers isn't enough.
· Performance on a Desktop Computer
On the high-end desktop CPU (frequency fixed to 5.7GHz), the codec is not real-time capable with a single thread (RTF between 1.6 and 1.9). As shown in Figure 2, real-time performance (RTF between 0.67 and 0.86) is only achievable with multi-threaded execution (4 threads). However, it is still very slow for such a high-end desktop CPU.
[image:]
Figure 2: DAC Model on AMD Ryzen 9 7950X Inference Performance Analysis
· Performance on a Mobile Phone
On the high-end mobile SoC (Qualcomm Snapdragon 8 Gen 2), no tested configuration achieves real-time performance. The best-case mobile RTF was 2.125 (over 2x slower than real-time), with the worst case reaching 5.884 (nearly 6x slower than real-time).
· Problems with NPU Acceleration
We had hoped that using the phone's NPU through the NNAPI backend would make the codec faster. However, the results were inconsistent (Figure 3). Sometimes it helped a little, but for one test, it actually made performance much worse than using the CPU. This shows that we cannot simply assume that using an NPU will automatically lead to better performance.
[image:]
Figure 3: DAC Model on Qualcomm Snapdragon 8 Gen 2 Inference Performance Analysis
· The Gap Between Theory and Reality
The most important finding is the large gap between the theoretical complexity (GFLOPs) and the actual measured performance (RTF), as shown in Figure 4. A model that seems reasonably efficient on paper (~2-5 GFLOPs) was not able to run in real-time on a top-of-the-line mobile phone. This result is the key reason why this analysis suggests that real-world testing is so important.
[image:]
Figure 4: DAC Model Theoretical Complexity vs. Real-World Inference Performance
4. Conclusions
The analysis in this paper used the Real-Time Factor (RTF) as a practical tool to measure on-device performance and highlight the challenge of defining a fair complexity constraint. Subsequent discussions have correctly pointed out that any practical metric, including RTF, is highly dependent on specific platforms and optimizations. This dependency makes it difficult to use such metrics directly as a normative requirement without risking bias towards certain implementationsThe analysis in this paper leads to the conclusion that a significant gap can exist between a model's theoretical complexity and its actual on-device performance. Because of this gap, it is beneficial to consider real-world performance data, in addition to theoretical metrics, when defining complexity requirements. The Real-Time Factor (RTF), measured on representative hardware, appears to be a practical and reliable metric for this purpose. To ensure interoperability and a consistent user experience, it is further concluded that testing on a common set of reference devices, including a standard CPU baseline, is essential.
Therefore, a more balanced approach may be beneficial. It is concluded that the primary complexity constraints could be based on theoretical metrics, such as MACs/FLOPs for AI-based components and WMOPS for traditional signal processing components, as these provide a platform-agnostic measure of algorithmic complexity. However, to ensure these theoretical numbers are meaningful for real-world deployment, it is essential that they are complemented by a verification process. This aligns with the principle of Design Constraint Verification. It is worth noting that other standards bodies, such as JPEG AI [12], have faced similar challenges with hardware-dependent performance, and their approach to verification on common reference platforms to validate feasibility may offer valuable insights for this work.
The following observations support this conclusion:
· A significant gap can exist between theoretical complexity metrics and actual on-device performance. This justifies the need to verify theoretical claims with practical measurementsThe performance gap is attributed to several practical factors. The mobile NPU hardware and software ecosystem is fragmented, leading to unpredictable performance. A device's advertised peak performance (TOPS) is often not achievable in practice due to system-level bottlenecks such as memory bandwidth or unsupported operations.
· This performance gap is attributed to system-level factors not captured by theoretical counts, including the fragmented NPU hardware ecosystem, memory bandwidth bottlenecks, and the fact that NPUs are shared system resources not fully dedicated to the codecAn NPU is a shared system resource. Its full computational capacity is not exclusively available for a single application like an audio codec, as it must serve other concurrent system processes. A historical precedent for resource allocation could be considered; the proportion of CPU resources used by codecs like EVS and AMR on the devices of their time could serve as a reasonable guideline for budgeting resources on modern devices.
· A verification framework should consider the wide range of target devices. This includes different classes of phones (e.g., high-end, low-end) and those that may lack a capable NPU, which would help ensure universal accessibility and a fair evaluationThe requirement to support a wide range of devices, including lower-end phones that may lack a capable NPU, reinforces the importance of establishing a standard CPU baseline for performance validation. This ensures universal accessibility and a fair evaluation framework.
5. Proposal
Based on the preceding analysis, the following is proposed:
1). It is kindly suggested to consider capturing the analysis from Section 3 within Clause 7.2 of 3GPP TR 26.940 or in a relevant PDOC. This could support more effective sharing and discussion of the findings within the group.
2). It may also be helpful to reflect the observations outlined in Section 4 under Clause 6.2 (Design Constraint Verification) of 3GPP TR 26.940 or a related PDOC, to support clarity in complexity evaluation across diverse deployment scenarios.

References
[1] SP-250378 “New SID on Ultra Low Bitrate Speech Codec”.
[2] ITU-T Software Tool Library 2024 User’s Manual.
[3] ONNX Runtime. "NNAPI Execution Provider." ONNX Runtime Documentation. [Online]. Available: https://onnxruntime.ai/docs/execution-providers/NNAPI-ExecutionProvider.html.
[4] Qualcomm, "QNN," in AI Engine Direct SDK, Jul. 07, 2025. [Online]. Available: https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/introduction.html.
[5] MediaTek Inc., " The MediaTek NPU: AI Processing Unit " [Online]. Available: https://i.mediatek.com/ai.
[6] HiSilicon, "HUAWEI Da Vinci Architecture" [Online]. Available: https://www.hisilicon.com/en/products/kirin/kirin-flagship-chips/kirin-9000.
[7] "Apple's Neural Engine (ANE)" Apple Wiki, Fandom. [Online]. Available: https://apple.fandom.com/wiki/Neural_Engine.
[8] R. Kumar, P. Seetharaman, A. Luebs, I. Kumar, and K. Kumar, "High-Fidelity Audio Compression with Improved RVQGAN," arXiv preprint arXiv:2306.06546, 2023.
[9] V. Sovrasov, "flops-counter.pytorch." GitHub, 2019. [Online]. Available: https://github.com/sovrasov/flops-counter.pytorch.
[10] Lyken, "pytorch-OpCounter." GitHub, 2018. [Online]. Available: https://github.com/Lyken17/pytorch-OpCounter.
[11] Descript, Inc., "Descript Audio Codec (DAC) Pretrained Model," Version 0.0.1, Feb. 2023. [Online]. Available: https://github.com/descriptinc/descript-audio-codec/releases/tag/0.0.1
[12] E. Alshina, J. Ascenso and T. Ebrahimi, "JPEG AI: The First International Standard for Image Coding Based on an End-to-End Learning-Based Approach," in IEEE MultiMedia, vol. 31, no. 4, pp. 60-69, Oct.-Dec. 2024, doi: 10.1109/MMUL.2024.3485255.
image3.png
Decoder RTF

2.0

EE

30

25

2.0

05

00

QCOM Snapdragon 8 Gen 2 - Mobile SoC Analysis
e Performance Encoder Performance

2.00
=@~ CPU (1 Thread) == CPU (4T)
== CPU (4 Threads) == NNAPI (4T)
A= NNAPI (4 Threads) 175

150

Encoder RTF

050
025
0.00
20ms 40ms 80ms 160ms 320ms 20ms 40ms 80ms 160ms 320ms
Frame Size Frame Size
Decoder Performance NNAPI vs CPU Improvement
== CPU (4T) e
—d= NNAPI (4T)

NNAPI Improvement (%)

34.7%

20ms

40ms

goms 160ms. 320ms. 20ms 40ms 80ms 160ms
Frame Size Frame Size

320ms

image4.png
3.5

3.01

2.01

Real-Time Factor (RTF)

1.54

Theoretical Complexity vs Real-World Performance

’ AMD R9 7950X (1T)
AMD R9 7950X (4T)
QCOM 8Gen2 (CPU)
QCOM 8Gen2 (NNAPI)
A 23
251 A TS *
A
A
°
° °
° °
10 e e e e e e e e e e e e]
u []
|] ™
6 1‘0 Zb Bb 4‘0

Theoretical GFLOPs

image1.png
DAC Model: Theoretical Computational Complexity

mm GFLOPs (ptflops)

45.8
= GFLOPs (thop)

Theoretical GFLOPs

80ms
Frame Size

image2.png
N Encoder Performance
e~ 1 Thread e~ 1Thread
8- 4 Threads 4 8- 4 Threads
20 12
E
Tis w
g E
8 5 08
v o
o 3
¢ g
£ 10 G o6
s
3
&
04
0.5
0.2
0.0 0.0
20ms 40ms 80ms 160ms. 320ms 20ms 40ms 80ms 160ms. 320ms.
Frame Size Frame Size
Decoder Performance Processing Time vs Target
e == 1 Thread = Real-time Target

Decoder RTF

Full Pipeline Performance

AMD Ryzen 9 7950X Performance Analysis

=B~ 4 Threads

08
06
04
02
00
20ms a0ms 8oms 160ms. 320ms
Frame Size

Processing Time (ms)

=] Thread
w4 Threads

8oms
Frame Size

