
Authentication procedure
for AIOT system

oppo

Resolving Inventory authentication ENs
• Editor’s Note: Whether ADM or AIOTF generates RANDAIOT_n is FFS. （ADM, to align with 5G

AKA, if for implementation, KAIOT is in ADM, it would be more convenient if both are in

the ADM）
• Editor’s Note: The inclusion of RANDAIOT_n in Paging Request and the size of RANDAIOT_n needs

RAN confirmation. （ 128bit）
• Editor’s Note: Whether replay attack is possible is FFS. (align with 33501, the first RAND sent

from network to device is in plain text)

• Editor’s Note: How RESAIOT is derived and whether it is derived from KAIoT or intermediate key is

FFS. RES = fx (KAIoT ,RANDAIOT_n)；same as in 33501

• No current RAN2/SA2 procedure could support key bootstrapping

• Editor’s Note: Where the authentication credentials are processed in AIOT device is FFS. （delete

according to SA plenary LS）
• Editor’s Note: The security requirements of generating RANDAIOT_d are FFS.

• Editor’s Note: Whether RANDAIOT_d is required for inventory procedure is FFS. （No

RANDAIOT_d is needed for inventory only case）For inventory only case, since there is no

following command message and no command protection, derive intermediate key would be

redundant. Considering the limited power and energy for Device 1, the RES should be

generated based on the long-term key KAIoT.

• RANDAIOT_d is not needed for RES derivation. Furthermore, using RANDAIOT_n for

RES derivation is align with 33501.

• Editor’s note: The impact of interaction between AIOTF and ADM is FFS. If the authentication is

expected to be run more often than normal UE, (e.g., during each inventory procedure), the analysis

of load of ADM is FFS. Only after inventory response is received, ADM needs to derive

authentication vectors, hence ADM load is lower than derive authentication vectors before

sending inventory request.

• No current RAN2/SA2 procedure could support key bootstrapping. No guarantee the key can

be stored in device.

• According to SA plenary LS, R19 AIOT service is in private network, so ADM load is not like

in public network

• Editor’s Note: Where the authentication credential is processed in AIOT device is FFS.

• Note: Where the authentication credential is processed in AIOT device is out of scope for the

present document.

• Editor’s note: How and where to derive keys is FFS. （No intermediate key is needed for

inventory only case）

9. Return authentication data

AIoT

Device

AIoT

RAN
AIOTF ADM NEF AF

0. Step 1-6 of clause 6.2.2 for inventory or 6.2.3 for Command as in TS 23.369

7. Retrieve authentication data

8. Derive XRESAIOT

10. Verify RESAIOT

3. Paging request

(RANDAIOT_n)

6. Inventory Response

(RANDAIOT_d, RESAIOT)

1. RANDAIOT_n generation

4. Derive RESAIOT for network

authenticating AIoT Device

2. Inventory Request

 (RANDAIOT_n)

5. D2R message

(RANDAIOT_d, RESAIOT)

Command authentication using RANDAIOT_n2

• According to RAN and SA2 procedure, AIOT device has no way to know if it’s

inventory only or inventory and command

• Prefer to send a second network random number RANDAIOT_n2 for 3 reasons

1. Not sure if device could store the 1st network random number RANDAIOT_n1 until

command procedure is complete.

2. 2nd random number RANDAIOT_n2 is fresh, provide freshness.

3. 5G AKA use only network side RAND for authentication

• For command authentication, use RANDAIOT_n2 to provide freshness,

better than repeating RAND AIOT_n1

Plain text RANDAIOT_d maybe redundant in
inventory and may not be secure

• In 5G-AKA, no UE side RAND is used. Not sure if it’s secure

enough to send RANDAIOT_d in inventory response and D2R, since

inventory response is not protected and tamper attack is possible.

• Maybe Redundant to send RANDAIOT_d

9. Return authentication data

AIoT

Devic

e

AIoT

RAN
AIOTF ADM NEF AF

0. Step 1-6 of clause 6.2.2 for inventory or 6.2.3 for Command as in TS

23.369

7. Retrieve authentication data

8. Derive XRESAIOT and

MACAIOT

10. Verify RESAIOT

3. Paging request

(RANDAIOT_n)

6. Inventory

Response

(RESAIOT RN 16)

1. RANDAIOT_n generation

4. Derive RESAIOT for network

authenticating AIoT Device

2. Inventory Request

 (RANDAIOT_n)

5. D2R message

(RESAIOT)

11. Command Request

 (MACAIOT, RANDAIOT_n2)

11. Command Request

 (MACAIOT, RANDAIOT_n2)

12. Device decides mutual
authentication is needed and

derive and verify MACAIOT

16. Command
response

16. Command
response

Command authentication

inline with SA2 procedure

Inventory authentication

Inventory and command authentication- use
RANDAIOT_n2 directly 8. knowing it’s command procedure and mutual authentication procedure

is needed ADM shall derive MACAIOT using KAIoT and RANDAIOT_n2 for

device authenticating network. This step could happen after step 7 and

before step 9.

MAC = fx (KAIoT, RANDAIOT_n2)；

Communication protection key KAIoTF derivation is performed in this step.

The method of KAIoTF derivation is descried in 5.3.X

Editor’s Note: Whether F1 is as same as RES derivation function is FFS.

11, AIOTF shall construct a NAS Command Request including

MACAIOT and RANDAIOT_n2 . AIOTF sends NAS Command Request to

AIoT RAN.

12. AIoT RAN shall send NAS Command Request includes MACAIOT

and RANDAIOT_n2 to AIoT Device as specified in as specified in TS

38.300 [x3] and TS 38.391 [x4] .

13. AIoT Device receives NAS Command Request and shall decides

mutual authentication is needed, and derive MACAIOT as the same way as

ADM. AIoT Device shall verify the MACAIOT to authenticate the network.

14. AIoT device sends Command response to RAN

15.RAN sends Command response to AIOTF.

Step 11-15 is inline with clause 6.2.3 Procedure for Command in TS

23.369 [2].

Command authentication- implicit authentication NOT
inline with 5G AKA and cause complicated failure case

• No implicit authentication is used before in 3GPP, and no security guarantee for implicit authentication. We need the same
security level as in 33501 authentication, and the security requirement for authentication and integrity protection is
different. MAC for Authentication is 64 bit according to 33102, and MAC for integrity protection is only 32 bit.

• Also for security consideration and future proofing, in the future, session key could be possible used for multiple command.
So for authentication purpose, session key is not as secure as root key Kaiot. Authentication MAC needs to be derive from
root key Kaiot in ADM. We need the same security level as in 33501 authentication. MAC for Authentication is 64 bit
according to 33102, and MAC for integrity protection is only 32 bit

• For example, tampering attack to command (write) will lead to authentication failure for implicit authentication
• With explicit authentication, tampering attack to command (write) will not affect the authentication result, and the device

could still successfully authenticate the network. Thus the network could re send the command (and send subsequent
command in future release)

Device Reader

Command Tampered(write),

Authentication succeed,
resent command

Device Reader

Command Tampered(write),

Authentication fail

AIOTF AIOTF

Command (write)

implicit authenticationexplicit authentication

Another inventory and command

