[bookmark: clause4][bookmark: _Toc106015849][bookmark: _Toc106098487][bookmark: _Toc187404600][bookmark: _Toc199342387][bookmark: _Toc106015851][bookmark: _Toc106098489][bookmark: _Toc180163483][bookmark: _Toc180163945][bookmark: _Toc180164178][bookmark: _Toc183521304]3GPP TSG-SA5 Meeting #162	S5-253334
Gothenburg, Sweden, 25 – 29 August 2025	

Source:	Nokia
[bookmark: _Hlk202946121]Title:	Pseudo-CR on CCL Scope conflicts Coordination NRM
Document for:	Approval
Agenda item:	6.19.4.1
Spec:	3GPP TS28.567
Version:	0.3.0
Work Item:	Closed Control Loop Management

Comments
[bookmark: _Hlk191458910]This pCR is to add NRM and procedures for CCL Scope conflicts Coordination as was agreed in the CCL study in TR28. 867

Proposed Changes
* * * First Change * * * *
[bookmark: _Toc185244010][bookmark: _Toc195269437][bookmark: _Toc199342384][bookmark: _Hlk187766770]
4.3.4	CCL scopes
The scope is the set of managed objects, their properties and network outcomes that are associated with the CCL for measurement, configuration and impact. The scopes for the different CCLs can be managed by the MnS consumer, i.e. they can be defined on to the CCL or revised by the MnS consumer. A CCL may have four scopes: the measurement scope, target (impact) scope, control scope and impact scope, defined as follows:
-	measurement scope: the measurement scope is where related measurements are collected-	control scope: control scope is the scope to which the CCL's actions are desired to be applied, e.g., the set of network functions and attributes that are the planned candidates to be modified by the CCL. The control scope is also called the action-space as it describes the set of candidate actions that the CCL can (is configured to be able to) execute.
-	target scope: which relates to purpose of the CCL
-	desired impact scope: the scope to which the CCL's actions are desired to have influence, e.g., it is both the network functions and attributes as well network outcomes like coverage areas that are planned to be influenced by the configuration’s actions of the CCL.
-	control scope: control scope is the scope on which the CCL executes actions, e.g., the set of managed objects which the CCL configures
-	Monitored scope: Monitored scope is the scope which a CCL monitors to see if there are conflicts.
-	impact scope: impact scope is the scope to which the CCL's actions have influence, e.g., it is both the network functions and attributes as well network outcomes like coverage areas that are influenced by the configuration actions of the CCL. This is different from the measurement scope, i.e. the scope where the CCLs measure and control scope, i.e. the scope where they act.
The impact scope may be known and bounded or unbounded and thus unknown - see figure 4.3.4-1. The bounded scope indicates that the area known by the CCL is the scope where its actions will impact. The unbounded impact-scope is the full network scope where the CCL’s action will have impact, but the CCL does have information that its action will have that impact to that scope.

Figure 4.3.4-1: Exemplification of known/bounded vs. unknown/unbounded impact scope: CCL A takes action in cell A expecting impact in cells A, B, C and D. if the impact is strictly in cells A, B, C and D, then the impact scope is known and bounded. However, if the impact scope includes cells E and F, then for the CCL, the true impact scope is unknown and thus unbounded.

* * * Second Change * * * *
[bookmark: definitions]

[bookmark: _Toc106015864][bookmark: _Toc106098502][bookmark: _Toc187404647]
[bookmark: _Toc195269471][bookmark: _Toc199342438]6	Model
[bookmark: _Toc106098503][bookmark: _Toc187404648][bookmark: _Toc195269472][bookmark: _Toc199342439][bookmark: _Toc106015865][bookmark: _Toc106015868][bookmark: _Toc106098506][bookmark: _Hlk134605339][bookmark: _Toc178169212]6.1	Imported and associated information entities
TBD
[bookmark: _Toc106015866][bookmark: _Toc106098504][bookmark: _Toc187404649][bookmark: _Toc195269473][bookmark: _Toc199342440]6.1.1	Imported information entities and local labels
TBD
[bookmark: _Toc187404650][bookmark: _Toc195269474][bookmark: _Toc199342441]6.1.2	Associated information entities and local labels
TBD
[bookmark: _Toc195269475][bookmark: _Toc199342442][bookmark: _Toc185244074]6.2	Class diagram
[bookmark: _Toc185244075][bookmark: _Toc195269476][bookmark: _Toc199342443]6.2.1	Relationships

[image: A diagram of a computer program

AI-generated content may be incorrect.]
Figure 6.2.1-1: Relations for common information models for CCLmanagement
Editor’s Note: The handling of Goal, targets or objectives for the general closed control loops is FFS
[image: Generated by PlantUML]
Figure 6.2.1-2: NRM fragment for conflict management and Coordination entity

[bookmark: _Toc113634467][bookmark: _Toc185244076][bookmark: _Toc195269477][bookmark: _Toc199342444]6.2.2	Inheritance
[image: Generated by PlantUML]
Figure 6.2.2-1: Inheritance Hierarchy for Closed Control Loops and for conflict management and Coordination entity
[bookmark: _Toc113634468][bookmark: _Toc185244077][bookmark: _Toc195269478][bookmark: _Toc199342445]6.3	Class definitions
[bookmark: _Toc185244078][bookmark: _Toc195269479][bookmark: _Toc199342446]6.3.1	ClosedControlLoop
[bookmark: _Toc199342447]6.3.1.1	Definition
This IOC represents the closed control loop. It represents the information for controlling and monitoring a CCL associated with a stated scope.
The ClosedControlLoop is name-contained by SubNetwork or ManagedElement and is associated with a CCLreport that contains reported information about the CCL. Accordingly, the report about a CCL can exist even when the CCL is deleted.
The capabilities of the CCL are contained in one or more CCLPurposes that describe what the CCL is capable of doing or can be configured to do - including information the network resources for which the CCL can execute decisions and actions. So, the ClosedControlLoop is associated with one or more CCLPurpose(s) that indicate(s) a list of characteristics that describe what a CCL can/is expected to be able to do. The purpose describes the type of functionality that can be executed including problem recovery and fault management .
The operational information about the CCL is contained in the CCLScope(s), so the ClosedControlLoop is associated with one or more CCLScope(s). The CCLScope defines what the CCL has been configured to read, evaluate, control, etc.
A CCL can be created from several components that are dynamically composed from a set of management services, each representing one component of the CCL. The attribute cCLComponents indicates the list of components which are combined to create a CCL.
[bookmark: _Hlk198724234]The attribute identifies the type of CCL that needs to be composed. The specific details of the purpose that is fulfilled by the CCL are then written into the CCL purpose.

[bookmark: _Toc199342448]6.3.1.2	Attributes
The CCLControlLoop IOC includes attributes inherited from Top IOC (defined TS 28.622[5]) and the following attributes:
Table 6.3.1.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	cCLComponentsInfo
	O
	T
	T
	F
	T

	operationalState
	M
	T
	F
	F
	T

	administrativeState
	M
	T
	T
	F
	T

	cCLPriority
	M
	T
	T
	F
	T

	cCLComponentList
	O
	T
	T
	T
	T

	cCLType
	O
	T
	T
	T
	T

	cCLActionTrigger
	M
	T
	T
	F
	T

	desiredBehavior
	O
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	cCLPurposeRefList
	M
	T
	T
	T
	T

[bookmark: _Toc199342449]6.3.1.3	Attribute constraints
None
[bookmark: _Toc199342450]6.3.1.4	Notifications
The common notifications defined in clauses 6.1 are valid for this IOC, without exceptions.

[bookmark: _Toc199342451]6.3.2	CCLScope
[bookmark: _Toc199342452]6.3.2.1	Definition
It indicates a scope of a CCL. It may be the measurement scope, control scope or impact scope.
The CCLScope includes the attribute scopeType that indicates the type of scope that represented by the particular scope instance.
The ScopeDescription attribute describes the scope that is instantiated or being informed about. The objectParameters lists the parameters on the objects in the ScopeDescription which are part of the scope.
The scopeOutcomes attribute indicates the set of outcomes desired for a given scope.
[bookmark: _Toc199342453]6.3.2.2	Attributes
The CCLScope IOC includes attributes inherited from Top IOC (defined TS 28.622[5]) and the following attributes:
Table 6.3.2.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	scopeType
	OM
	T
	F
	F
	T

	ScopeDescription
	M
	T
	F
	F
	T

	objectParameters
	M
	T
	F
	F
	T

	scopeOutcomes
	M
	T
	T
	 F
	T

[bookmark: _Toc199342454]6.3.2.3	Attribute constraints
None.
[bookmark: _Toc199342455]6.3.2.4	Notifications
The common notifications defined in clauses 6.1 are valid for this IOC, without exceptions.

[bookmark: _Toc199342456]6.3.3	CCLReport
[bookmark: _Toc199342457]6.3.3.1	Definition
This class represents the reported outcomes on a CCL instance, e.g., the information about the outcomes on one or the executing of the CCL. An CCLReport is contained by the entity containing the CCL, since the CCLReport can exist beyond the life of the CCL on which it is reporting.
There is one CCLReport per CCL for an observation time. The content of the CCLReport may be different for different observation time.
[bookmark: _Toc199342458]6.3.3.2	Attributes
The CCLReport IOC includes attributes inherited from Top IOC (defined TS 28.622[5]) and the following attributes:
Table 6.3.3.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	FaultManagementCCLReport
	CM
	T
	F
	F
	T

	Attributes related to role
	
	
	
	
	

	
	
	
	
	
	

[bookmark: _Toc199342459]6.3.3.3	Attribute constraints
Table 6.3.3.3-1
	Name
	Definition

	FaultManagementCCLReport
	Condition: fault management is supported by CCL

[bookmark: _Toc199342460]6.3.3.4	Notifications
The common notifications defined in clauses 6.1 are valid for this IOC, without exceptions.

[bookmark: _Toc199342461]6.3.4	ConflictManagementAndCoordinationEntity
[bookmark: _Toc199342462]6.3.4.1	Definition
This defines the conflict management functionality.
The IOC represents the ConflictManagementAndCoordinationEntity that is responsible for coordinating closed control loops to avoid, detect or resolve CCL conflicts.
The ConflictManagementAndCoordinationEntity is name-contained by SubNetwork or ManagedElement and is associated with one or more CCLs which the ConflictManagementAndCoordinationEntity shall be responsible for coordinating.
[bookmark: _Toc199342463]6.3.4.2	Attributes
Table 6.3.4.2-1
	Attribute name
	Support Qualifier
	isReadable
	isWritable
	isInvariant
	isNotifyable

	cCLScopecoordinationCapability
	M
	T
	T
	F
	T

	coordinatedCCLsScopes
	M
	T
	T
	F
	T

	cCLActionConflictsHandling
	M
	T
	T
	F
	T

	Attribute related to role
	
	
	
	
	

	
	
	
	
	
	

[bookmark: _Toc199342464]6.3.4.3	Attribute constraints
None
[bookmark: _Toc199342465]6.3.4.4	Notifications
The common notifications defined in clauses 6.1 are valid for this IOC, without exceptions.

[bookmark: _Toc199342466]6.3.5	FaultManagement <<IOC>>
[bookmark: _Toc199342467]6.3.5.1	Definition
This IOC represents the Fault Management CCL purpose, which a list of attributes that describe the capabilities of the Fault Management CCL.
[bookmark: _Toc199342468]6.3.5.2	Attributes
Table 6.3.5.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	FaultManagementAlarmIdList
	M
	T
	T
	F
	F

	FaultManagementTimeWindow
	M
	T
	T
	F
	F

	FaultManagementBackUpObjectRequirement
	O
	T
	T
	F
	F

	FaultManagementIsolateObjectRequirement
	O
	T
	T
	F
	F

	clearUserId
	CM
	T
	T
	F
	F

[bookmark: _Toc199342469]6.3.5.3	Attribute constraints
Table 6.3.5.3-1
	Name
	Definition

	clearUserId
	These attributes shall be supported for Fault Management CCL that clears ADMC alarms, as specified in TS 28.111 [4].

[bookmark: _Toc199342470]6.3.5.4	Notifications
None.

[bookmark: _Toc199342471]6.3.6	CCLComponentInfo <<dataType>>
[bookmark: _Toc199342472]6.3.6.1	Definition
This data type represents a single purpose that describes what a CCL can do. The purpose is alist of characteristics that describe the capabilities of the CCL.
[bookmark: _Toc199342473]6.3.6.2	Attributes
Table 6.3.6.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	cCLComponentId
	M
	T
	F
	F
	T

	cCLSteps
	M
	T
	F
	F
	T

[bookmark: _Toc199342474]6.3.6.3	Attribute constraints
None.
[bookmark: _Toc199342475]6.3.6.4	Notifications
The common notifications defined in clauses 6.1 are valid for this IOC, without exceptions.

[bookmark: _Toc199342476]6.3.7	CCLComponent <<dataType>>
[bookmark: _Toc199342477]6.3.7.1	Definition
This dataType defines a CCL component that can be used or has been used to dynamically compose a closed control loop by the MnS consumer.
[bookmark: _Toc199342478]6.3.7.2	Attributes
The CCLComponent IOC includes attributes inherited from Top IOC (defined TS 28.622[5]) and the following attributes:
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	cCLComponentRole
	M
	T
	T
	T
	T

	cCLComponentIdentification
	M
	T
	T
	F
	T

[bookmark: _Toc199342479]6.3.7.3	Attribute constraints
None
[bookmark: _Toc199342480]6.3.7.4	Notifications
The common notifications defined in subclause 4.1.2.5 are valid for this IOC, without exceptions or additions.

[bookmark: _Toc199342481]6.3.8	FaultManagementCCLReport <<dataType>>
[bookmark: _Toc199342482]6.3.8.1	Definition
This data type represents the Fault Management CCL report, which is a list of attributes that describe the result of the Fault Management.
[bookmark: _Toc199342483]6.3.8.2	Attributes
Table 6.3.8.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	GeneratedAlarmResultList
	M
	T
	F
	T
	T

	FaultManagementCCLReportTime
	M
	T
	F
	T
	T

[bookmark: _Toc199342484]6.3.8.3	Attribute constraints
None.
[bookmark: _Toc199342485]6.3.8.4	Notifications
None.

[bookmark: _Toc199342486]6.3.9	GeneratedAlarmResult <<dataType>>
[bookmark: _Toc199342487]6.3.9.1	Definition
This data type represents the alarm result information generated by the CCL, which is a list of attributes that describe the result of the Fault Management for each alarm.
[bookmark: _Toc199342488]6.3.8.2	Attributes
Table 6.3.9.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	alarmId
	M
	T
	F
	T
	F

	alarmClearedStatus
	M
	T
	F
	T
	F

	identifiedRootCauseInformation
	M
	T
	F
	T
	F

	enhancedCorrelationInformation
	M
	T
	F
	T
	F

[bookmark: _Toc199342489]6.3.9.3	Attribute constraints
None.
[bookmark: _Toc199342490]6.3.9.4	Notifications
None.

[bookmark: _Toc199342491]6.3.10	CCLPurpose <<dataType>>
[bookmark: _Toc199342492]6.3.10.1	Definition
This data type represents a single purpose that describes what a CCL can do. The purpose is alist of characteristics that describe the capabilities of the CCL.
[bookmark: _Toc199342493]6.3.10.2	Attributes
Table 6.3.10.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	
	
	
	
	
	

	Attributes related to role
	
	
	
	
	

	
	
	
	
	
	

[bookmark: _Toc199342494]6.3.10.3	Attribute constraints
None.
[bookmark: _Toc199342495]6.3.10.4	Notifications
The common notifications defined in clauses 6.1 are valid for this IOC, without exceptions..

[bookmark: _Toc199342496]6.3.11	CCLScopeCoordinationCapability <<dataType>>
[bookmark: _Toc199342497]6.3.11.1	Definition
This data type represents the information and a capability of the ConflictManagementAndCoordinationEntity for Coordinating CCL instances to handle different CCL conflicts.
The attribute coordinatedScopeTypes indicates the type of scopes for which the coordination is undertaken. The logic needed for coordinating different scopes is different so each set of scopes to be coordinated must be of the same scope. The ConflictManagementAndCoordinationEntity may have multiple CCLScopeCoordinationCapability(s) differentiated by the type of scope that is being coordinated.
The attribute toBeCoordinatedScope contains the set of CCL scopes that the coordinationEntity coordinates to ensure that they do not conflict. A CCL that requires its scopes to be evaluated for conflicts can add its scope into the list of coordinated scopes.
The attribute detectedScopeConflict indicates the list of conflicts that have been detected. Each conflict includes an indication for the type of conflict event, which in this case is ScopeConflict. It also has an indication for whether it is a potential conflict or an actual conflict that is observed.
The fullCoordinatedScopeSpace attribute indicates the full scope which is to be considered by the CoordinationEntity when selecting sub-allocations to different CCL instances.

[bookmark: _Toc199342498]6.3.11.2	Attributes
Table 6.3.11.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	cCLCoordinationCapabilityID
	M
	T
	T
	T
	T

	coordinatedScopeTypes
	O
	T
	F
	F
	T

	fullCoordinatedScopeSpace
	M
	T
	T
	T
	T

	toBeCoordinatedCCLScopes
	M
	T
	T
	T
	T

	detectedScopeConflicts
	M
	T
	F
	T
	T

[bookmark: _Toc199342499]6.3.11.3	Attribute constraints
None.
[bookmark: _Toc199342500]6.3.11.4	Notifications
The common notifications defined in clauses 6.1 are valid for this IOC, without exceptions.

[bookmark: _Toc199342501]6.3.12	CCLActionConflictsHandling <<datatype>>
[bookmark: _Toc43213063][bookmark: _Toc199342502]6.3.12.1	Definition
This defines the handling of CCL action conflict between the two existing CCLs.
[bookmark: _Toc199342503][bookmark: _Toc43213064]6.3.12.2	Attributes
Table 6.3.12.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	conflictInformation
	M
	T
	T
	F
	T

	conflictResolution
	M
	T
	T
	F
	T

	targetCCL
	M
	T
	F
	F
	T

[bookmark: _Toc43213065][bookmark: _Toc199342504]6.3.12.3	Attribute constraints
None
[bookmark: _Toc43213066][bookmark: _Toc199342505]6.3.12.4	Notifications
The common notifications defined in subclause 4.1.2.5 are valid for this IOC, without exceptions or additions.

[bookmark: _Toc199342506]6.3.A	ScopeConflict <<datatype>>
6.3.A.1	Definition
This data type represents the information on a scope conflict.
Each conflict includes an indication in ConflictType attribute for whether it is a potential conflict or an actual conflict that is observed.
The ConflictType indicates the type of conflict that has been observed, i.e., either a potential conflict or an actual conflict.	Comment by Pedro Henrique Gomes: Missing short explanation of the attributes.

6.3.A.2	Attributes
Table 6.3.A.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	conflictID
	M
	T
	T
	F
	T

	conflictingCCLs
	M
	T
	T
	F
	T

	conflictScope
	M
	T
	T
	F
	T

	ConflictType
	M
	T
	T
	F
	T

6.3.A.3	Attribute constraints
None
6.3.A.4	Notifications
The subclause 6.x of the <<IOC>> using this <<dataType>> as one of its attributes, shall be applicable.
6.3.13	ConflictInformation <<datatype>>
[bookmark: _Toc199342507]6.3.13.1	Definition
This defines the information related with a conflicting CCLs that have been detected.
[bookmark: _Toc199342508]6.3.13.2	Attributes
Table 6.3.13.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	conflictingCCLId
	M
	T
	T
	F
	T

	conflictingActions
	M
	T
	T
	F
	T

[bookmark: _Toc199342509]6.3.13.3	Attribute constraints
None
[bookmark: _Toc199342510]6.3.13.4	Notifications
The common notifications defined in subclause 4.1.2.5 are valid for this IOC, without exceptions or additions.

[bookmark: _Toc199342511]6.3.14	ActionConflictResolution <<datatype>>
[bookmark: _Toc199342512]6.3.14.1	Definition
This defines the information related with conflict resolution configured by the MnS Consumer.
[bookmark: _Toc199342513]6.3.14.2	Attributes
Table 6.3.14.2-1
	Attribute name
	S
	isReadable
	isWritable
	isInvariant
	isNotifyable

	conflictingCCLId
	M
	T
	T
	F
	T

	cCLGoalBreachPercentage
	M
	T
	F
	F
	T

[bookmark: _Toc199342514]6.3.14.3	Attribute constraints
None
[bookmark: _Toc199342515]6.3.14.4	Notifications
The common notifications defined in subclause 4.1.2.5 are valid for this IOC, without exceptions or additions.

[bookmark: _Toc199342516]6.4	Attribute definitions
[bookmark: _Toc199342517]6.4.1	Attribute properties
Table 6.4.1-1
	Attribute Name
	Documentation and Allowed Values
	Properties

	scopeType
	It indicates the type of scope that represented by the particular scope instance.

allowedValues: CCL_MEASUREMENT_SCOPE, CCL_TARGET_SCOPE, CCL_CONTROL_SCOPE, CCL_IMPACT_SCOPE

Editor’s Note: The allowed values will be revisited
	type: Enum
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	[bookmark: _Hlk202971857]ScopeDescription
	It indicates the description of the scope that is instantiated or being informed about. It is defined according to the ScopeDefinition in TS28.561

	type: ScopeDefinition
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	objectParameters
	It indicates the list of parameters on the objects in the ScopeDescription which are part of the scope. This applies when the scope is of type measurement scope or control scope.

allowedValues: string

	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	coordinationCapability
	It indicates a capability of a coordination entity to coordinate CCL conflicts
	type: CoordinationCapability
multiplicity: *
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	cCLCoordinationCapabilityID
	It indicates an identifier for a specific CCL conflicts coordination capability
	type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	closedControlLoopRefList
	It indicates a list of DN for ClosedControlLoop Instances.

allowedValues: N/A
	type: DN
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	cCLScopeCoordinationCapability
	It indicates a specific type of CCL scope assignment and conflict coordination capabilcity

	type: CCLScopeCoordinationCapability
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	coordinatedCCLsScopes
	It indicates the scopes of the CCL that are coordinated by the coordinationEntity

It is a pair <string_1, string_2 > where string_1 is the DN of a CCL being coordinated and string_2 the DN of that CCL’s CCLScope.
	type: pair <string, string >
multiplicity: 2 ..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	operationalState
	It indicates the operational state of the ClosedControlLoop instance. It describes whether the resource is installed and partially or fully operable (Enabled) or the resource is not installed or not operable (Disabled).

AllowedValues; Enabled/Disabled

allowedValues: "ENABLED", "DISABLED".
The meaning of these values is as defined in 3GPP TS 28.625 [14] and ITU-T X.731 [15].
	type: ENUM
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: Disabled
isNullable: False

	administrativeState
	It indicates the administrative state of the ClosedControlLoop instance. It describes the permission to use or the prohibition against using the ClosedControlLoop instance. The administrative state is set by the MnS consumer.

AllowedValues; Locked/Unlocked

allowedValues: "LOCKED", "UNLOCKED".
The meaning of these values is as defined in 3GPP TS 28.625 [14] and ITU-T X.731 [15].

	type: ENUM
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: Locked
isNullable: False

	cCLComponentsInfo
	It indicates information on the constituent components of a CCL.

allowedValues: N/A

	type: CCLComponentInfo
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	cCLComponentId
	It indicates the identifier of a CCL component. It is the DN of a object instantiated to act as a component of the CCL

	type: DN
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	cCLSteps
	It indicates the CCL steps or functionality that is accomplished by a CCL component.

allowedValues: DATA_COLLECTION, ANALYSIS, DECISION, EXECUTION

	type: Enum
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	FaultManagementAlarmIdList
	It describes the list of IDs of alarms to be managed by Fault Management CCL.

allowedValues: A list of alarmIds as specified in TS 28.111 [4], clause 7.4.1
	type: List
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	FaultManagementTimeWindow
	It describes the information of a time window (including start and end time) specified by the consumer for fault management to carry out troubleshooting and to clear the alarms.

allowedValues: timeWindow as defined in 3GPP TS 28.622 [5], clause 4.4.1
	type: TimeWindow
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: True

	FaultManagementBackUpObjectRequirement
	It describes whether to back-up the alarmed object is required by the consumer before fault management.

allowedValues: True, False
	type: Booelan
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	FaultManagementIsolateObjectRequirement
	It describes whether to isolate the alarmed object from interaction with other objects is required by the consumer before fault management.

allowedValues: True, False
	type: Booelan
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	clearUserId
	It carries the identity of the Fault Management CCL who is the consumer that invokes the clearAlarms operation.

allowedValues: clearUserId as defined in 3GPP TS 28.111 [4], clause 7.4.1

	type: string
multiplicity: 0..1
isOrdered: N/A
isUnique: N/A defaultValue: None
isNullable: False

	FaultManagementCCLReport
	It describes the Fault Management CCL report.

allowedValues: Not Applicable
	type: FaultManagementCCLReport
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	GeneratedAlarmResultList
	It describes the list of generated alarm results

allowedValues: A list of GeneratedAlarmResult
	type: List
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	GeneratedAlarmResult
	It describes the result for each alarmId listed in FaultManagemetAlarmIdList

allowedValues: Not Applicable
	type: GeneratedAlarmResult
multiplicity: 1..*
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	FaultManagementCCLReportTime
	It describes the time when the FaultManagementCCLReport is created.

allowedValues: DateTime as specified in TS 28.622 [5].
	type: DateTime
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	alarmId
	It identifies an AlarmRecord as specified in TS 28.111 [4]

allowedValues: A string as specified in TS 28.111 [4]
	type: string
multiplicity: 1
isOrdered: N/A
isUnique: N/A defaultValue: None
isNullable: False

	alarmClearedStatus
	It describes whether an alarm is cleared by the Fault Management CCL when the identified root cause is resolved.

allowedValues: True, False
	type: Booelan
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	identifiedRootCauseInformation
	It describes root cause information identified by the Fault Management CCL.

allowedValues: String
	type: string
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	enhancedCorrelationInformation
	It describes the list of correlated alarm Ids identified by the Fault Management CCL

allowedValues: A list of alarmId
	type: List
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	cCLActionConflictsHandling
	This defines the handling of CCL action conflict between the two existing CCLs.
	Type: cCLActionConflictsHandling
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	conflictInformation
	This defines the information related with a conflicting CCL.
	Type: ConflictInformation
multiplicity: *
isOrdered: True
isUnique: False
defaultValue: None
isNullable: False

	conflictResolution
	This defines the information related with conflict resolution.
	Type: ConflictResolution
multiplicity: *
isOrdered: True
isUnique: False
defaultValue: None
isNullable: False

	targetCCL
	The identification of the CCL that need to be deleted or updated to resolve conflict. This will be decided as per the information ConflictResolution.
	Type: Dn
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	conflictingCCLId
	This indicates the CCL identification
	Type: Dn
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	conflictingActions
	This provides the set of actions that have been taken by the CCL as part of the Execute step.
	Type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	cCLPriority
	This provides the priority of the CCL. This will be the numerical value between 1 to 10, with 1 being the least priority.
	Type: String
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	cCLMetricBreachPercentage
	It defines the breach percentage per metric in terms of how bad the metric(s) is breached. For example, if the metric of guaranteed throughput is 200mbps and the actual throughput is coming to be 100mbps then the breach percentage would be 50%. The CCL that have higher percentage of breach will be prioritized
	Type: Integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	cCLComponentList
	It indicates the list of components ating as steps of the CCL, each either a MnF or a MnS producer whose services can be part of the CCL. The cCLComponent may have a role among MONITOR; ANALYSIS; DECISION; EXECUTION. Or OTHER. OTHER. Is used for example in the caes where a components fulfile more than 1 role or where the role can be siml y described by the four options.

The cCLComponents are sequenced, i.e., cCLComponents is an ordred list. For example, if there are 2 steps that contribute to the analysis role, it is necessary to show how those steps are sequenced. The order in which they are listed indicates the order in which their services should be chained to complete the CCL
	type: CCLComponent
multiplicity: 1..*
isOrdered: True
isUnique: True
defaultValue: None
isNullable: False

	cCLType
	It indicates a type or Category of CCL that is to be instantiated or dynamically composition. It indicates the kind of capability that will be accomplished by the CCL instance, e.g. ENERGYOPTIMIZATION, SLICEASSURANCE, etc.

The specific details, characteristics and behavior of a CCL for a given CCL type are then written into the CCL purpose.
Editor’s Note: Documentation and Allowed values will be revisited
	type: String
multiplicity: 1
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	cCLComponentRole
	It indicates a role accomplished by CCL component.

AllowedValues: MONITOR; ANALYSIS; DECISION; EXECUTION, OTHER. Is used for example in the caes where a components fulfile more than 1 role or where the role can be siml y described by the four options
	type: Enum
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	cCLComponentIdentification
	It indicates the entity accomplishing the component.

It may be the the DN of an MOI or the combination of URI and DN that can be used to fulfil that role.

	Type: String
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	cCLActionTrigger
	This defines the criteria/conditions under which the CCL is allowed to take actions.
	Type: CCLTrigger
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	desiredBehavior
	This will define the corresponding behavior of the CCL. The behaviors can be represented by an ENUM to include:
-	DECISION_ACTIVATION: The CCL executes the recommendations that it derives on to the network.
-	NOTIFY_RCOMMENDATION: The CCL starts processing input to derive recommendations but without the corresponding actions executed on the network. Instead, the recommendation is notified to the consumer who then considers whether it should be applied or not.
-	DO_NOTHING: do not do anything.
	Type: ENUM
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	scopeOutcomes
	It indicates the set of outcomes to be coordinated for a given scope as part of scope coordination. It is a pair <A,B> where A is the metric and B the desired outcome on that metric.
	Type: pair<string, Real>
multiplicity: 1...*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	conflictID
	It identifies a conflict event

	type: Integer
multiplicity: 1
isOrdered: N/A
isUnique: N/A defaultValue: None
isNullable: False

	conflictingCCLs
	It identifies the set of CCLs that are conflicting

	type: DN
multiplicity: 2
isOrdered: False
isUnique: True defaultValue: None
isNullable: False

	conflictScope
	It indicates the scope for which two or more CCLs are conflicting.
	Type: ScopeDefinition
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	ConflictType
	It indicates the type of conflict that has been observed, i.e., either a potential conflict or an actual conflict.
allowedValues: POTENTIAL_CONFLICT; ACTUAL_CONFLICT
	Type: ENUM
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	coordinatedScopeTypes
	It indicates the types of scopes under consideration for coordination by a scope coordination functionality.
allowedValues: CCLMEASUREMENTSCOPE, CCLTARGETSCOPE, CCLCONTROLSCOPE, CCLIMPACTSCOPE, CCLMONITOREDSCOPE
	Type: ENUM
multiplicity: 1 ..5
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	fullCoordinatedScopeSpace
	It indicates the full scope which is to be considered by the CoordinationEntity when selecting sub-allocations to different CCL instances.
	Type: Scope
multiplicity: 1
isOrdered: N/A
isUnique: N/A
defaultValue: None
isNullable: False

	toBeCoordinatedCCLScopes
	It indicates the list of scopes which the coordinatinEntity is responsible for coordinating to ensure they have no conflicts. A CCL that requires its scope to be evaluated for conflicts can add its scope set into the list of scopes sets
	Type: CCLScope
multiplicity: *
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

	detectedScopeConflicts
	It indicates the list of scope conflicts that are detected by the coordinationEntity. Each entry is of type: scope conflict
	Type: ScopeConflict
multiplicity: 1..*
isOrdered: False
isUnique: True
defaultValue: None
isNullable: False

[bookmark: _Toc106015915]
* * * Second Change * * * *

[bookmark: _Toc195269480][bookmark: _Toc199342518]7	Procedures
[bookmark: _Toc199342519]7.1	Procedure for conditional trigger/instantiation of CCLs
[image: A diagram of a product

AI-generated content may be incorrect.]

Figure 7.1-1: Procedure and interactions for conditional trigger/instantiation of CCLs
Step 0: There exists an object exposing the MnS producer responsible for instantiating CCLs. This object may be represented by a subnetwork or managed element.
Step 1: The MnS consumer creates on the MnS producer responsible for instantiating CCLs the set of conditios to be evaluated for instantiation of the CCL. These conditions are created as an instance of TriggerConditionDescriptor defned in 28.572. TriggerConditionDescriptor describes the conditions that should be evaluated including performance, provisioning and fault management conditions. The performance conditions includes managed object, measurement/KPI name and the trigger value. The provisioning conditions includes the managed object, location, event and time of the provisioning events. The fault conditions includes managed object, alarmSeverityThreshold and alarmTypeThreshold.
Step 2: The MnS producer monitors the network to detect when the conditions defined in TriggerConditionDescriptor evaluate to TRUE.
Step 3: If conditions in TriggerConditionDescriptor evaluate to TRUE, the MnS producer instantiates the CCL.
Step 4: For the instantiated CCL, the MnS producer may notify the conditions that triggered the CCL.

[bookmark: _Toc199342520]7.2	Procedure for conditional composition of CCLs
[image: Generated by PlantUML]

Figure 7.2-1: Procedure and interactions for conditional composition of CCLs
Step 0: There exists an object exposing the MnS producer responsible for instantiating CCLs. This object may be represented by a subnetwork or managed element.
Step 1: The MnS consumer creates on the MnS producer responsible for instantiating CCLs the CCL composition operations desription which contains the details on the provisioning actions to be undertaken – in this case the operations for composing the CCL. These may include
- createMOI operations for instantiatng the objects to be used as components of the closd control loop, e.g., a PMJob to be used to collect data
- modifyMOI operations for configuring the instantiated components to enable thenm oprate as a single loop, e.g., to configure te PMJob to delvier data to an analytics sinstance
Step 2: The MnS consumer creates on the MnS producer responsible for instantiating CCLs the set of conditios to be evaluated fot composing the CCL. Thse conditions are created as an instance of TriggerConditionDescriptor defned in 28.572. TriggerConditionDescriptor describes the conditions that should be evaluated including performance, provisioning and fault management conditions
Step 3: The MnS producer monitors the network to detect when the conditions defined in TriggerConditionDescriptor evaluate to TRUE.
Step 4: If conditions in TriggerConditionDescriptor evaluate to TRUE, the MnS producer triggers execution of CCL composition operations.
Step 5: For the triggered CCL composition, the MnS producer may notify the conditions that triggere dteh composition or the composed CCL.
Step 6: The MnS producer executes the CCL composition operations through interaction with other management functions and services. When the composition is complete, the MnS producer may notify the MnS consumer of composed CCL.

[bookmark: _Toc199342521]7.3	CCL Performance Monitoring
When the PA (Performance Assurance)MnS consumer notices that a slice or network performance is degrading, it may require to know information about available CCLs that have the goals related to this performance degradation.This may imply that the performance of the related CCL is not as expected. This requires performance management to be done on the available CCL including further actions such as evaluating and updating closed control loops. The metrics for assessing performance of CCLs, for example, total number of occurrences of a goal breach, time taken by CCL to meet a breached goal, total number of conflicts occurred by a CCL are defined in clause 8. A procedure for performance management of CCLs involving these performance metrics is described below

Figure 7.3-1: Performance monitoring procedure for a closed control loop

Step 1. PA/CCL MnS consumer notices that a certain performance metric of a SLS or a network starts degrading.
Step 2. PA/CCL MnS consumer sends getMOIAttributeRequest message to PA/CCL MnS producer for getting information about all CCLs attributes.
Step 3. PA/CCL MnS producer provides this information of all CCLs to the consumer in getMOIAttributeResponse message.
Step 4. PA/CCL MnS consumer identifies the CCL (n) which is responsible for maintaining the performance of slice or network.
Step 5. PA/CCL MnS consumer sends createMOI(PerfMetricJob) request to PA/CCL MnS producer for obtaining status of following performance metrics for that particular CCL(n) as defined in clause 8 - TotalAssuranceGoalBreach, TimeCorrectiveGoalMeet, TotalCclConflicts_Filter.
Step 6. PA/CCL MnS producer provides requested performance metric values via createMOI() Response message to PA/CCL MnS consumer.
Step 7. PA/CCL MnS consumer has two choices – either to update the existing CCL n (of step 4) to achieve the desired goal or to create a new CCL for the same. If PA/CCL MnS consumer chooses to modify an existing CCL, it sends a modifyMOIAttributes request message for that CCL or it can also update by sending changeMOIs request message to PA/CCL MnS producer.
Step8. Accordingly, PA/CCL MnS producer sends modifyMOIAttributes Response or changeMOIs response message to PA/CCL MnS consumer for the updated attributes of CCL n.
Step9. If PA/CCL MnS consumer chooses to create a new CCL for the desired goal, it does so by sending createMOI Request message to PA/CCL MnS producer.
Step10. PA/CCL MnS producer provides createMOI() Response message for the newly created CCL MOI to PA/CCL MnS consumer.
[bookmark: _Toc187395039][bookmark: _Toc199342522]
7.4	CCL decision escalation
To enable escalation, there has to be entities to which decision can be escalated, called escalation recipients. These are mainly closed control loops but other decision makers, e.g. AIML inference functions could be used as escalation recipients. The CCL which wishes to escalate a decision is named an escalator CCL.
To enable escalation, each CCL contains an attribute identifying an entity acting as an escalation recipient to which a decision is escalated. The CCL also contains an attribute for defining the condition that triggers the escalation. For example, the CCL may trigger escalation when its level of confidence in the derived decision is below some threshold, in which case the confidence threshold is the condition for triggering the escalation. The confidence threshold attribute enables the CCL to autonomously make decisions for each situation and context based on its computed confidence level in the given situation. If the confidence level is lower than the confidence threshold the decision is escalated otherwise the decision is executed.
[image: Generated by PlantUML]
Figure 7.4-1: Procedure and interactions for CCL decision escalation
Step 0. The escalator CCL and the escalation recipient are composed, configured and instantiated.
Step 1. The MnS consumer configure the escalator CCL with information about the conditions under which to escalate and when to escalate to (the escalation recipient). The escalator CCL can the trigger escalation either on its own or based on extra information form the Mns consumer.
Step 2. The escalator CCL executes analysis and decision making for a scenario. If the escalator CCL is confident with its decision it executes as normal
Step 3. The escalator CCL detect the need to escalate, e.g., for the case where it is not confident with its decision, the lack of confidence is the indicator of a scenario that should be escalated.
Step 4. When a CCL requires an escalation, escalator CCL instantiates a request for escalation on the escalation recipient.. The escalation request includes:
-	An attribute for proposed CM change as a plan containing the configuration management changes that has been proposed by the escalator CCL.
-	An attribute for the context and conditions describing decision constraints observed by the escalating CCL in making the decision(s).
Step 5. Based on the information in the escalation request, the capabilities of the escalation recipient as well as its observations of the evaluated network state, the escalation recipient decides whether it can undertake the escalation or not.
Step 6. The escalation recipient can notify (send an acceptane of) the escalation request.
Step 7. For an accepted escalation request, the escalation recipient derives an outcomes for the request
Step 8. The escalation recipient provides the outcomes to the escalator CCL, by writing it into an escalation outcome attribute on the escalation recipient. The outcome may then be written into an equivalent attribute on the escalator CCL, i.e., the escalator CCL contains an attribute for the escalation outcome to which the escalation recipient writes its computed escalation outcome. The escalation recipient contains an attribute for an escalation outcomes report in which it writes the derived outcomes for each corresponding escalation request. This can then be notified to the escalator CCL which subsequently reads it to obtain the recommendations.
The escalation outcome indicates whether the escalator CCL should take any action and what that action is. Accordingly, it contains an ENUM attribute to indicate what should be done by the escalator CCL, with the values:
-	"DONOTHING"- indicating that the escalator CCL does not need to take any action, i.e. the escalation recipient is addressing the scenario.
-	"APPLYACTION"- indicating that the escalator CCL should apply a specific set of actions proposed by the escalation recipient. The action is written into a proposed-actions attribute of the escalation outcome, which is the type plan according to TS 28.572[6].
-	"APPLYGUIDANCE"- indicating that the escalator CCL should compute a new CM change based on the guidance from the escalation recipient. The guidance is written into the proposed-actions attribute.

[bookmark: _Toc199342523][bookmark: _Toc177119017][bookmark: _Toc177138598][bookmark: _Toc180163424][bookmark: _Toc180163887][bookmark: _Toc180164122][bookmark: _Toc183613928][bookmark: _Toc187404637]7.5	CCL-impact assessment and metric conflicts resolution
A CCL (called the actor-CCL) may not know the full scope that its actions will impact. And this may also not be known by the CCL coordination entity, In that case, the impact can be collected from the entities that have been affected by the CCL’s actions - jointly called impacted entities. The CCL contains an attribute, called executedAction attribute, which contains information indicating that an action has been taken that may affect the other CCLs (thus requesting feedback on how much impact there has been); and the CCL-action-impact time indicating the time when the affected entities should provide feedback. Any entity which may be impacted by the CCL actions (e.g. e.g. the CCL coordination entity or other CCLs) subscribes to be notified of changes to the executedAction and the related CCL-action-impact time.
After an action, the CCL updates the executedAction so that notifications are sent to the subscribed entities to indicate that if the entity is affected, it should provide its feedback on the effect in a time not exceeding the CCL-action-impact time. The notification may also be sent to the CCL coordination entity which then notifies that respective affected entities, e.g. other CCLs or other management functions.
The Impacted entity computes its observed impact in form of an index, called the Action Quality Indicator (AQI), that describes and quantifies the observed impact, i.e. it indicates the degree to which the action was good or bad to their objectives. The Action Quality Indicator is an integer in the range [0,10] where "0" indicates that the action was completely unacceptable and should never be reused in that context while "10" indicates that the action had very good outcomes for the reporting Impacted entity (e.g. the affected CCL). An index is used instead of sending specific metrics measured by each Impacted entity because specific metrics would require the actor-CCL to understand all the different metrics in exactly the same way as the Impacted entities do, which is not guaranteed to always be true. The AQI is specific to each CCL and to each scenario thar the CCL evaluates - since it is used to check how good or bad an action was for that CCL in that scenario. Accordingly, its computation would vary depending on the CCL and scenario but can be computed in a uniform way as a weighted sum of normalized KPIs) of that CCL.
[image: Generated by PlantUML]

Figure 7.5-1: CCL-impact assessment and actual metric-value conflicts resolution
Step 0. The set of CCLs are composed, configured and instantiated.
Step 1 The CCLs register their scopes of interest to the coordination entity including the scopes where they take measurements, take control actions as well as where their actions are expected to impact. Where applicable, the scope have also been coordinated to ensure there are no conflicts for desired impacted scopes, the desired outcomes on the impacted scopes, cross impacts between measurement and control scopes.
Step 2. The acting CCL derives and executes an action plan onto the network.
Step 3. After an action, the CCL updates the executedAction so that notifications are sent to the CCL coordination entity to indicate that if an entity is affected, it should provide its feedback on the effect in a time not exceeding the CCL-action-impact time.
Step 4. The CCL coordination entity then notifies that respective affected entities, e.g. other CCLs or other management functions
Step 5. The impacted entity collects information on its metrics, (e.g., a using PM job), based on which, it computes its observed impact in form of an index, called the Action Quality Indicator (AQI), that describes and quantifies the observed impact, i.e. it indicates the degree to which the action was good or bad to their objectives.
Step 6. The impacted entity sends the AQI to the coordination entity within the CCL-action-impact time that was notified by the actor-CCL. The Action Quality Indicator is delivered to the actor-CCL in one of two ways:
-	Impacted entity writes the AQI into an equivalent attribute called “reported AQIs” on the coordination entity, i.e., the coordination entity contains an attribute for the Action Quality Indicator to which each impacted entity writes its computed AQI. The reported AQIs attribute is a list to which each affected entity appends a value.
-	The impacted entity contains an attribute for an observed AQI in which it writes the computed AQI. This can then be notified to the coordination entity which subsequently reads it to obtain the AQI for that impacted entity.
Step 7. The coordination entity determines the aggregate impact on all affected entities. To enable the CCL coordination entity to determine how much impact actor-CCL had on all the other CCLs together, the CCL coordination entity aggregates the impact based on the reported Action Quality Indicators from the respective impacted entities. The AQI can be computed as a weighted average of the AQI sent by the individual impacted entities. The AQI is delivered to the actor-CCL in one of two ways:
-	The coordination entity writes the AQI into an equivalent attribute called “reported AQIs” on the actor-CCL, i.e., the actor-CCL contains an attribute for the Action Quality Indicator to which coordination entity writes the computed aggregate AQI.
-	The CCL coordination entity contains an attribute for the aggregate AQI in which the coordination entity writes the computed aggregate AQI that is computed from the AQIs reported by the multiple affected CCLs. On modifying this aggregate AQI attribute, this can then be notified to the actor-CCL which subsequently reads it to obtain the aggregate AQI.
Step 8. The coordination entity sends the aggregate AQI to actor-CCL which is then used by the actor-CCL to decide an appropriate action to minimise the impact.
Step 9. The actor-CCL evaluates the impacts and if needed, the way it makes its decisions. For example, the actor-CCL can adjust the control scope (i.e., the acceptable range of values) on a given parameter.
Step 10. actor-CCL can revise the previous actions if needed. If it is computed by the CCL coordination entity, the coordination entity notifies it to the actor-CCL and may also propose a response action, e.g. to reverse the action that was taken.
NOTE: The data models for executedAction, reportedAQIs need to be extended.

[bookmark: _Toc199342524]7.A	CCL Scope conflicts avoidance, detection and resolution
To coordinate scope assignments, a CCL coordination functionality, say in CCL Coordination entity, needs a capability to coordinate the scope assignment across multiple CCLs, say called the scope assignment coordination capability. The scope assignment coordination capability considers a defined full scope space Sp and a set of scope rules to define the best scope to be assigned to each CCL. An example rule may be that the defined CCL scope should not overlap. The rules may for example be defined by an operator or can be implementation specific depending on the types of CCLs that are to be configured.
Each CCL has four scopes - the measurement scope, target scope, control scope and impact scope, all of which can configured by the MnS consumer, i.e., an operator or the CCL Coordination entity may derive the required scope and configure it onto the CCL. There maybe different rules that each scope definition should adhere to for a given use case. The CCLs register their scopes with the CoordinationEntity (e.g., for the case where the scope is not defined by the CCL Coordination entity). The notification of the CCL scope to the CCL Coordination entity triggers an evaluation of potential conflict, i.e. whether those scopes are likely to conflict with the scopes of another CCL. The potential conflicts can be confirmed as actual conflicts by the CCL or the Coordination entity which then triggers resolution by computing a new reassignment of scopes.
To assign scopes, the scope coordination capability Applies the scope assignment rules defined in the scope coordination capability and divides the scope space into regions such that each region is matched to a CCL in a way that maximizes fulfilment of the assignment rules. The For example, if the benefit is to avoid overlaps, the subregions are assigned to the different CCLs in a way that ensures no overlaps and that all the scope space has been assigned.

[image: Generated by PlantUML]
Figure 7.5-1: CCL-impact assessment and actual metric-value conflicts resolution

Step 0-1. The CoordinationEntity’s capability for scope coordination is instantiated and configured (e.g., with the rules for evaluating and coordinating scopes for different use cases)
Step 0-2. The set of CCLs are composed, configured and instantiated;
Step 1. Instantiation of a new CCL is notified to the CoordinationEntity.
Alternative: the CCL does not have a configured scope and the CoordinationEntity needs to assign the scope
Step 2. the CoordinationEntity computes the scope to be applied by the new CCL, e.g., it divides the scope space into regions matched to the CCLs e.g. to ensure no overlaps and that all the scope space has been assigned.
Step 3. the CoordinationEntity notifies the new CCL of the assigned scope
Otherwise
Step 4, 5. The CCLs register their scopes of interest to the coordination entity including the scopes where they take measurements, take control actions as well as where their actions are expected to impact. The CCL may register by writing into the toBeCoordinatedCCLScopes attribute of the CoordinationEntity.
Step 6. The CCLs monitor for changes in their scope to detect misalignments in scope
Step 7. If the scope is changed, the CCL registers the observed changes in the scope to the CoordinationEntity’s scope coordination capability. The CCL registers differences between what was configured and the actual scopes e.g., if the considered scope for taking measurement data are affected by the actions of another CCL. The CCL may register by writing into the toBeCoordinatedCCLScopes attribute of the CoordinationEntity.
Step 8. A registration of scope or scope changes triggers the CoordinationEntity to evaluate if there are any potential conflicts among the registered scopes,
Step 9, 10. If scope conflicts are potential detected, the CoordinationEntity notifies the CCLs of the potential conflicts, so that both the CCLs and the CoordinationEntity monitor to see if potential scope conflicts results into actual conflicts. The CoordinationEntity adds a new entry in the detectedScopeConflicts list with a value of POTENTIAL_CONFLICT for the conflictType .
Step 11, 12. CCLs and the CoordinationEntity monitor to see if there are negative outcomes.
Step 13. If negative outcomes are observed by a CCL, the CCLs notifies the CoordinationEntity of the confirmed scope conflicts. The CCL updates the conflictType value of the detectedScopeConflicts entry from potential to actual conflict.
Step 14, 15. Alternatively, if the negative outcomes are observed by the CoordinationEntity, the CoordinationEntity notifies all affected CCLs of the confirmed scope conflicts. The CoordinationEntity updates the conflictType value of the detectedScopeConflicts form potential to actual conflict.
Step 16. The CoordinationEntity computes new scopes to be applied by the different CCLs, e.g., similar to an initial assignment.
Step 17, 18. If there are CCLs whose scope should be revised, the CoordinationEntity notifies the CCLs whose scope is revised of the newly computed scope.

[bookmark: _Hlk199836642]* * * Third Change * * * *

[bookmark: _Toc106098554]
[bookmark: _Toc199342533]Annex B (informative):
UML code for procedure diagrams
[bookmark: _Toc199342534]B.1	UML code for CCL coordination procedure diagrams
This annex contains the PlantUML source code for the procedure diagrams in clause 7 of the present document.B.2	Procedure for conditional instantiation of CCLs (Figure 7.1-1)
@startuml Procedure for conditional composition of CCLs
skinparam Shadowing false
autonumber
skinparam monochrome true
participant "CCL MnS consumer" as CMC
participant "CCL MnS producer" as CMP
CMC -> CMP: create CCL instantiation conditions
CMP -> CMC: Monitor conditions defined
CMP -> CMP: If conditions in TriggerConditionDescriptor\n evaluate to TRUE instantiate CCL
CMP -> CMC: Notify conditions.
@enduml
PlantUML source code for Figure 7.1-1 Procedure for conditional instantiation of CCLs
[bookmark: _Toc199342535]B.2	Procedure for conditional composition of CCLs (Figure 7.2-1)
@startuml Procedure for conditional composition of CCLs
skinparam Shadowing false
autonumber
skinparam monochrome true

participant "CCL Control MnS consumer" as MNSCS
participant "CCL Control MnS producer" as MNSPD
participant "Management functions" as MNFs

MNSCS -> MNSPD: create CCL composition desription
MNSCS -> MNSPD: create CCL composition conditions\n as an instance of TriggerConditionDescriptor
MNSPD -> MNSPD: Monitor conditions defined\n in TriggerConditionDescriptor
MNSPD -> MNSPD: If conditions in TriggerConditionDescriptor\n evaluate to TRUE, trigger execution\n of CCL composition operations
MNSPD -> MNSCS: Notify conditions\n and triggering of composition.
Note over MNSPD, MNFs: execute CCL composition operations
MNSPD -> MNSCS: If composition is complete,\n Notify MnS consumer of composed CCL

@enduml
PlantUML source code for Figure 7.2-1 Procedure for conditional composition of CCLs

[bookmark: _Toc199342536]B.3	CCL decision escalation procedure (Figure 7.4-1)
B.2.1	CCL decision escalation procedure (Figure 7.A-1)
@startuml avoidance of potential action-execution-time conflicts - Information on detected conflict
skinparam Shadowing false
autonumber
skinparam monochrome true

participant "CCL MnS Consumer" as MNSCS
participant "CCL (Escalator CCL)" as ESCCL
participant "Escalation Recipient\n (e.g. another CCL or CCL Coordination Entity)" as ESCRP

Note over MNSCS, ESCRP: Compose, configure and instantiate the Escalator CCL and Escalation Recipient.

MNSCS -> ESCCL: configure or reconfigure Escalator CCL\n with when and where to escalate
Note over MNSCS,ESCCL: Trigger CCL execution
ESCCL -> ESCCL: Derive analysis and decision for a scenario
ESCCL -> ESCCL: detect need to escalate the scenario

ESCCL -> ESCRP: Request escalation for the scenario
ESCRP -> ESCRP: Decide whether to accept\n escalated request.

ESCRP -> ESCCL: Notify acceptance of escalated request.
ESCRP -> ESCRP: Derive analysis and decision\n for a escalated scenario
ESCRP -> ESCCL: Notify Escalator CCL of\n escalation outcome for the scenario.

@enduml

PlantUML source code for Figure 7.4-1 CCL NRM fragment

[bookmark: _Toc199342537]B.4	CCL-impact assessment and metric conflicts resolution on unknown or unbounded impact-scope (Figure 7.5-1)
@startuml CCL-impact assessment and metric conflicts resolution on unknown or unbounded impact-scope
skinparam Shadowing false
autonumber
skinparam monochrome true

participant "Actor-CCL \n (CCL MnS producer & \n Coordination MnS Consumer)" as CL1
collections "other-CCLs \n (CCL MnS producer & \n other functions)" as CL2
participant "CCL Coordination MnS producer \n (scope coordination)" as xCL
participant "Network" as Net

Note over CL1, xCL: Actor-CCL and other-CCLs are composed, instantiated and configured as required.

CL2 -> xCL: Register measurement, control, \n& impact scopes of interest

CL1 -> Net: execute derived action plan A

CL1 -> xCL: notify executed action plan A [incl. impact time of action, time for feedback
xCL -> CL2: notify execution of action plan A from \nCCL1 [indicate feedback time]

CL2 -> CL2: evaluate impacts of \naction A to own metrics
CL2 -> xCL: notify impact of action plan A on other CCLs

xCL -> xCL: compute aggregate AQI\n as aggregate impact on\n all affetced entities
xCL -> CL1: notify aggregate impact of action plan A on other CCLs

Alt
 CL1 -> CL1: modify own decisions, e.g., the control scope
end

Alt
 CL1 -> Net: undo/revise executed action plan A
end
@enduml
PlantUML source code for Figure 7.5-1 CCL NRM fragment

B.A	CCL Scope conflicts avoidance, detection and resolution (Figure 7.A-1)
[bookmark: _Hlk200376451]@startuml CCL Scope conflicts avoidance, detection and resolution
skinparam Shadowing false
autonumber
skinparam monochrome true
!pragma teoz true

participant "Actor-CCL \n (CCL MnS producer & \n Coordination MnS Consumer)" as CL1
collections "other-CCLs \n (CCL MnS producer & \n other functions)" as CL2
participant "CCL Coordination \nMnS producer \n (scope coordination)" as xCL

Note over CL1, xCL: Actor-CCL, other-CCLs and CoordinationEntity’s capability for scope coordination \nare instantiated and configured as required.

CL1 -> xCL: notified creation of new CCL

Alt CCL does not have a configured scope
 xCL -> xCL: compute scope to apply to \n new CCL, e.g., control scope
 xCL -> CL1: modify new scope
else CCL is alreaady configured with a scope

CL1 -> xCL:
& CL2 -> xCL: Register scopes of interest

Alt
CL1 -> CL1: monitor for changes in their scope
CL1 -> xCL: notify observed changes in scope
End

xCL -> xCL: evaluate potential conflicts \namong the registered scopes
xCL -> CL1:
& xCL -> CL2: notify potential conflicts \namong the registered scopes

xCL -> xCL: monitor for negative outcomes \nrelated to potential conflicts
& CL1 -> CL1: monitor for negative outcomes \nrelated to potential conflicts
alt
CL1 -> xCL: notify confirmed actual conflicts (from negative outcomes)

end
xCL -> CL1:
& xCL -> CL2: notify confirmed actual conflicts \n(from negative outcomes)

xCL -> xCL: compute new scopes for CCLs
xCL -> CL1:
& xCL -> CL2: modify new scope(s)

[bookmark: _Hlk200376473]@enduml
PlantUML source code for Figure 7.A-1 CCL-Scope conflicts avoidance, detection and resolution
image1.emf
C B

D

A

CCL

- Control scope: cell A

- Expected impact scope: cells A, B, C & D

- Actual impact scope: cells A, B, C, D, E & F

E F

Microsoft_Visio_Drawing.vsdx
C
B
D
A
CCL
- Control scope: cell A
- Expected impact scope: cells A, B, C & D
- Actual impact scope: cells A, B, C, D, E & F
E
F

image2.png
«ProxyClass»
ManagedEntity|

ManagedElement

Represents the following 10Cs: ll
SubNetwork or —==

Can be any of these CCL purposes:
NetworkProblemRecovery
FaultManagement

[cInformationObjectClass»
ClosedControlLoop

«names»
«ProxyClass»

CCLPurpose

«InformationObjectClass»|
CCLReport

«InformationObjectClass»
CCLScope

image3.png
Represents the following IOCs:
Subnetwork or
ManagedElement

«ProxyClass»
ManagedEntity

¢

1

«names»

1

Represents the following capabilities:
ScopeCoordinationCoordination
TriggerCoordination
ActionExecutionCoordination
DirectActionsCoordination
IndirectTargetsCoordination

«InformationObjectClass»

ClosedControlLoop ConflictManagementAndCoordinationEntity

«InformationObjectClass»

«dataType»

CoordinationCapability

image4.svg
 «ProxyClass» ManagedEntity «InformationObjectClass» ConflictManagementAndCoordinationEntity «dataType» CoordinationCapability «InformationObjectClass» ClosedControlLoop Represents the following IOCs: Subnetwork or ManagedElement Represents the following capabilities: ScopeCoordinationCoordination TriggerCoordination ActionExecutionCoordination DirectActionsCoordination IndirectTargetsCoordination «names» 1 1 1 * * *

image5.png
«InformationObjectClass»
Top

«InformationObjectClass»
ClosedControlLoop

«InformationObjectClass» «InformationObjectClass»
CCLReport CCLScope

«InformationObjectClass»
ConflictManagementAndCoordinationEntity

image6.svg
 «InformationObjectClass» Top «InformationObjectClass» ClosedControlLoop «InformationObjectClass» CCLReport «InformationObjectClass» CCLScope «InformationObjectClass» ConflictManagementAndCoordinationEntity

image7.png
CCL MnS consumer ‘ CCL MnS producer ‘

| 1 create CCL instantiation conditions _|

| 2 Monitor conditions defined

i

|, If conditions in TriggerConditionDescriptor
| evaluate to TRUE instantiate CCL

4 Notify_conditions.

—

CCL MnS consumer ‘ CCL MnS producer ‘

image8.png
CCL Control MnS consumer

CCL Control MnS producer

I 1 create CCL composition description !

create CCL composition conditions
as an instance of TriggerConditionDescriptor

Y

Notify conditions
and triggering of composition.

|
|
|
|
h
Ll |
|
1
|
|
|
|
|
|
|
|
|

A

If composition is complete,

Management functions

Monitor conditions defined
in TriggerConditionDescriptor

If conditions in TriggerConditionDescriptor
4 evaluate to TRUE, trigger execution
of CCL composition operations

execute CCL composition operations

&z
Y

|
|
Notify MnS consumer of composed CCL |
|

CCL Control MnS consumer

CCL Control MnS producer

Management functions

image9.svg
 CCL Control MnS consumer CCL Control MnS consumer CCL Control MnS producer CCL Control MnS producer Management functions Management functions 1 create CCL composition description 2 create CCL composition conditions as an instance of TriggerConditionDescriptor 3 Monitor conditions defined in TriggerConditionDescriptor 4 If conditions in TriggerConditionDescriptor evaluate to TRUE, trigger execution of CCL composition operations 5 Notify conditions and triggering of composition. execute CCL composition operations 6 If composition is complete, Notify MnS consumer of composed CCL

image10.emf
Performance Assurance/

CCL MnS Consumer

1.Network/SLS performance is degrading

5.createMOI(PerfMetricJob) Request for CCL n

9.createMOI(ClosedControlLoop) Request

2.getMOIAttributeRequest

(all attributes of CCLs)

Performance Assurance/

CCL MnS Producer

4.Identify the CCL(n)

alt

update

create

7.modifyMOIAttributes(Relevant attribute of CCL n) Request

3.getMOIAttributeResponse

(All attributes of CCLs)

8.modifyMOIAttributes Response

10.createMOI() Response

6.createMOI(requested performance metrics) Response

Microsoft_Visio_Drawing1.vsdx
Performance Assurance/CCL MnS Consumer
1.Network/SLS performance is degrading
5.createMOI(PerfMetricJob) Request for CCL n
9.createMOI(ClosedControlLoop) Request
2.getMOIAttributeRequest (all attributes of CCLs)
Performance Assurance/CCL MnS Producer
4.Identify the CCL(n)
alt
update
create
7.modifyMOIAttributes(Relevant attribute of CCL n) Request
3.getMOIAttributeResponse (All attributes of CCLs)
8.modifyMOIAttributes Response
10.createMOI() Response
6.createMOI(requested performance metrics) Response

image11.png
Escalation Recipient
CCL MnS Consumer CCL (Escalator CCL) (e.g. another CCL or CCL Coordination Entity)

Compose, configure and instantiate the Escalator CCL and Escalation Recipient. Iﬁ

with when and where to escalate

configure or reconfigure Escalator CCL |
l
I

I
|
|
> |
|
Trigger CCL execution lﬁ I
I
I I I
! 1 2 Derive analysis and decision for a scenario !
| |
| |
I I I
: ' 3 detect need to escalate the scenario :
l I I
: : 4 Request escalation for the scenario \:
I I gl
: | . _ Decide whether to accept
: ' "'~ escalated request.
I I
: : Pu—
: :4 6 Notify acceptance of escalated request. :
I I~ I
: : \ , Derive analysis and decision
; ; """ for a escalated scenario
l l i
l . . Notify Escalator CCL of l
; i escalation outcome for the scenario. |
| I‘ |
CCL MnS Consumer CCL (Escalator CCL) Escalation Recipient

(e.g. another CCL or CCL Coordination Entity)

image12.svg
 CCL MnS Consumer CCL MnS Consumer CCL (Escalator CCL) CCL (Escalator CCL) Escalation Recipient (e.g. another CCL or CCL Coordination Entity) Escalation Recipient (e.g. another CCL or CCL Coordination Entity) Compose, configure and instantiate the Escalator CCL and Escalation Recipient. 1 configure or reconfigure Escalator CCL with when and where to escalate Trigger CCL execution 2 Derive analysis and decision for a scenario 3 detect need to escalate the scenario 4 Request escalation for the scenario 5 Decide whether to accept escalated request. 6 Notify acceptance of escalated request. 7 Derive analysis and decision for a escalated scenario 8 Notify Escalator CCL of escalation outcome for the scenario.

image13.png
notify execution of action plan A from

Actor-CCL other-CCLs
(CCL MnS producer & (CCL MnS producer & CCL Coordination MnS producer
Coordination MnS Consumer) other functions) (scope coordination) Network
l I l
Actor-CCL and other-CCLs are composed, instantiated and configured as required. lﬁ

: Register measurement, control, :
' & impact scopes of interest o
I ’I

2 execute derived action plan A | : o

] I -
3 notify executed action plan A [incl. impact time ¢f action, time for feedback \:
I
I
|
I

]
|
"4
|

_ CCLA1 [indicate feedback time]

I
I _ evaluate impacts of

15 A .

, action A to own metrics

—

I
I 6 notify impact of action plan A on other CCLs

I
I
I
I
I
I
:
8 notify aggregate impact of action plan A on otf:wer CCLs

Y

all affetced entities

compute aggregate AQI
7 as aggregate impact on

|
1
1
< . :
L 1
alt ! !
9 modify own decisions, e.g., the control scope | |
: I :
1 I 1
alt i | i
: 10 undo/revise executed action plan A : : o
i T i —
Actor-CCL CCL Coordination MnS producer Network

(CCL MnS producer &
Coordination MnS Consumer)

other-CCLs
(CCL MnS producer &
other functions)

(scope coordination)

image14.svg
 Actor-CCL (CCL MnS producer & Coordination MnS Consumer) Actor-CCL (CCL MnS producer & Coordination MnS Consumer) other-CCLs (CCL MnS producer & other functions) other-CCLs (CCL MnS producer & other functions) CCL Coordination MnS producer (scope coordination) CCL Coordination MnS producer (scope coordination) Network Network Actor-CCL and other-CCLs are composed, instantiated and configured as required. 1 Register measurement, control, & impact scopes of interest 2 execute derived action plan A 3 notify executed action plan A [incl. impact time of action, time for feedback 4 notify execution of action plan A from CCL1 [indicate feedback time] 5 evaluate impacts of action A to own metrics 6 notify impact of action plan A on other CCLs 7 compute aggregate AQI as aggregate impact on all affetced entities 8 notify aggregate impact of action plan A on other CCLs alt 9 modify own decisions, e.g., the control scope alt 10 undo/revise executed action plan A

image15.png
Actor-CCL other-CCLs CCL Coordination
(CCL MnS producer & (CCL MnS producer & MnS producer
Coordination MnS Consumer) other functions) (scope coordination)
I I I
Actor-CCL, other-CCLs and CoordinationEntity’s capability for scope coordination
are instantiated and configured as required.
I 1 I
' 1 notified creation of new CCL ! <!
alt / [CCL does not have a configured sScope] :
: 2 compute scope to apply to
I
1

new CCL, e.g., control scope

5 Register scopes of interest

alt)

' 6 monitor for changes in their scope

7 notify observed changes in scope

Y

1
I
I
|
1
1
1
1
1
T
I
r
|
1
1
1
I
1
1
I
I
|
1
1
|
L
1
1
I
I
|
1
1
1
1
1

notify potential conflicts
among the registered scopes

evaluate potential conflicts
among the registered scopes

A

| monitor for negative outcomes
! related to potential conflicts

! monitor for negative outcomes
| related to potential conflicts

Pa—

13 notify confirmed actual conflicts (fiom negative outcomes)

>
>

notify confirmed actual conflicts

I

I

: :

I I

E(14 E((from negative outcomes)

| | 16 compute new scopes for CCLs

: :]

:4 17 :4 18 modify new scope(s) :

— — :

1 1]
Actor-CCL other-CCLs CCL Coordination

(CCL MnS producer &
Coordination MnS Consumer)

(CCL MnS producer &
other functions)

MnS producer
(scope coordination)

image16.svg
 Actor-CCL (CCL MnS producer & Coordination MnS Consumer) other-CCLs (CCL MnS producer & other functions) CCL Coordination MnS producer (scope coordination) Actor-CCL (CCL MnS producer & Coordination MnS Consumer) other-CCLs (CCL MnS producer & other functions) CCL Coordination MnS producer (scope coordination) Actor-CCL, other-CCLs and CoordinationEntity’s capability for scope coordination are instantiated and configured as required. 1 notified creation of new CCL alt [CCL does not have a configured scope] [CCL is alreaady configured with a scope] 2 compute scope to apply to new CCL, e.g., control scope 3 modify new scope 4 5 Register scopes of interest alt 6 monitor for changes in their scope 7 notify observed changes in scope 8 evaluate potential conflicts among the registered scopes 9 10 notify potential conflicts among the registered scopes 11 monitor for negative outcomes related to potential conflicts 12 monitor for negative outcomes related to potential conflicts alt 13 notify confirmed actual conflicts (from negative outcomes) 14 15 notify confirmed actual conflicts (from negative outcomes) 16 compute new scopes for CCLs 17 18 modify new scope(s)

