
1 (4)

TSG-RAN Working Group 1 meeting #7bis TSGR1#7bis(99)e59
Kyongju, South Korea
October 4 – October 5, 1999

Agenda item:

Source: Ericsson

Title: Clarification of RACH preamble generation

Document for: Decision

Text proposal for TS 25.213 V1.3.1

4.3.3 Random access codes

4.3.3.1 Preamble codes

4.3.3.1.1 Preamble code construction

The random access preamble code Cpre,n,s, is a complex valued sequence. It is built from a real valued preamble
scrambling code CRACH,n and a real valued preamble signature code Csig,s as follows:

Cpre,n,s(k) = CRACH,n(k) × Csig,s(k) ×
)

24
(kj

e

π
+

π

, k = 0, 1, 2, 3, …, 4095,

where k = 0 corresponds to the chip transmitted first in time and CRACH,n and Csig,s are defined in 4.3.3.1.2 and 4.3.3.1.3
below respectively.

4.3.3.1.2 Preamble scrambling code

The preamble scrambling code for the preamble part is as followsis a real code that is generated in a similar way as the
long scrambling codes for dedicated channels.

The code generating method is the same as for the real part of the long codes on dedicated channels. Only the first 4096
chips of the code are used for preamble spreading with the chip rate of 3.84 Mchip/s. The long code c1 for the in-phase
component is used directly on both in phase and quadrature branches without offset between branches. The preamble
scrambling code is defined as the position wise modulo 2 sum of 4096 chips segments of two binary m-sequences
generated by means of two generator polynomials of degree 25. Let x and y be the two m-sequences respectively. The x
sequence is constructed using the primitive (over GF(2)) polynomial X25+X3+1. The y sequence is constructed using
the polynomial X25+X3+X2+X+1. The resulting sequences thus constitute segments of a set of Gold sequences.

Let n23 … n0 be the binary representation of the code number n (decimal) with n0 being the least significant bit. Code
numbers between 0 and 255 are used for the random access channel. The m-sequences xn and y are constructed as:

Initial conditions:

xn(0)=n0 , xn(1)= n1 , … =xn(22)= n22 , xn(23)= n23, xn(24)=1

y(0)=y(1)= … =y(23)= y(24)=1

Recursive definition of subsequent symbols:

xn(i+25) =xn(i+3) + xn(i) modulo 2, i=0,…, 4070,

2 (4)

y(i+25) = y(i+3)+y(i+2) +y(i+1) +y(i) modulo 2, i=0,…, 4070.

The definition of the n:th code word follows (the left most index correspond to the chip transmitted first in each
slot):Define

zn(i) = xn(i)+y(i), i = 0, 1, 2, …, 4095,

CRACH,n = <xn(0)+y(0), xn(1)+y(1), …,xn(4095)+y(4095) >,

where aAll sums of symbols are taken modulo 2.

The preamble spreading code is described in Figure 1.

24 03

...24 01

....

....

ExOR

shift register 1 (25 bit)MSB LSB

shift register 2 (25 bit)

23....

Figure 1. Preamble scrambling code generator

Before transmission these binary code words are converted to real valued sequences by the transformation ‘0’ -> ‘+1’,
‘1’ -> ‘-1’.

Now, the real valued code CRACH,n is defined as follows:

.4095,,1,0
1)(1

0)(1
)(, K=





=−
=

= i
izif

izif
iC

n

n
nRACH

4.3.3.2 Preamble signature code

The preamble signature codepart Csig,s corresponding to signature s consists of 256 repetitions of a length 16 signature
Ps(n), n = 0, 1, …, 15,<P0,P1,…,P15>. Therefore,

Csig,s(i) = Ps(i modulo 16), i = 0, 1, …, 4095.

Before scrambling the preamble is therefore

151015101510 ,,,,,,,,,,,, PPPPPPPPP LLLLL

The signature Ps(n) is from the set of 16 Hadamard codes of length 16. These are listed in Table XXX Table 3.

3 (4)

Preamble symbols

Signature
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

1 A A A A A A A A A A A A A A A A

2 A -A A -A A -A A -A A -A A -A A -A A -A

3 A A -A -A A A -A -A A A -A -A A A -A -A

4 A -A -A A A -A -A A A -A -A A A -A -A A

5 A A A A -A -A -A -A A A A A -A -A -A -A

6 A -A A -A -A A -A A A -A A -A -A A -A A

7 A A -A -A -A -A A A A A -A -A -A -A A A

8 A -A -A A -A A A -A A -A -A A -A A A -A

9 A A A A A A A A -A -A -A -A -A -A -A -A

10 A -A A -A A -A A -A -A A -A A -A A -A A

11 A A -A -A A A -A -A -A -A A A -A -A A A

12 A -A -A A A -A -A A -A A A -A -A A A -A

13 A A A A -A -A -A -A -A -A -A -A A A A A

14 A -A A -A -A A -A A -A A -A A A -A A -A

15 A A -A -A -A -A A A -A -A A A A A -A -A

16 A -A -A A -A A A -A -A A A -A A -A -A A

Value of nPreamble
signature 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0(n) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P1(n) 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
P2(n) 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
P3(n) 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
P4(n) 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
P5(n) 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
P6(n) 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
P7(n) 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
P8(n) 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
P9(n) 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
P10(n) 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
P11(n) 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1
P12(n) 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
P13(n) 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
P14(n) 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1
P15(n) 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1

4 (4)

Table 1. Preamble Length 16 signatures Ps(n) corresponding to signature s.

The value of A = +1 in bipolar representation which is equivalent to 0 in boolean representation.

4.3.3.3 Preamble PAPR reduction

In order to reduce the PAPR during RACH preamble transmission the following technique is used.

+ a(k)

1+j
√2

1,j,-1,-j,1...

b(k)

signature
generation

scrambling
generation

Figure 8 - Baseband modulator for RACH preamble.

The binary preamble a(k) is modulated to get the complex valued preamble b(k),

 b(k) = a(k)
)

24
(kj

e

π
+

π

, k = 0, 1, 2, 3, …, 4095.

---- SNIP ----

Numbering of following paragraphs needs updating!

