3GPP TR 26.927 V0.4.0 (2023-06)
14
Release 18

	[bookmark: page1][bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TR 26.927 V0.4.0 (2023-06)

	[bookmark: spectype2]Technical Report

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Study on Artificial Intelligence and Machine Learning in 5G media services;
[bookmark: specRelease](Release 18)

	

		

	[image:]
	[image:]

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2023, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	5
Introduction	6
1	Scope	7
2	References	7
3	Definitions of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	7
3.3	Abbreviations	8
4	Introduction to AI/ML for media	8
4.1	General	8
4.2	Media-based AI/ML use cases and scenarios	8
4.2.1	Introduction	8
4.2.2	Object recognition in image and video	9
4.2.3	Video quality enhancement in streaming	10
4.2.3.1	Sender-receiver approaches	10
4.2.3.1.1	End-to-End neural network-based video coding	10
4.2.3.1.2	Neural network based post-processing for video coding	10
4.2.4	Crowd-sourcing media capture	11
4.2.4.1	Introduction	11
4.2.4.2	Device inference	11
4.2.4.3	Network inference	12
4.2.5	Natural Language Processing (NLP) on speech	12
4.3	Related work	12
5	Media service architecture for AI/ML	12
5.1	AI/ML Split configurations	12
5.1.1	AI/ML model composition	12
5.1.2	Topologies of split AI/ML inference	13
5.1.2.1	Introduction	13
5.1.2.2	UE as the media source	13
5.1.2.3	Network as the media source	14
5.2	Architectures and service flows	15
5.2.1	Introduction	15
5.2.2	Complete/basic AI/ML model distribution	16
5.2.2.1	Basic architectures	16
5.2.2.2	Basic workflows	17
5.2.2	Split AI/ML operation	18
5.2.3.1	Basic architectures	18
5.2.3.2	Basic workflows	20
5.2.4	Distributed/federated learning	22
5.2.4.1	Basic architecture	22
5.2.4.2	Basic workflows	23
5.3	Architecture for AI data delivery	24
5.3.1	AI data components	24
5.3.2	Media-related AI data logical functions	24
5.3.3	Architecture for AI data delivery over 5G	25
5.3.4	Procedure for Split AI/ML operation	26
6	Data components for AI/ML-based media services	28
6.1	General	28
6.2	Model data	29
6.3	Intermediate data	29
6.4	Media data	29
6.5	Metadata	29
7	Traffic characteristics	29
7.1	General	29
7.2	Complete/Basic AI/ML model distribution	29
7.3	Split AI/ML operation	29
7.4	Distributed/federated learning	29
8	KPIs	29
8.1	General	29
8.2	List of KPIs	29
9	Potential Normative Work	29
10	Conclusion	29
Annex <A>: <Informative annex title for a Technical Report>	30
Annex <X>: Change history	31

[bookmark: foreword][bookmark: _Toc138769575]Foreword
[bookmark: spectype3]This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In drafting the TS/TR, pay particular attention to the use of modal auxiliary verbs! TRs shall not contain any normative provisions.
In the present document, modal verbs have the following meanings:
shall		indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should		indicates a recommendation to do something
should not	indicates a recommendation not to do something
may		indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can		indicates that something is possible
cannot		indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will		indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not		indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: _Toc138769576]Introduction
This clause is optional. If it exists, it shall be the second unnumbered clause.
[bookmark: scope][bookmark: _Toc138769577]
1	Scope
The present document …
[bookmark: references][bookmark: _Toc138769578]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[aa]	3GPP TR 22.874: "Study on traffic characteristics and performance requirements for AI/ML model transfer".
…
[x]	<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".
[bookmark: definitions][bookmark: _Toc138769579]3	Definitions of terms, symbols and abbreviations
This clause and its three subclauses are mandatory. The contents shall be shown as "void" if the TS/TR does not define any terms, symbols, or abbreviations.
[bookmark: _Toc138769580]3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
Definition format (Normal)
<defined term>: <definition>.
example: text used to clarify abstract rules by applying them literally.
[bookmark: _Toc138769581]3.2	Symbols
For the purposes of the present document, the following symbols apply:
Symbol format (EW)
AI	Artificial Intelligence
DNN	Deep Neural Network
HDR	High Dynamic Range
ML	Machine Learning
NLP	Natural Language Processing
NN	Neural Network
SDR	Standard Dynamic Range
UE	User Equipment
UL	Up-Link

[bookmark: _Toc138769582]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
Abbreviation format (EW)
<ABBREVIATION>	<Expansion>

[bookmark: clause4][bookmark: _Toc138769583]4	Introduction to AI/ML for media
[bookmark: _Toc138769584]4.1	General
[Editor’s note: Introduction to the concepts of artificial intelligence and machine learning].
[bookmark: _Toc138769585]4.2	Media-based AI/ML use cases and scenarios
[bookmark: _Toc138769586]4.2.1	Introduction
TR 22.874 [aa] has identified a set of use cases for AI/ML with the following key operations:
-	AI/ML operation splitting between AI/ML endpoints
-	The AI/ML operation/model is split into multiple parts according to the current task and environment. The intention is to offload the computation-intensive, energy-intensive parts to network endpoints, whereas leaving the privacy-sensitive and delay-sensitive parts at the end device. The device executes the operation/model up to a specific part/layer and then sends the intermediate data to the network endpoint, the network endpoint then executes the remaining parts/layers and feeds the inference results back to the device. Alternatively, the network endpoint may firstly execute the operation/model up to a specific part/layer and then sends intermediate data to the device, which then executes the remaining parts/layers before consuming the inference results.
-	AI/ML model/data distribution and sharing over 5G system
-	Multi-functional mobile terminals might need to switch the AI/ML model in response to task and environment variations. The condition of adaptive model selection is that the models to be selected are available for the mobile device. However, given the fact that the AI/ML models are becoming increasingly diverse, and with the limited storage resource in a UE, it can be determined to not pre-load all candidate AI/ML models on-board. Online model distribution (i.e., new model downloading) is needed, in which an AI/ML model can be distributed from a network endpoint to the devices when they need it to adapt to the changed AI/ML tasks and environments. For this purpose, the model performance at the UE needs to be monitored constantly.
-	Distributed/Federated Learning over 5G system
-	The cloud server trains a global model by aggregating local models partially trained by each end devices. Within each training iteration, a UE performs the training based on the model downloaded from the AI server using the local training data. Then the UE reports the interim training results to the cloud server via 5G UL channels. The server aggregates the interim training results from the UEs and updates the global model. The updated global model is then distributed back to the UEs and the UEs can perform the training for the next iteration.
These operations have been identified as they require exchange of ML and media data over 5G, and in some cases may have some requirements on the QoS for proper operation. These operations have been identified as they require exchange of ML and media data over 5G, and in some cases may have some requirements on the QoS for proper operation.
The use cases and scenarios listed in this technical report, which are described in this clause, are based on a selection of the media-based AI/ML use cases identified in TR 22.874 [aa].
[bookmark: _Toc138769587]4.2.2	Object recognition in image and video
Based on clause 5.1 and 5.2 of TR 22.874 [aa], this set of use cases, images and video streams are processed to identify and recognize objects and extract some metadata, such as bounding boxes, object labels, movement counters, etc.
The uses cases are applicable for the different topologies described in clause 5.1, including UE inference only, network inference only and split inferences topologies.
The computationally intensive and memory and power consuming AI/ML inference used to perform this processing requires offloading some inference parts from the mobile device to the edge or a cloud data center.
Split inference of trained ML model(s) for object recognition is distributed between multiple endpoints, typically between the network and UE. Split points may depend on various factors including UE capabilities, network conditions, model characteristics, and user/task specific requirements:
-	Device/UE capabilities on running whole or part of model such as the required memory, the processing capabilities, the energy consumption, and the inference latency.
-	Network conditions for delivering media and/or the intermediate data. This may include, for example the amount of data to transfer in one shot for an image or at a specific frame rate for video, the required bandwidth in UL and/or DL with different impact on the network load and the related UL and DL network latencies. Network inference latency is also to be considered.
-	Model characteristics include split inference with a task-specific model head running on the UE for object recognition. For example, in one UE, the task is to recognize pedestrians, whereas in another it is to recognize traffic signs. The core of the network model as well as the input image/video are the same, but the tasks (and their required task-specific models) in the UEs are different.
-	User or task specific requirements. For example, it may be necessary to perform some processing tasks on end-device in order to preserve privacy or because they are delay sensitive operations.
Two main scenarios, both involving either image or video processing are proposed:
a)	The UE captures images or video and first feeds the input data to the UE inference model (e.g., to preserve privacy). The UE then uploads intermediate output data from the UE inference model to the network inference, which in turn executes the remaining part of the model (e.g., process the intensive computations) and finally returns the results or a processed image/video to the UE.
b)	Unlike the previous scenario, the UE uploads the captures image or video to the network where a network inference processes inputs video/image, then sends back the intermediate data to the UE inference executing the remaining layers of the model (e.g., task specific operations) and returning the final results.
These scenarios involve the key operation of AI/ML model/data distribution and require the delivery of trained ML model(s) for object recognition to the UE in 5GS, including the selection of models for different tasks or environments and the possible selection of the split points based on the various factors described above
These scenarios also involve the distribution of distributed online training of image and video recognition models based on input from different UEs. Depending on the configuration of the ML training framework, different data may need to be delivered between the UEs and the network. Typically, a shared model in the network is calibrated continuously based on the training results from all UEs. This scenario involves all the three key operations related to AI/ML model distribution, splitting, and distributed/federated learning.
[bookmark: _Toc138769588]4.2.3	Video quality enhancement in streaming
[bookmark: _Toc138769589]4.2.3.1	Sender-receiver approaches
[bookmark: _Toc138769590]4.2.3.1.1	End-to-End neural network-based video coding
Based on clause 5.3 of TR 22.874 [aa], in this use case, the sender and receiver apply parts of a DNN model (e.g. an autoencoder model) to enhance the quality of a video stream. An example of an autoencoder DNN is depicted in figure 4.2.3-1:
 [image: 说明: A screenshot of a cell phone

Description automatically generated]
Figure 4.2.3-1: Example of DNN-based Down/Up-scaler

The sender is typically represented by various media functions in the network, which processes the high-fidelity video using the down-scaling part of a pre-trained DNN model to an intermediate data stream that is streamed together with a lower resolution encoding of the video. The receiver (UE) runs an inference algorithm (e.g. the up-scaling part of DNN model) on using the received intermediate data and video stream to produce a high-quality video for rendering.
The main scenario in this use case is about streaming intermediate data from the network for processing on the UE, involving AI/ML data distribution and operation splitting.
This use case covers all scenarios where intermediate data stream needs to be sent to the receiver, in addition to a low-resolution video.
[bookmark: _Toc138769591]4.2.3.1.2	Neural network based post-processing for video coding
A neural network (NN) applies post-processing to a decoded video sequence to enhance the quality of the decoded frames. The post-processing is performed outside the coding loop and does not impact the decoding process of the video. Possible post-processing algorithms include:
-	Post-filtering: where the output of the video decoder is provided as input to a NN to improve the quality of the decoded frames. Such improvements include removal of video coding artifacts, subjective quality enhancement, etc.
-	Super resolution: where a NN is used to increase the resolution of the output video sequence when the resolution of the display is greater than the resolution of the decoded frames. The use of NN-based approaches in super resolution resampling process increases the quality of the resulting resampled frames.
-	NN-based HDR enhancement: a NN is applied for example to enhance a SDR video into an HDR-looking video.
In contrast to 4.2.3.1.1, this approach does not use an intermediate data stream.
[image:]
Figure 4.2.3-2: Neural network based post-processing for video coding use-case
Figure 4.2.3-2 depicts a neural-network-based post-processing use-case where pre-trained NN models are used at the receiver to post-process the decoded video to improve the quality. The video encoder processes the input video source to produce and send content-related metadata to the receiver, based on video/image or block, for example. The content-related metadata can be used to select a pre-trained NN model to be applied to a piece of content and to activate or not the selected NN model on it.
[bookmark: _Toc138769592]4.2.4	Crowd-sourcing media capture
[bookmark: _Toc138769593]4.2.4.1	Introduction
This use case and its corresponding scenarios are based on clause 6.2 of TR 22.874 [aa]. A set of users attending a live concert and capturing the event on their UEs, use a shared (or a set of shared) DNN model(s) to process and improve their respective captured video and/or audio. Audio and video data may be captured in a noisy environment or an environment with poor lighting conditions. Multiple tasks may then be performed on the processed video and/or audio for media content analysis, e.g. to extract lyrics, annotate the video, improve audio and video quality, translate language, anonymize a face, etc.
This use case involves two different scenarios based on either a device inference or a network inference.
[bookmark: _Toc138769594]4.2.4.2	Device inference
The main scenario is to improve the media capture of each UE by using an up-to-date model adapted to the context event.
This scenario may involve the distribution of multiple models to a large number of UEs in a short period of time. The UEs are heterogeneous, running with different types of operating systems (e.g., Android or iOS), supporting different AI/ML engines/frameworks or having different GPU/CPU/NPU and RAM capabilities available for running the AI/ML service on the UE. This will need the distribution of a huge amount of various AI/ML models adapted to the different device capabilities. Depending on each user’s UE, the UE may request the download of a set of DNN models for device inference.
Moving or changing the environment (localization, energy, processing unit, memory, etc.) may need AI/ML model updates, where the DNN models stored in the network may be adapted or updated during the service.
The AI/ML application may optimize the end-to-end latency (e.g., to achieve latency below 1s) or the expected accuracy level of the inference result (e.g., to achieve image recognition precision of 99%) by modifying the model. The desired latency and/or accuracy level can therefore impact the size of the AI/ML model to be distributed. This can be done by:
-	optimizing the model accuracy and latency for on-device execution. The model accuracy and execution latency are known, and the optimization may result in bandwidth saving.
-	compressing the model for reducing the bandwidth usage and improving the delivery latency. This may affect the accuracy of the model.
If an uncompressed model is sent, accuracy is not affected but delivery latency would depend on the size of the model and the network bandwidth.
The distribution of the AI/ML models for a large number of UEs at the same time may also need to serve the models from different endpoints (e.g., cloud, edge, or other UEs), and may use several or different communication links (e.g. unicast, multicast or broadcast).
[bookmark: _Toc138769595]4.2.4.3	Network inference
The main scenario may be the sharing of the input media from multiple sources for network inference, as well as the selection of suitable DNN models according to the UE and/or task.
This scenario requests the UE to upload the media data for network inference. Similarly, to the UE inference, DNN models stored in the network may be adapted or updated during the service for network inferences.
[bookmark: _Toc138769596]4.2.5	Natural Language Processing (NLP) on speech
Based on clause 6.3 of TR 22.874 [aa], this set of use cases covers a wide range of speech processing use cases, e.g. to perform automatic speech recognition, voice translation, voice commands, speech synthesis, etc.
The AI/ML models for NLP are improved with distributed/federated training using multiple UEs. As more users make use of the service, the quality and accuracy of the models improves. The results of the local training of the models by the UEs are shared with the network.
The main scenario here is about UE downloading a partially trained model identified with its training state for local training, and then sharing the results with the network for distributed/federated learning.
[bookmark: _Toc138769597]4.3	Related work
[Editor’s note: list the AI/ML-related activities in 3GPP and elsewhere, e.g. MPEG…].
[bookmark: _Toc138769598]5	Media service architecture for AI/ML
[bookmark: _Toc138769599]5.1	AI/ML Split configurations
[bookmark: _Toc138769600]5.1.1	AI/ML model composition
An AI/ML model may be splittable, meaning that it may be theoretically represented by several sub-models separated by split points as illustrated for a fully connected artificial neural network (ANN) example in figure 5.1.1-1.
[image:]
Figure 5.1.1-1: AI/ML model composition examples with a fully connected ANN
In a general case, illustrated in figure 5.1.1-2, several compositions of the same AI/ML model are represented by the AI/ML subsets (M0, M1), (M’0, M’1), or (M “0, M “1, M “2) with split points highlighted in red. The same AI/ML sub-model may be used in different compositions depending on the configurations of the model composition (e.g. M’0 and M”0 according to figure 5.1-1).
In figure 5.1.1-2, (a) and (b) are examples of AI/ML inference endpoints running an AI/ML model composed of two sub-models M0 and M1.
Examples (c) and (d) demonstrate AI/ML split models where M0, M’0 run on the UE while M1, M1’ run on the network respectively.
[image:]
Figure 5.1.1-2: General AI/ML model composition examples
In this document the following working assumptions are made:
-	Each sub-model describes a unique part of the inference process.
-	The combination of the inference of all sub-models is equivalent to the inference of the entire AI/ML model.
-	Several split points, identifying the frontier between AI/ML sub-models, may be identified within an AI/ML model.
-	Those split points are predefined and may be selected or re-selected dynamically to adapt to the changing conditions.
-	In this report, only service configurations limited to one split-point (i.e., only two sub-models) are addressed in this report.
NOTE:	Service configurations addressing more than 2 AI/ML sub-models are for further study.
[bookmark: _Toc138769601]5.1.2	Topologies of split AI/ML inference
[bookmark: _Toc138769602]5.1.2.1	Introduction
In the context of split AI/ML models, for which one AI/ML sub-model is run in the UE and the other sub-model in the network, there may be different orders of operations and consequently different media flows depending on where the process is initiated and where the media source to be processed is.
This clause introduces the different topologies of AI/ML split operations with the media source being in the UE (Clause 5.1.2.2) and in the network (Clause 5.1.2.3).
[bookmark: _Toc138769603]5.1.2.2	UE as the media source
In this scenario, the media data to be processed by the AI/ML model is in the UE. 2 cases distinguished:
-	The first AI/ML sub-model runs a partial inference in the UE. The intermedia data is then sent to the network and used by the second AI/ML sub-model that completes the inference process. The result is finally sent back to the UE. The configuration is illustrated in figure 5.1.2-1.
-	The media source is sent to the network where the first AI/ML sub-model runs a partial inference. The intermediate data is then sent to the UE and used locally by the second AI/ML sub-model that completes the inference process. The result of the inference is available directly in the UE. This configuration is illustrated in figure 5.1.2-2.
[image:]
Figure 5.1.2-1: Split AI/ML model inference where the UE is the media data source with first inference endpoint on the UE

[image: D:\2022\3GPP\SA4\120\To submit\Final\image001.png]
Figure 5.1.2-2: Split AI/ML model inference where the UE is the media data source with first inference endpoint on the network
[bookmark: _Toc138769604]5.1.2.3	Network as the media source
In this scenario, the media data to be processed by the AI/ML model is in the network. There, the first AI/ML sub-model runs a partial inference. The intermediate data is sent to the UE that already has the second AI/ML sub-model available. This second AI/ML sub-model uses the intermediate data to complete the inference process. The result of the inference is available directly in the UE. This configuration is illustrated in figure 5.1.2-3.
[image:]
Figure 5.1.2-3: Split AI/ML Model inference where the network is the media source
[bookmark: _Toc138769605]5.2	Architectures and service flows
[bookmark: _Toc138769606]5.2.1	Introduction
Considering the related use cases as documented in TR 22.874 [aa] and also in clause 4.2, basic architectures and corresponding workflows for each scenario are presented in this clause.
The basic scenarios are:
1)	Delivery of a pre-trained AI/ML model from network to UE, typically at the start of an AI media service, but may also require updates during the service. At the most basic level AI/ML models can be delivered as a file (e.g. TensorFlow SavedModel, PDF5, ONNX file, NNEF file etc.) containing all the necessary information required for the UE to perform on device inference using the delivered model. For split scenarios, a (partial) AI model to be used in the UE may be delivered.
2)	Split inference of a pre-trained AI/ML model(s) with two further sub-scenarios:
a)	Basic scenario with an inference in the network or in the UE.
b)	Split scenario with inferences between the network and the UE, where the intermediate data output from the network inference (resp. UE inference) is transferred to the UE (resp. network) to be used as the input for UE device inference (resp. network inference). Depending on the characteristics of the intermediate data, such as if the intermediate data is media content data, it may be practical to consider 5GMS architectures, procedures and/or protocols for the streaming delivery of such intermediate media data.
3)	Distributed/federated learning using multiple UE devices with local training sets, and a central server in the network. Typically a central model is distributed to UEs for local training. UEs use local data available to the device for local training, and training result updates are sent back to the central server, which aggregates and updates the central model. Global updates on the central model are then distributed to the UE devices for continuous training.
NOTE:	Compression aspects will be addressed once the digital representation of AI/ML models will be identified together with their associated service requirements (eg. traffic flow characteristics, latency, bitrate…).
[bookmark: _Toc138769607]5.2.2	Complete/basic AI/ML model distribution
[bookmark: _Toc138769608]5.2.2.1	Basic architectures
[image: Une image contenant texte, diagramme, logiciel, Police

Description générée automatiquement]
Figure 5.2.2-1: Basic architecture for AI/ML model delivery with inference in the UE
Figure 5.2.2-1 shows a simple basic architecture for AI/ML model delivery, as described in scenario 1) of clause 5.2.1, with an inference of a pre-trained AI/ML model in the UE, as described in scenario 2a) of clause 5.2.1.
In the network:
-	An AI model in the repository is selected for the AI media service by the network application, and sent to the delivery function for delivery to the UE. Selection of an AI model could depend on UE and network characteristics, such as the memory and CPU capability/availability, as well as current network load and performance status.
-	The AI model delivery function sends the AI model data to the UE via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring, as well as those related to the optimization or compression of AI model data.
In the UE:
-	A UE application provides an AI media service using the AI model inference engine and AI model access function.
-	The AI model access function receives the AI model data via the 5G system, and sends it to the AI model inference engine. Receiver side optimization or decompression techniques for AI model data may be included.
-	The AI model inference engine performs inference by using the input data from the data source (e.g. a camera, or other media source) as the input into the AI model received from the AI model access function. The inference output data is sent to the data destination (e.g. a media player).
Depending on the exact service scenario, AI model updates may be necessary during the service, and different AI model data delivery pipelines may be considered for such purposes. An AI model update may consist of a change in the AI model structure without disrupting the AI media service. If the AI model has requirements on UE memory, processing/computing capabilities or if running the AI model will increase the UE’s power consumption dramatically which will also influence the user experience of other services, it may actively request the update of the AI Model. For example, when the memory usage of the UE processing the AI Model exceeds a certain threshold, or if UE performance deteriorates, the UE can actively send a request to the network for an AI Model update. Alternatively, the network may also trigger the AI model update itself, where an interaction between the UE and network side might be needed to help the network collect current UE status information, e.g. Memory, CPU, current load, terminal location, current power consumption, current battery storage, etc.
[bookmark: _Toc138769609]5.2.2.2	Basic workflows
Figure 5.2.2-2 shows a basic workflow for AI/ML model delivery with inference in the UE. Steps for the procedures shown are described below.
[image: Une image contenant texte, reçu, ligne, diagramme

Description générée automatiquement]
Figure 5.2.2-2: Basic workflow for AI/ML model delivery with inference in the UE
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities, AI/ML service information (e.g. service requirements, AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable AI/ML model for the service.
1.	The UE Application and Network Application communicate to trigger AI model delivery, using the information from the initialization and establishment step.
2.	An AI model is selected between the UE Application and Network Application.
3.	The Network Application identifies the selected AI model in the AI model Repository/Provider.
4.	The AI Model Access Function establishes an AI model delivery session with the AI Model Delivery Function.
5.	The AI Model Access Function receives the AI model.
6.	The AI Model Access Function passes the AI/ML model to the AI model Inference Engine in the UE.
7.	The Data Source passes media data to the AI model Inference Engine.
8.	The AI Model Inference Engine performs AI inferencing.
9.	The AI Model Inference Engine passes the inference output result to the UE Data Destination for consumption.
[bookmark: _Toc138769610]5.2.2	Split AI/ML operation
[bookmark: _Toc138769611]5.2.3.1	Basic architectures
[image: Une image contenant texte, diagramme, logiciel, capture d’écran

Description générée automatiquement]
Figure 5.2.3-1: Basic architecture for split inference between the network and UE, with media data source in the network or from the UE via the network
Figure 5.2.3-1 shows a simple basic architecture for split inferences between the network and the UE, as described in scenario 2b) of clause 5.2.1, where the media data source comes from the network, or from the network via the UE. The first part of the AI model is executed on the network side and the second part on the UE.
For the split inference (network-UE) scenario, additional components are required:
In the network:
-	An AI model inference engine that receives both the network AI model subset(s), and input data, for network inference. The input data may come from the UE through the network.An intermediate data delivery function receives the partial inference output (intermediate data) from the network inference engine, and sends it to the UE via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring, as well as those related to the optimization or compression of intermediate data.
In the UE:
-	An intermediate data access function receives the intermediate data from the network via the 5GS, and sends it to the UE inference engine for UE inference. If the intermediate data delivery function performs optimization or compression on intermediate data, this function may apply the corresponding reconstruction or decompression techniques.
-	The final inference output data is sent to the data destination (e.g. a media player).
[image: Une image contenant texte, capture d’écran, diagramme, Police

Description générée automatiquement]
Figure 5.2.3-2: Basic architecture for split inference between the UE and network, with media data source in the UE
Figure 5.2.3-2 shows a basic architecture for split inferences between the UE and the network, as described in scenario 2b) of clause 5.2, where the media data source originates from the UE, the first part of the inference is performed in the UE, the second part in the network. The resulting output data is finally sent back to the UE.
For the split inference (UE - network) scenario, additional components are required:
In the UE:
-	An AI model inference engine that receives both the network AI model subset(s), and input data (from a UE data source), for UE inference.
-	An intermediate data delivery function receives the partial inference output (intermediate data) from the UE inference engine, and sends it to the network via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring. If the intermediate data delivery function performs optimization or compression on intermediate data, this function may apply corresponding optimization or decompression techniques.
-	An inference output access function receives the inference output data from the network via the 5GS, and sends it to the relevant data destination according to the AI media service.
In the network:
-	An intermediate data access function receives the intermediate data from the UE via the 5GS, and sends it to network inference engine for network inference. If the intermediate data delivery function applies optimization or compression on intermediate data, this function may apply corresponding optimization or decompression techniques.
-	The final inference output data is sent to the UE via the 5GS, through the inference output delivery function.
For both split inference scenarios, extra factors may be considered, including those such as:
-	Configuration of the split inference between the network and UE. (e.g. definition and selection of the AI/ML model composition into “UE AI model subset” and “network AI model subset”)
-	Resource allocation and management for network inference, including ingestion of network AI model data and media data
-	Intermediate data delivery pipelines between the network and UE, in particular considering the use of 5GMS defined pipelines to stream intermediate data that is media content data.
-	The functionalities of certain components in figure 5.2.1-1 and figure 5.2.2-1 may overlap, and depending on the use case a combined architecture may also be considered FFS.
-	Certain components may also overlap with functions defined in 5GMS, clarifications FFS.
[bookmark: _Toc138769612]5.2.3.2	Basic workflows
Figure 5.2.3-3 shows a basic workflow for split inference between the network and UE, with media data source in the network. Steps for the procedures shown are described below.
[image: Une image contenant texte, reçu, ligne

Description générée automatiquement]
Figure 5.2.3-3: Basic workflow for split inference between the network and UE, with media data source in the network
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities (including split capabilities), AI/ML service information (e.g. service requirements, split AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable split AI/ML model configuration, and its associated UE and network AI model subsets, for the service.
1.	The UE Application and Network Application communicate to trigger split AI model delivery, using the information from the initialization and establishment step.
2.	A split AI model is selected between the UE Application and Network Application.
3.	The Network Application identifies the selected UE and network AI model subsets in the AI model Repository/Provider.
4.	The AI Model Inference Engine in the network receives the network AI model subset.
5.	The AI Model Access Function establishes a UE AI model subset delivery session with the AI Model Delivery Function.
6.	The AI Model Access Function receives the UE AI model subset.
7.	In the UE, the AI Model Access Function passes the UE AI model subset to the AI model Inference Engine.
8.	In the network, the Data Source passes media data to the AI model Inference Engine.
9.	The network AI model Inference Engine performs network AI inferencing.
10.	The Intermediate Data Access Function establishes an intermediate data delivery session with the Intermediate Data Delivery Function.
11.	In the UE, the Intermediate Data Access Function receives intermediate data and passes it to the AI Model Inference Engine.
12.	The AI Model Inference Engine in the UE performs AI inferencing.
13.	The AI Model Inference Engine passes the inference output result to the UE Data Destination for consumption.
Figure 5.2.3-4 shows a basic workflow for split inference between the UE and network, with media data source in the UE.
[image: Une image contenant texte, reçu, ligne, nombre

Description générée automatiquement]
Figure 5.2.3-4: Basic workflow for split inference between the UE and network, with media data source in the UE
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities (including split capabilities), AI/ML service information (e.g. service requirements, split AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable split AI/ML model configuration, and its associated UE and network AI model subsets, for the service.
1.	The UE Application and Network Application communicate to trigger split AI model delivery, using the information from the initialization and establishment step.
2.	A split AI model is selected between the UE Application and Network Application.
3.	The Network Application identifies the selected UE and network AI model subsets in the AI model Repository/Provider.
4.	The AI Model Inference Engine in the network receives the network AI model subset.
5.	The AI Model Access Function establishes a UE AI model subset delivery session with the AI Model Delivery Function.
6.	The AI Model Access Function receives the UE AI model subset.
7.	In the UE, the AI Model Access Function passes the UE AI model subset to the AI model Inference Engine.
8.	In the UE, the Data Source passes media data to the AI model Inference Engine.
9.	The UE AI model Inference Engine performs UE AI inferencing.
10.	The Intermediate Data Access Function establishes an intermediate data delivery session with the Intermediate Data Delivery Function.
11.	In the network, the Intermediate Data Access Function receives intermediate data and passes it to the AI Model Inference Engine.
12.	In the network, the AI Model Inference Engine performs network AI inferencing.
13.	The UE Data Destination receives the inference output result from the network.
[bookmark: _Toc138769613]5.2.4	Distributed/federated learning
[bookmark: _Toc138769614]5.2.4.1	Basic architecture
 [image: Une image contenant texte, capture d’écran, diagramme, Plan

Description générée automatiquement]
Figure 5.2.4-1: Basic architecture for distributed/federated learning between the network and multiple UEs
Figure 5.2.4-1 shows a simple basic architecture for distributed/federated learning between the network and UE(s), as described in scenario 3) of clause 5.2.1.
In the network:
-	A federated learning engine receives a partially trained model from the AI model repository, that is passed to the AI model delivery function for delivery to multiple UEs via the 5GS.
-	Training results data from multiple UEs is also received by the federated learning engine via the 5GS, which is then aggregated for the continuous training of the global model.
-	Updates to the global model (e.g. in terms of topology or weights) are delivered to the UEs during the learning process.
In the UE(s):
-	AI model data is received by an AI model access function via the 5GS, which then passes the data to the AI training engine.
-	An AI training engine in the UE trains the AI model using local device data as the training input.
-	Training results (e.g. in the form of updated weights) are delivered to the network via the training results delivery function.
[bookmark: _Toc138769615]5.2.4.2	Basic workflows
Figure 5.2.4-2 shows a basic workflow for distributed/federated learning with training in the UE, the results of which are aggregated in the network. Steps for the procedures shown are described below.
[image: Une image contenant texte, reçu, diagramme, ligne

Description générée automatiquement]
Figure 5.2.4-2: Basic workflow for distributed/federated learning between a UE and the network
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities, AI/ML service information (e.g. service requirements, AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable partially trained AI/ML model for the service.
1.	The UE Application and Network Application communicate to trigger distributed/federated learning, using the information from the initialization and establishment step.
2.	A partially trained AI model is selected between the UE Application and Network Application.
3.	The Network Application identifies the selected partially trained AI model in the AI model Repository/Provider.
4.	The AI Model Access Function establishes an AI model delivery session with the AI Model Delivery Function.
5.	The AI Model Access Function receives the partially trained AI model.
6.	The AI Model Access Function passes the partially trained AI/ML model to the AI model Training Engine in the UE.
7.	The Data Source passes the training input data to the AI model Training Engine.
8.	The AI Model Training Engine performs AI training.
9.	A training result delivery session is established between the Training Result Delivery Function and the Federated Learning Engine.
10.	The Federated Learning Engine receives training results data from the UE.
11.	The Federated Learning Engine performs training aggregation of training results from multiple UEs, and updates the partially trained AI model.
12.	The updated partially trained AI model is delivered to the UE as from step 5.
[bookmark: _Toc138769616]5.3	Architecture for AI data delivery
[bookmark: _Toc138769617]5.3.1	AI data components
AI-related user plane data includes:
-	AI model data, including data describing the topology/structure of the AI model, data related to the data nodes of the model, i.e. tensors, and other data which may be dependent on the format used for the AI/Ml model.
-	Intermediate data, defined as the output data from the inference process of an AI/Ml model that is not considered the final inference result (depending on the service and output layer of the split AI model, certain intermediate data may have media characteristics, or even be media data). Intermediate data is typically required to be delivered to a second device or entity, as the input to a subsequent second split inference.
-	Inference output data, which is the data corresponding to the output result of the final AI inference process for the service. Depending on the nature of the AI data inferencing for the given AI data service, this inference output data may include: labels for identifying recognition like tasks from media, actual media data such as video and/or audio, or perhaps XR related data such as 3D models.
[bookmark: _Toc138769618]5.3.2	Media-related AI data logical functions
The identified User plane logical functions supporting the scenarios include:
-	AI data delivery function
-	AI data access function
-	AI model inference engine
For split AI/ML, control plane functions in both the UE and network are needed for configuration, capability exchange and reporting:
-	AI capability manager
[bookmark: _Toc138769619]5.3.3	Architecture for AI data delivery over 5G
 [image: Une image contenant texte, capture d’écran, diagramme, Rectangle

Description générée automatiquement]
Figure 5.3.3-1 AI data delivery general architecture
An architecture for AI data delivery over 5GS is shown in figure 5.3.3-1. Depending on the service scenario and/or use case, certain dedicated AI/ML logical subfunctions may be mapped to, or instantiated by 5GMS functions.
The 5G AI data delivery system shown in figure 5.3.3-1 includes the following main functional blocks:
-	5G AI Client running on the UE contains two subfunctions:
-	AI data Session Handler: A function on the UE that communicates with the network side 5G AI Application Function (AF) to establish and control the configuration of an AI data session. The function may include:
-	AI capability manager subfunctions that monitors, shares and/or reports UE capabilities with/to the AI capability manager function of the 5G AI AF. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network.
-	AI Data Handler: A function on the UE that communicates with the 5G AI Application Server (AS) and the AI data Handler to establish an AI data delivery session. The function contains:
-	An AI inference engine, which has the capability to perform the inferencing of received (split) AI models.
-	An AI data access and delivery function, which handles the access and delivery of user plane AI/ML data, as well as conventional media data including
-	download the AI model data for inference process. This includes instantiating an AI data access client to access and retrieve AI models or AI model subsets from local files or over the network (e.g., by streaming or downloading the model from a remote server). The inference engine may comprise format decapsulation and model decoding functions as well as a runtime engine that executes the model from the memory.
-	Access/deliver intermediate data when a inference is split between the UE and the network.
-	5G AI-Aware Application: An external function controlled by the external 5G AI application provider implementing the AI/ML application logic, which includes triggering the delivery of an AI model to the inference engine and obtaining inference results from the inference engine.
-	5G AI AS(Application Server): An Application Server that hosts 5G AI data functions. It includes
-	An AI data access and delivery function, which handles the access and delivery of user plane AI/ML data, as well as conventional media data
-	An AI inference engine, which has the capability to perform the inferencing of (split) AI models.
-	5G AI AF(Application Function): An Application Function that provides various control and configuration functions to the AI Data Session Handler on the UE and/or to the AI Application Provider. It may relay or initiate a request for different Policy or Charging Function (PCF) treatment or interact with other network functions via the NEF (Network Exposure Function). The Application function can include for example:
-	AI capability manager subfunctions monitors, shares and/or reports Network capabilities with/to the AI capability manager function of the AI data Session Handler. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network.
[bookmark: _Toc138769620]5.3.4	Procedure for Split AI/ML operation
Figure 5.3.4-1 shows a procedure for split AI/ML operation, including three main parts:
-	AI split inference management, and
-	AI data delivery session
-	Split inference processing
 [image:]
Figure 5.3.4-1: Procedures for split AI/ML operation
1.	Service provisioning and announcement of AI data service on the network side, in particular between the 5GAI AF (application function) and the 5GAI application provider.
2.	Service access information acquisition. During this step, the available or required AI model(s) for the service can be made known to the UE, by means of information made available via a URL link pointing to a file or manifest which may list such available AI models. Such additional information may contain AI model specific information, such as the structure, the size, complexity and latency requirements of the AI model.
AI split inference management:
3.	Discovering AI data inferencing capabilities and functions in both the UE and network. In this step, the AI capability manger functions in the UE and in the network may use its capabilities to calculate the range of inference latencies for the AI model to be used for the split AI/ML inference service
4.	Requesting AI split inference. Either the UE or the network requests the other side for an AI split inference service. If information describing the AI model was not made known via the service access information in step 2, then such information may also shared during this step.
5.	Negotiate splitting the AI inference process. A split point is negotiated between the UE and the network, using information from steps 2, 3 and 4, in order to satisfy the service, capability and AI model inference latency requirements. The decision of whether the split point is static or whether it can be updated dynamically during the service may be negotiated. Related metadata may be shared between the network and UE depending on the configuration.
6.	Acknowledge the split and provide the AI data split inferencing access info. In this step, the network (5GAI AF) and UE (AI data session handler) both acknowledge the decided split point, and access information for the AI data is provided to the UE.
7.	The split configuration outcome is notified to the 5GAI-aware application.
AI data delivery session
8.	Request the start of AI data delivery. On confirmation, the application triggers the 5GAI client to request the start of AI data delivery using the AI data access information provided in step 7.
9.	The 5GAI client request the AI data to be deliver from the 5GAI AS.
10.	Pipelines for the delivery of AI model data from the 5GAI AS to the 5GAI Client are setup, and suitable delivery sessions are established and initiated. Delivery may be in the manner of streaming delivery, or download delivery (such as that defined in TS 26.501, or any other form of delivery mechanism required by the AI data service.
11.	Start inference process in the UE. In this step, the 5GAI client triggers the inference process (the AI inference engine function), namely the UE side of the split inferencing as decided by the result of step 5.
12.	Start inference process in the server. In this step, the 5GAI AF triggers the inference process in the 5GAI AS (the AI inference engine function), namely the network side of the split inferencing as decided by the result of step 5.
13.	Pipelines for the delivery of intermediate data from the 5GAI AS to the 5GAI Client are setup, and suitable delivery sessions are established and initiated. Delivery may be in the manner of streaming delivery, such as that defined in TS 26.501, or any other form of delivery mechanism required by the AI data service.
Split inference processing
14.	The split inference runs between the UE and the network. Depending on the specific split inference scenario, the UE and the network may deliver and/or access Intermediate data, Inference output data and/or metadata using the pipelines defined in the AI data delivery session.
Session reporting and update
15.	The AI Data Session Handler may collect and send status reports regarding the UE’s AI media service status (for example AI inference status, latency, resource status, capability status, dynamic media properties etc.) to the 5GAI AF.
16.	The 5GAI AS may send status reports regarding the network’s AI media service status to the 5GAI AF.
17.	The AI Data Session Handler may receive network status, or network AI status reports from the 5GAI AF, as collected in step 16.
18.	The AI Data Session Handler may receive media status reports either from the network or internally from the UE.
19.	Depending on the configurations negotiated in step 5, as well as related information from the status reports in steps 16, 17 and 18, updates of the AI model selection, split point configuration or the AI data delivery pipelines for the session may take place between the UE and network.
[bookmark: _Toc138769621]6	Data components for AI/ML-based media services
[bookmark: _Toc138769622]6.1	General
[Editor’s note: Identify and document the data types and possible data formats for the different data components listed.].
[bookmark: _Toc138769623]6.2	Model data
[bookmark: _Toc138769624]6.3	Intermediate data
[bookmark: _Toc138769625]6.4	Media data
[Editor’s note: referring to the media data streaming formats and profiles in 26.512.]
[bookmark: _Toc138769626]6.5	Metadata
[Editor’s note: Metadata may include metadata to describe AI/ML model types, metadata for split operation configurations, AI/ML operation endpoint capability metadata etc.]
[bookmark: _Toc138769627]7	Traffic characteristics
[bookmark: _Toc138769628]7.1	General
[Editor’s note: Based on the architectures, identify for the relevant data components for each of the scenarios, the corresponding traffic characteristics (burst size, delay/bandwidth/reliability requirements etc.)]
[bookmark: _Toc138769629]7.2	Complete/Basic AI/ML model distribution
[bookmark: _Toc138769630]7.3	Split AI/ML operation
[bookmark: _Toc138769631]7.4	Distributed/federated learning
[bookmark: _Toc138769632]8	KPIs
[bookmark: _Toc138769633]8.1	General
[bookmark: _Toc138769634]8.2	List of KPIs
[Editor’s note: E.g. Latency, data rate, reliability, accuracy…]
[bookmark: _Toc138769635]9	Potential Normative Work

[bookmark: _Toc138769636]10	Conclusion
[bookmark: _Toc138769637]
Annex <A>:
<Informative annex title for a Technical Report>
Informative annexes in Technical Reports do not use "(informative") in the title, since all annexes in TRs are informative. Use style "Heading 9" in TRs.

[bookmark: _Toc138769638][bookmark: historyclause]
Annex <X>:
Change history
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2022-01
	SA4#118e
	S4-220498
	
	
	
	Agreements after SA4#118e (S4-220391: TR skeleton)
	0.1.0

	2022-11
	SA4#121
	S4-221376
	
	
	
	Inclusion of use cases
	0.2.0

	2023-02
	SA4#122
	S4-230378
	
	
	
	Introduction of split models and configurations (S4-230401)
	0.3.0

	2023-02
	SA4#122
	S4-230405
	
	
	
	Update of this Change history table
	0.3.1

	2023-06
	SA4#124
	S4-231043
	
	
	
	Workflow and procedures (S4-230830)
	0.4.0

3GPP
image2.png
=

A GLOBAL INITIATIVE

image3.png
iduesey

image4.png
UE (Decoder side)
NN model(s) + NN updates

Content-related

Network
(Encoder side)

Video
decoder

Post-Processing
NN

metadata

Encoded
video

Video
encoder

Input video

source

image5.png
Al/ML Model composition
1 1

Q Q00 O
Q. QIO IO OO
@) OlO‘:OIO O:EO
O OO0 OO0
QN DY O Al/ML sub-model 1 Al/ML sub-model 2
! ! Q00 OO O O
' ' 37000 OO
cT_r:dld_attel —_ |, OO0 w0 OO
split poin ! OO OO Q0
! O O O o0
i Al/ML sub-model 1
' OO A0
Cand;date SIS
split point 2 8 8 8 8 8
O O OO0

image6.png
Al/ML Model composition

Al/ML
Subset

.

plit points Split AI/IlVIL model inference

[\

network Network Network

endpoint endpoint endpoint
UE UE UE

endpoint endpoint endpoint

a) b) o) d)

image7.png
a
=%
<

P
3
©
©
©
2
Q
£

image8.png
media data

image9.png
media data

intermediate data

image10.png
UE application

UE (Al enabled device)

data

A4

Data source
Input (e:6. camera)

Almodel
inference
engine

Inference
output
data

Almodel
delivery
function

Almodel
access.
function

5G System
5G System

Network

Network application

repository /

image11.png
' I
! ' 1

|

| UEData |/UE Data UE Al Model Al Model | | Al Model Al Model Network
|(Destination || Source ||Application ||Inference Engine Access Function| |

Delivery Function||Repository / Provider| Application

ftilisation & establishment

1: Trigger Al model delivery

2: Select Al model

: Identify selected
Al model

<4: Establish Al model delivery session>

5: AI/ML model dslivsiy

6: Pass A/ML model
for inferencing
7: Input media data

>

Al inferencing

9: Inference outFut result
T

image12.png
UE (Al enabled device)

UE application

Almodel
UE|aImodel
= access
function

Inference
output
data

inference
engine

Intermediate
data access
function

> Data destination
(e.g. media player)

5G System

5G System

Network

Network application

UE Almodel

Almodel subset(s]
dolvery 4 L0
function P

NetworkAl

model

Subsetts)
Intermediate Almodel
datdelvery 4——— inference
function engine

partialinference
output (intermediate
data)

Data source

(e.g. media
repository)

image13.png
Network

UE (Al enabled device)

Network application

UE application
UE Almodel
Almode Almodel | subsetls
UEAImodel le UE Almodel . Almod|
data access G delivery |« repositol
function function P
Network Al
: model
inference
g Intermediate e c subset(s
gine data delivery bl g Amodel |
function 2 | intermediatg| . Intermediate mode
ot & | deaccess P inference
Q Q function i
Partialinference output A 2 engine
Datasource | (intermediatedata)
(e.g. camera)
Inference - - ot
outputaccess ot e eyt [(inferenceresu]
function outputdata ny ence result)

image14.png
: " Network
‘Al Model AlModel | [Intermediate Datal [Intermediate Data] [Al Model || Al Model ‘Al Model
Inference Engine| |Access Function) | Access Function | 1| Delivery Function ||Delivery Function| |Repository Inference Engine

Initialisation & establishment

1: Trigger Al model delivery
T
2: Select spit Al model

3: Identify selected
‘Al model subsets.

4: Pass network AlIML,

5: Establish UE Al model
‘subset delivery session

6: UE AUML model subset delivery

Pass UE A/ML model
subset for inferencing

|¢_8: Input media data

9: Al inferencing

Establish intermediate,
data delivery session

le | 11: Intermediate data gelivery

12: Al inferencing

13: Inference output result

image15.png
Network

UE Data |[Data || UE Al Model AlModel | intermediate Datal. {intermediate Data] [AlModel || Al Model AlModel || Network |
Destination||Source| | Application| |inference Engine| |Access Function) | Delivery Function | | Access Function | |Delivery Function |Repository, Inference Engine| [Application ;
[Initalsation & establishment

le 1: Trigger Al model delvery N
le 2: Select split Al model)
3: dentiy selected
Al model subsets
4: Pass network AUML,
|4: Pass network AIML, |
subset for inferenceing
le 5: Establish UE Al model N
subset delivery session
le 6: UE AIML model subset delivery
Pass UE AIML model
*Subset for nferencing
8 Input media data_|
{9: Al inferencing |
data delivery session
11: Intermediate data delivery N
12: Al inferencing
le 13 Inference output result
T

image16.png
Modeltopology
& global updates
(e.g.weights) etc

UE (Al enabled device) Network

ork application

UE application

| Aimodel |
UE|aImodel Almodel
- access - delivery
function function
m 5 5
Altraining H Z
engine & & Federated
g 9 learning
engine
Training Trainigresuts Trainin Pa
results deliveryfuncton resultedata trainedmodel
Almodel
repository

Other UEs

image17.png
'
I
Al Model Al Model Federated Network |
Delivery Function| |Repository| |Learning Engine | |Application |

|
|| Data UE Al Model Training Results Al Model
1| Source| |Application| | Training Engine | |Delivery Function||Access Function!

Initialisation & establishment

1: Trigger distributed learning
T
2: Select partially trained Al model

Identify selected
partially trained Al model

4: Establish UE Al model,
delivery session

5: AI/ML model delivery

6: Pass UE AI/ML
model for training

input data

H B Al trai

ining |
|9: Establish training data delivery session

10: Training results data delivery|

1: Training aggregation ;

12: Updated model for delivel
(loop to step 5)

image18.png
5GAI-Aware Application

Al Data Session
Handler

NEF

PCF

-
L

S5GAI AF

Al Capability
Manager

Al Capability
Manager

Al Data Handler

Alinference
Engine

AlData
Access/Delivery

5GAI AS

Alinference
Engine

5GAI dlient

5GAI

——5GMS Scope:

UE

565

External

— — —5GS Scope— — -

-Out of scope~

AlData
Access/Delivery

5GAI Application
Provider

DN

image19.emf

5GAI-Aware
Application

5GAI
Client

AI Data Session
Handler

AI Data
Handler

5GAI AF 5GAI AS 5GAI
Application Provider

1: 5GAI provisioning

2: Service Access Information acquisition

3: AI media capabilities and functions discovery
Capability discovery

4: Request AI split inference

5: Negotiate splitting the AI inference process
Negotiation

6: Acknowledge the split and providing AI data access info

7: Acknowledge the split configuration

8: Request starting
AI data delivery

9: Request starting AI data delivery

5GMS delivery pipelines or other defined data pipelines
10: UE AI Model Delivery Pipelines

11: Create and initialize
UE AI inference runtime

12: Create and initialize
network AI inference runtime

5GMS delivery pipelines or other defined data pipelines
13: Intermediate Data Delivery Pipelines

Split inference between the UE and the network
14: Split inference processing

Split AI Data Session

15: UE AI status reporting

16: Network AI status reporting

17: Network status/network AI status report

18: Media status report

19: Update split configuration &
model delivery pipelines

https://gitlab.com/msc-generator v7.3.1

5GAI-Aware

Application

5GAI

Client

AI Data Session

Handler

AI Data

Handler

5GAI AF 5GAI AS 5GAI

Application Provider

1: 5GAI provisioning

2: Service Access Information acquisition

3: AI media capabilities and functions discovery

C

apa

bi

li

t

y

di

sco

v

er

y

4: Request AI split inference

5: Negotiate splitting the AI inference process

N

ego

t

i

a

ti

on

6: Acknowledge the split and providing AI data access info

7: Acknowledge the split configuration

8: Request starting

AI data delivery

9: Request starting AI data delivery

5GMS delivery pipelines or other defined data pipelines

10: UE AI Model Delivery Pipelines

11: Create and initialize

UE AI inference runtime

12: Create and initialize

network AI inference runtime

5GMS delivery pipelines or other defined data pipelines

13: Intermediate Data Delivery Pipelines

Split inference between the UE and the network

14: Split inference processing

Split AI Data Session

15: UE AI status reporting

16: Network AI status reporting

17: Network status/network AI status report

18: Media status report

19: Update split configuration &

model delivery pipelines

https://gitlab.com/msc-generator v7.3.1

image1.png
~

5G

3GPP

TR

26

.

927

V

0

.

4

.

0

(

202

3

-

0

6

)

Technical

Report

3rd Generation Partnership Project;

Technical Specification Group

Services and System Aspects

;

Study on

Artificial Intelligence and Machine Learning in 5G

media services

;

(

Release 1

8

)

The present document has been developed within the 3

rd

Generation Partnership Project (3GPP

TM

) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP

Organizational Partners and shall not be implemented.

This Report is provided for future development work within 3GPP

only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and Reports for implementation of

the 3GPP

TM

system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP TR 26 . 927 V 0 . 4 . 0 (202 3 - 0 6)

Technical Report

3rd Generation Partnership Project; Technical Specification Group Services and System Aspects ; Study on Artificial Intelligence and Machine Learning in 5G media services ; (Release 1 8)

The present document has been developed within the 3 rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

