	3GPP T3 Meeting #23

Espoo, Finland, 21-24 May 2002
	Tdoc T3-020394

Draft 3GPP TS 31.131 V1.1.0 (2001-12)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Terminals;

‘C’-language binding to (U)SIM API

(Release 5)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

SIM, USIM, API

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

71.
Scope

82.
References

82.1.
Normative references

93.
Definitions and abbreviations

93.1.
Definitions

93.2.
Abbreviations

104.
Description

104.1.
Overview

104.2.
Design Rationale and Upward Compatibility

114.3.
Application Triggering

134.4.
Proactive command handling

144.5.
Application Loading

155.
‘C’-language binding for (U)SIM API

155.1.
Overview

165.2.
Toolkit Version

165.3.
Toolkit Application Functions

165.3.1.
main

175.3.2.
CatGetFrameworkEvent

175.3.3.
CatExit

185.4.
Registry

185.4.1.
CatSetMenuString

185.4.2.
CatNotifyOnFrameworkEvent

195.4.3.
CatNotifyOnEnvelope

195.4.4.
CatNotifyOnEvent

195.5.
Man-Machine Interface

195.5.1.
CatAddItem

195.5.2.
CatSelectItem

205.5.3.
CatEndSelectItem

205.5.4.
CatDisplayText

215.5.5.
CatGetInKey

215.5.6.
CatGetInput

225.5.7.
CatSetupIdleModeText

225.5.8.
CatPlayTone

235.6.
Timers

235.6.1.
CatGetTimer

235.6.2.
CatFreeTimer

235.6.3.
CatStartTimer

245.6.4.
CatGetTimerValue

245.7.
Supplementary Card Reader Management

245.7.1.
CatPowerOnCard

245.7.2.
CatPowerOffCard

245.7.3.
CatPerformCardAPDU

255.7.4.
CatGetReaderStatus

255.8.
GSMUICC File Store Access

265.8.1.
CatSelect

265.8.2.
CatStatus

265.8.3.
CatGetCHVStatus

265.8.4.
CatReadBinary

275.8.5.
CatUpdateBinary

275.8.6.
CatReadRecord

275.8.7.
CatUpdateRecord

285.8.8.
CatSeek

285.8.9.
CatIncrease

285.8.10.
CatInvalidate

295.8.11.
CatRehabilitate

295.9.
Miscellaneous

295.9.1.
CatGetTerminalProfile

295.9.2.
CatMoreTime

295.9.3.
CatPollingOff

305.9.4.
CatPollInterval

305.9.5.
CatRefresh

305.9.6.
CatLanguageNotification

315.9.7.
CatLaunchBrowser

325.10.
Low-level Interface

325.10.1.
CatResetBuffer

325.10.2.
CatStartProactiveCommand

335.10.3.
CatSendProactiveCommand

335.10.4.
CatOpenEnvelope

335.10.5.
CatSendEnvelopeResponse

335.10.6.
CatSendEnvelopeErrorResponse

335.10.7.
CatPutData

345.10.8.
CatPutByte

345.10.9.
CatPutTLV

345.10.10.
CatPutBytePrefixedTLV

345.10.11.
CatPutOneByteTLV

355.10.12.
CatPutTwoByteTLV

355.10.13.
CatGetByte

355.10.14.
CatGetData

355.10.15.
CatFindNthTLV

365.10.16.
CatFindNthTLVInUserBuffer

365.11.
Network Services

365.11.1.
CatGetLocationInformation

365.11.2.
CatGetTimingAdvance

375.11.3.
CatGetIMEI

375.11.4.
CatGetNetworkMeasurementResults

375.11.5.
CatGetDateTimeAndTimeZone

375.11.6.
CatGetLanguage

385.11.7.
CatSetupCall

395.11.8.
CatSendShortMessage

405.11.9.
CatSendSS

405.11.10.
CatSendUSSD

415.11.11.
CatOpenCSChannel

435.11.12.
CatOpenGPRSChannel

455.11.13.
CatCloseChannel

455.11.14.
CatReceiveData

465.11.15.
CatSendData

465.11.16.
CatGetChannelStatus

475.11.17.
catServiceSearch

475.11.18.
catGetServiceInformation

475.11.19.
catDeclareService

485.11.20.
CatRunATCommand

485.11.21.
CatSendDTMFCommand

495.12.
Supporting Data Types

495.12.1.
CatFrameworkEventType

495.12.2.
CatEnvelopeTagType

495.12.3.
CatEventType

505.12.4.
CatTextString

505.12.5.
CatAlphaString

505.12.6.
CatIconIdentifier

505.12.7.
CatIconOption

505.12.8.
CatDCSValue

515.12.9.
CatDisplayTextOptions

515.12.10.
CatGetInKeyOptions

515.12.11.
CatGetInputOptions

515.12.12.
CatSelectItemOptions

525.12.13.
CatTimeUnit

525.12.14.
CatTone

525.12.15.
CatRefreshOptions

525.12.16.
CatGetReaderStatusOptions

525.12.17.
CatDevice

535.12.18.
CatGeneralResult

535.12.19.
CatTimerValue

545.12.20.
CatTimeInterval

545.12.21.
CatFileStatus

555.12.22.
CatLanguageNotificationOptions

555.12.23.
CatLocationInformation

555.12.24.
CatTimingAdvance

555.12.25.
CatLaunchBrowserOptions

555.12.26.
CatSetupCallOptions

555.12.27.
CatTypeOfNumberAndNumberingPlanIdentifier

565.12.28.
CatSendShortMessageOptions

565.12.29.
CatSendDataOptions

575.12.30.
CAT_MEInterfaceTransportLevelType

575.12.31.
CatBearer

575.12.32.
CatOpenChannelOptions

575.12.33.
CatAddressType

58Annex A (Informative), example

63History

1. Scope

A Subscriber Identity Module Application Programming Interface (SIM API) has been defined in 3GPP TS 42.019 [4] as a technology-independent API means by which toolkit applications and (U)SIMs co-operate. That specification is independent of the programming language technology used to create the application, the platform used to host the application and the runtime environment used to execute the application.

The present document includes information applicable to (U)SIM toolkit application developers creating applications using the C programming language [7]. The document describes an interface between toolkit applications written in the C programming language and the (U)SIM in order to realize the co-operation set forth in [4]. In particular, the API described herein provides the service of assembling proactive commands and disassembling the responses to these commands for the application programmer.

Software tools, integrated software development environments and software management systems that may be used to create application programs are explicitly out of scope of this document.

·
·

2. References

References may be made to:

a)
specific versions of publications (identified by date of publication, edition number, version number, etc.), in which case, subsequent revisions to the referenced document do not apply; or

b)
all versions up to and including the identified version (identified by "up to and including" before the version identity); or

c)
all versions subsequent to and including the identified version (identified by "onwards" following the version identity); or

d)
publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

2.1. Normative references

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 31.111 V5.0.0: “3rd Generation Partnership Project; Technical Specification Group; USIM Application Toolkit (USAT)”.

 [3]
3GPP TS 23.048 V5.3.0: “3rd Generation Partnership Project; Technical Specification Group Terminals; Security Mechanisms for the SIM application toolkit”.

[4]
3GPP TS 42.019 V5.0.0: “3rd Generation Partnership Project; Technical Specification Group Terminals; Subscriber Identity Module Application Programming Interface (SIM API); Stage 1”.

[5]
ISO 639 (1988): “Code for the representation of names of languages”.

[6]
3GPP TS 23.038: "Alphabets and language‑specific information".

[7]
ISO/IEC 9899: “Programming Languages -- C”;
[8]
3GPP TS 11.14 V8.9.0: “Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment (SIM - ME) interface” version 4.0.0 Release 4.

[9]
Tool Interface Standard (TIS) Executable and Linking Format Specification Version 1.2

[10]
SYSTEM V Application Binary Interface, Edition 4.1

3. Definitions and abbreviations

3.1. Definitions

For the purposes of the present document, the following definitions apply:

Application: A computer program that defines and implements a useful domain-specific functionality. The term may apply to the functionality itself, to the representation of the functionality in a programming language, or to the realization of the functionality as executable code.

Application Executable: The representation of an application as collection of executable codes.
Application Program: The representation of an application in a programming language such as assembly language, C, Java, WML or XHTML.
Application Programming Interface: A collection of entry points and data structures that an application program can access when translated into an application executable.

Byte Code: A processor-independent representation of a basic computer operation such as “increment by one” that is executed by computer program called a byte code interpreter.

Data Structure: A memory address that can be accessed by an application executable in order to read or write data.

Entry Point: A memory address that can be branched to by an application executable in order to access functionality defined by an application-programming interface. Depending on the software technology, an entry point is also called a subroutine, a function or a method.

Executable Code: The generic term for either byte code or native code.
Framework : A framework defines a set of Application Programming Interface (API) functions for developing applications and for providing system services to those applications.

Native Code: A processor-dependent representation of a basic computer operation such as “increment by one” that is executed by the hardware circuitry of a computer’s central processing unit.
Toolkit Application: An application that uses the commands described in [2].
3.2. Abbreviations

For the purpose of the present document, the following abbreviations apply-
APDU
Application Protocol Data Unit

API
Application Programming Interface

CAT
Card Application Toolkit

DCS
Digital Cellular System

DF
Dedicated File

DTMF
Dual Tone Multiple Frequency

EF
Elementary File

FID
File Identifier

GSM
Global System for Mobile communications

ME
Mobile Equipment

NAA
Network Access Application (SIM or USIM)

OTA
Over The Air

SIM
Subscriber Identity Module

SMS
Short Message Service

STK
SIM ToolKit

TLV
Tag, Length, Value

TPDU
Transport Protocol Data Unit

UICC
(not an acronym)
URL
Uniform Resource Locator

USIM
Universal SIM

USSD
Unstructured Supplementary Services Data

4. Description

The GSMSIM Application consists of the following:

-
GSM 11.11[3] APDU handlers for communicating with the mobile equipment,

-
GSM 11.11[3] File system and file access control,

-
SIM Toolkit Framework which provides services to Toolkit applications.

This document describes the C programming language binding for the interface between the (U)SIM application and toolkit applications described in [4]. This API allows application programmers using the C programming language to access functions and data described in [2] and [8], such that the (U)SIM-based applications and the services they implement can be developed and loaded onto ICCs. If required and supported by the underlying smart card technology, toolkit applications can be loaded or deleted remotely, after the card has been issued.

4.1. Overview

The ‘C’-binding for (U)SIM API shall provide function calls for pro-active functions and (transport functions. The figure below shows the interactions between a typical Toolkit application (shown in blue) and the various functional blocks (shown in orange) of the (U)SIM The C-bindings for these APIs are presented in section 5.2.

[image: image3.wmf]Registered

event

or install

Update

Information

Request

Toolkit

application

Proactive

command

handler

Proactive

response

handler

APDU

handler

Toolkit

application

triggering

Load/delete Toolkit

Application 03.48

New Toolkit

application

Registry handler

NAA

file

access

Mobile

Equipment

APDU

Toolkit

event

Terminal response

Envelope response

handler

Terminal

response data

Proactive command

91

xx

Proactive command

Fetch command

Response data

Registry

File access

Request

File data

NAA File system

File data

Allowed Access/

Command

Toolkit application

information

Create new Toolkit

application from SMS-PP

4.2. Design Rationale and Upward Compatibility

This C SIM API is intended to be general enough for many purposes. Some functions that implement proactive commands take parameters that correspond to optional TLVs in GSM 11.14. If the actual parameter value passed to the function is NULL, the corresponding TLV is not passed to the mobile equipment; an example of an optional parameter is CatIconIdentifier that corresponds to the ICON IDENTIFIER TLV.

Some proactive commands have a very large number of optional TLVs, such as SETUP CALL. Therefore, this API offers two variants that address this aspect, CatSetupCall and CatSetupCallEx. The first function, CatSetupCall, takes as parameters everything that is necessary to issue a successful SETUP CALL proactive command (i.e. everything required to construct the mandatory TLVs as required by GSM 11.14) and also includes optional user interface TLVs (title and icon) for ease of use.

The second function, CatSetupCallEx, takes a parameter block that can be extended in future versions of this standard. The parameter block contains members that correspond to all mandatory and optional TLVs for the SETUP CALL proactive command.

The reason for introducing the “…Ex” variants are threefold:

· Rather than extend the parameter list of a function to take a large number of optional parameters for each call, it is sometimes preferable to set up the parameters using named structure members before issuing the call to the function.

· If a future version of [8] extends the optional parameters for a proactive command, the corresponding parameter block can be extended to encompass these parameters without changing the function prototype.
· Any source code written for an older version of this C SIM API can be recompiled with a later version without change and will remain upwardly compatible at the source as long as the suggested coding standards are adhered to.
4.3. Application Triggering

The application triggering portion of the SIM Toolkit Framework is responsible for the activation of toolkit applications,

based on the APDU received by the card.

The ME shall not be adversely affected by the presence of applications on the (U)ICC card. For instance a syntactically correct Envelope shall not result in an error status word in case of a failure of an application. The only application as seen by the ME is the (U)SIM application. As a result, a toolkit application may return an error, but this error will not be sent to the ME.

The difference between an application and a Toolkit application is that the latter does not handle APDUs directly. It will

handle higher level messages. Furthermore the execution of a function could span over multiple APDUs, in particular,

the proactive protocol commands.

All the applications that have registered interest in the event are triggered in order of their priority.

- The current context is switched to the toolkit application .

- A pending transaction is aborted.

- The current file context of the toolkit application is the MF.

- The current file context of the current selected application is unchanged.

On termination of a toolkit application (execution of CatExit()):

- The context switches back to the context of the current selected application, the NAA application.

- A pending toolkit application transaction is aborted.

Here after are the events that can trigger a toolkit application :

EVENT_PROFILE_DOWNLOAD

Upon reception of the Terminal Profile command by the SIM, the Toolkit Framework stores the ME

profile and then triggers the registered toolkit application which may want to change their registry. A toolkit application

may not be able to issue a proactive command.

EVENT_MENU_SELECTION, EVENT_MENU_SELECTION_HELP_REQUEST

A toolkit application might be activated upon selection in the ME's menu by the user, or request help on this

specific menu.

In order to allow the user to choose in a menu, the Toolkit Framework shall have previously issued a SET

UP MENU proactive command. When a toolkit application changes a menu entry of its registry object, the

Toolkit Framework shall dynamically update the menu stored in the ME during the current card session. The

SIM Toolkit Framework shall use the data of the EFsume file when issuing the SET UP MENU proactive

command.

The positions of the toolkit application menu entries in the item list, the requested item identifiers and the associated

limits (e.g. maximum length of item text string) are defined at the loading of the toolkit application.

If at least one toolkit application registers to EVENT_MENU_SELECTION_HELP_REQUEST, the SET UP

MENU proactive command sent by the Toolkit Framework shall indicate to the ME that help information

is available.A toolkit application registered for one or more menu entries, may be triggered by the event

EVENT_MENU_SELECTION_HELP_REQUEST, even if it is not registered to this event. A toolkit application

registered for one or more menu entries should provide help information.

EVENT_FORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_ENV,

EVENT_FORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_PP_UPD

A toolkit application can be activated upon the reception of a short message. There are two ways for a card to receive an SMS : via the Envelope SMS-PP Data Download or the UpdateRecord EFsms instruction.

The reception of the SMS by the toolkit application cannot be guaranteed for the Update Record EFsms instruction.

The received SMS may be :

- formatted according to 3GPP TS 23.048 [3] or an other protocol to identify explicitly the toolkit application for which the

message is sent ;

- unformatted or using a toolkit application specific protocol the Toolkit Framework will pass this data to all

registered toolkit applications.

EVENT_FORMATTED_SMS_PP_ENV

This event is triggered by an envelope APDU containing an SMS_DATADOWNLOAD BER TLV with

an SMS_TPDU simple TLV according to 3GPP TS 23.048 [3].

The Toolkit Framework shall:

- verify the 3GPP TS 23.048 [3] security of the SMS TPDU ;

- trigger the toolkit application registered with the corresponding TAR defined at application loading;

- take the optional Application Data posted by the triggered toolkit application if present;

- secure and send the response packet.

The toolkit application will only be triggered if the TAR is known and the security verified. Application data

will also be deciphered.

EVENT_UNFORMATTED_SMS_PP_ENV

The registered toolkit applications will be triggered by this event and get the data transmitted in the APDU

envelope SMS_DATADOWNLOAD.

EVENT_FORMATTED_SMS_PP_UPD

This event is triggered by Update Record EFsms with an SMS TP-UD field formatted according to

TS 03.48[4].

The Toolkit Framework shall :

- update the EFsms file with the data received, it is then up to the receiving toolkit application to

change the SMS stored in the file (i.e. the toolkit application need to have access to the EFsms file)

- verify the 3GPP TS 23.048 [3] security of the SMS TPDU ;

- convert the Update Record EFsms in a TLV List, an EnvelopeHandler ;

- trigger the toolkit application registered with the corresponding TAR defined at application loading;

EVENT_UNFORMATTED_SMS_PP_UPD

The SIM Toolkit Framework will first update the EFsms file, convert the received APDU as described

above, and then trigger all the registered toolkit applications. All of them may modify the content of EFsms

(i.e. the toolkit applications need to have access to the EFsms file).

EVENT_UNFORMATTED_SMS_CB

When the ME receives a new cell broadcast message, the cell broadcast page may be passed to the card using

the envelope command. E.g. the application may then read the message and extract a meaningful piece of

information which could be displayed to the user, for instance.

EVENT_CALL_CONTROL_BY_SIM

When the NAA is in call control mode and when the user dials a number, this number is passed to the Toolkit Framework. Only one toolkit application can handle the answer to this command: call barred, modified or accepted.

EVENT_EVENT_DOWNLOAD_MT_CALL, EVENT_EVENT_DOWNLOAD_CALL_CONNECTED,

EVENT_EVENT_DOWNLOAD_CALL_DISCONNECTED, EVENT_EVENT_DOWNLOAD_LOCATION_STATUS,

EVENT_EVENT_DOWNLOAD_USER_ACTIVITY, EVENT_EVENT_DOWNLOAD_IDLE_SCREEN_AVAILABLE,

EVENT_EVENT_DOWNLOAD_CARD_READER_STATUS

The toolkit application will be triggered by the registered event download trigger, upon reception of the

corresponding Envelope command.

In order to allow the toolkit application to be triggered by these events, the Toolkit Framework shall have

previously issued a SET UP EVENT LIST proactive command. When a toolkit application changes one or more of

these requested events of its registry, the Toolkit Framework shall dynamically update the event

list stored in the ME during the current card session.

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

Before sending an SMS MO entered by the user, the SMS is submitted to the Toolkit framework. Only one toolkit application can

register to this event

EVENT_TIMER_EXPIRATION

This event is registered when the application executes a succesful CatGetTimer(). The toolkit application can then

manage this timer(s), and it will be triggered at the reception of the APDU Envelope TIMER EXPIRATION.

The Toolkit Framework shall reply busy to this Envelope APDU if it cannot guaranty to trigger the

corresponding toolkit application.

EVENT_UNRECOGNIZED_ENVELOPE

The application registered to this event shall be triggered by the framework if the BER-TLV tag contained in the

ENVELOPE APDU is not defined in the associated release of TS 11.14 [8] and if no corresponding constant is

defined in the list of the ToolkitConstants interface. The Unrecognized Envelope Event will allow a toolkit

application to handle the evolution of the TS 11.14 [8] specification.

EVENT_STATUS_COMMAND

At reception of a STATUS APDU command, the SIM Toolkit Framework shall trigger the registered toolkit

application.

A range of events is reserved for proprietary usage (from –128 to –1). The use of these events will make the toolkit

application incompatible.

The toolkit application shall be triggered for the registered events upon reception, and shall be able to access to the data

associated to the event using OpenEnvelope() or the low-level functions.

The order of triggering the toolkit application shall follow the priority level of each toolkit application defined at its loading. If

several toolkit applications have the same priority level, the last loaded toolkit application takes precedence.

4.4. Proactive command handling

The SIM application toolkit protocol (i.e. 91xx, Fetch, Terminal Response) is handled by the GSM application and the

Toolkit Framework, the toolkit application shall not handle those events.

The GSM application and the Toolkit Framework shall handle the transmission of the proactive command to the ME,

and the reception of the response. The Toolkit Framework will then return in the toolkit application just after the proactive command. It shall then provide to the toolkit application the values as indicated in the function parameters.

It also provides the raw return information so that the toolkit application can analyse the response.

The proactive command is sent to the ME as defined and constructed by the toolkit library without any check of the

Toolkit Framework.

The toolkit application shall not issue the following proactive commands : SET UP MENU, SET UP EVENT LIST, POLL

INTERVAL, POLLING OFF ; as those are system proactive commands that will affect the services of the Toolkit

Framework.
4.5. Application Loading

Applications compliant to this specification are represented for loading as loadfiles in the Executable and Linkable Format (ELF) described in [9] and [10]. The executable and linkable code in the ELF loadfile may be either native code or byte code and is assumed to have been created through a process of compiling the representation of the application in the C programming language.

The e_machine entry in the ELF header is set to according to the following table:

	Name
	Value
	Meaning

	EM_NONE
	0
	No machine

	EM_M32
	1
	AT&T WE 32100

	EM_SPARC
	2
	SPARC

	EM_386
	3
	Intel 80386

	EM_68K
	4
	Motorola 68000

	EM_88K
	5
	Motorola 88000

	RESERVED
	6
	Reserved for future use

	EM_860
	7
	Intel 80860

	EM_MIPS
	8
	MIPS I Architecture

	EM_S370
	9
	IBM System/370 Processor

	EM_MIPS_RS3_LE
	10
	MIPS RS3000 Little-endian

	RESERVED
	11-14
	Reserved for future use

	EM_PARISC
	15
	Hewlett-Packard PA-RISC

	RESERVED
	16
	Reserved for future use

	EM_VPP500
	17
	Fujitsu VPP500

	EM_SPARC32PLUS
	18
	Enhanced instruction set SPARC

	EM_960
	19
	Intel 80960

	EM_PPC
	20
	PowerPC

	EM_PPC64
	21
	64-bit PowerPC

	RESERVED
	22-35
	Reserved for future use

	EM_V800
	36
	NEC V800

	EM_FR20
	37
	Fujitsu FR20

	EM_RH32
	38
	TRW RH-32

	EM_RCE
	39
	Motorola RCE

	EM_ARM
	40
	Advanced RISC Machines ARM

	EM_ALPHA
	41
	Digital Alpha

	EM_SH
	42
	Hitachi SH

	EM_SPARCV9
	43
	SPARC Version 9

	EM_TRICORE
	44
	Infineon Tricore embedded processor

	EM_ARC
	45
	Argonaut RISC Core

	EM_H8_300
	46
	Hitachi H8/300

	EM_H8_300H
	47
	Hitachi H8/300H

	EM_H8S
	48
	Hitachi H8S

	EM_H8_500
	49
	Hitachi H8/500

	EM_IA_64
	50
	Intel IA-64 processor architecture

	EM_MIPS_X
	51
	Stanford MIPS-X

	EM_COLDFIRE
	52
	Motorola ColdFire

	EM_68HC12
	53
	Motorola M68HC12

	EM_MMA
	54
	Fujitsu MMA Multimedia Accelerator

	EM_PCP
	55
	Siemens PCP

	EM_NCPU
	56
	Sony nCPU embedded RISC processor

	EM_NDR1
	57
	Denso NDR1 microprocessor

	EM_STARCORE
	58
	Motorola Star*Core processor

	EM_ME16
	59
	Toyota ME16 processor

	EM_ST100
	60
	STMicroelectronics ST100 processor

	EM_TINYJ
	61
	Advanced Logic Corp. TinyJ embedded processor family

	Reserved
	62-65
	Reserved for future use

	EM_FX66
	66
	Infineon FX66 microcontroller

	EM_ST9PLUS
	67
	STMicroelectronics ST9+ 8/16 bit microcontroller

	EM_ST7
	68
	STMicroelectronics ST7 8-bit microcontroller

	EM_68HC16
	69
	Motorola MC68HC16 Microcontroller

	EM_68HC11
	70
	Motorola MC68HC11 Microcontroller

	EM_68HC08
	71
	Motorola MC68HC08 Microcontroller

	EM_68HC05
	72
	Motorola MC68HC05 Microcontroller

	EM_SVX
	73
	Silicon Graphics SVx

	EM_ST19
	74
	STMicroelectronics ST19 8-bit microcontroller

	EM_VAX
	75
	Digital VAX

	EM_CRIS
	76
	Axis Communications 32-bit embedded processor

	EM_JAVELIN
	77
	Infineon Technologies 32-bit embedded processor

	EM_FIREPATH
	78
	Element 14 64-bit DSP Processor

	EM_ZSP
	79
	LSI Logic 16-bit DSP Processor

	EM_MMIX
	80
	Donald Knuth's educational 64-bit processor

	EM_HUANY
	81
	Harvard University machine-independent object files

	EM_PRISM
	82
	SiTera Prism

	EM_MEL
	xx
	Multos Executable Language (MEL) byte codes

	EM_RTE
	xx
	Microsoft Smart Card for Windows Runtime Environment byte codes

Coding for other processors, processor instruction set extensions and byte code interpreters will be defined as needed. Processor-specific or interpreter-specific supplements to [10] may also be provided as needed.

Loadfile linkers, loaders and installers, whether on-card or off-card, return an error condition if the application representation in the loadfile is cannot be accommodated or if resources requested by the application are not available.

The over-the-air application loading mechanism, protocol and application life cycle are defined in [3].
5. ‘C’-language binding for (U)SIM API
5.1. Overview

This section presents the ‘C’-language binding to (U)SIM API. It is divided into sections as follows:

· Toolkit application entry and exit

· Man-Machine Interface

· Timers

· Supplementary card reader

· GSM UICC file store access

· Registry

· Miscellaneous

· Low-level functions

· Network services

· Supporting data types

For each function, the prototype is given followed by a table describing the parameters and whether they are input [in] or output [out] parameters. There is explanatory text which explains the function’s purpose and whether it is a proactive command or not.

The function names begin with “Cat” in order to avoid clashing with other function names perhaps being used within STK application.
5.2. Toolkit Version

The version of the API that is implemented by a (U)SIM is defined by the preprocessor symbol “SIM_TOOLKIT_VERSION”. This preprocessor symbol can be used by toolkit applications to conditionally compile applications that add or remove functionality depending upon the toolkit version they are compiled for.

5.3. Toolkit Application Functions

Toolkit applications will start by executing the application-defined function main. There are no arguments to main, nor are there any return results. The application can find out why it was invoked using the CatGetFrameworkEvent function. The Framework events that can cause an application to be invoked can be split into the following groups

· Command monitoring

· ME monitor events

· Application lifecycle change

· Framework fabricated events

Command monitoring enables applications to be invoked when the framework receives commands from the ME. Currently supported commands that can be monitored are

· TERMINAL PROFILE – monitoring this command enables an application to be invoked when the ME is powered on.

· STATUS – monitoring this command enables an application to be invoked when the ME polls for proactive commands.

· ENVELOPE – monitoring this command enables the application to be informed of specific envelope type arrival for example call control envelopes can be monitored.

ME monitor events are events that the framework can ask the ME to monitor; for example an event can be sent on call connection. ME monitored events are delivered to the application in the EVENT DOWNLOAD envelope as received from the ME.

The application lifecycle event enables the framework to invoke an application when the application status has changed. This is mainly to enable an application to be run at installation time so that it can set up its registry entries. The precise details of the application lifecycle event are not defined in this document.

Framework fabricated events enable the framework to invoke an application when some state in the SIM has changed. An example of this is to invoke an application when the EFsms file has been updated. The set of framework fabricated events are not defined in this document.

5.3.1. main

void
main (void);

The main function is the application entry point. The application should not return from main; it must call the CatExit function.

An example main function is given below

 void main(void)
 {
 switch (CatGetFrameworkEvent())
 {
 case EVENT_APPLICATION_LIFECYCLE_INSTALL:
 // set up registry for this application
 CatSetMenuString(…..
 CatNotifyOnEnvelope(SMS_PP_DOWNLOAD_TAG,1);
 CatNotifyOnEvent(CARD_READER_STATUS,1);
 break;
 case EVENT_ENVELOPE_COMMAND:
 {
 BYTE length;
 switch (CatOpenEnvelope(&length))
 {
 case MENU_SELECTION_TAG:
 // search for help request …..
 break;
 case SMS_PP_DOWNLOAD_TAG:
 …..
 break;
 case EVENT_DOWNLOAD_TAG:
 // search for card reader status event …..
 break;
 default:
 CatExit(SIM_EXIT_SUCCESS);
 }
 }
 break;
 default:
 CatExit(SIM_EXIT_FAILURE);
 break;
 }
 CatExit(SIM_EXIT_FAILURE);
 }

5.3.2. CatGetFrameworkEvent

CatFrameworkEventType
CatGetFrameworkEvent(void);

	RETURN
	
	Framework event type that caused the application to run; see CatFrameworkEventType for details.

CatGetFrameworkEvent returns the framework event that caused the application to run.

5.3.3. CatExit

void
CatExit (UINT16 code void);

	Code
	[in]
	The implementation defined macros SIM_EXIT_SUCCESS or SIM_EXIT_FAILURE should be used to indicate success or failure.

CatExit causes the application to terminate execution and return control to the framework. When the application is restarted, it enters at main.

5.4. Registry

The menu entry(ies) of the application, together with the set of framework events that the application is interested in, may be registered using the functions defined in this section.

5.4.1. CatSetMenuString

void
CatSetMenuString (BYTE MenuID,
 BYTE MenuStringLength, const void *MenuString,
 const CatIconIdentifier *IconIdentifier,
 BYTE HelpAvailable,
 BYTE NextAction);

	MenuID
	[in]
	The menu ID by which this entry is known.

	MenuStringLength
	[in]
	The length, in bytes, of MenuString.

	MenuString
	[in]
	The menu entry to be placed in the registry. If MenuString is NULL or MenuStringLength is zero, any existing menu entry associated with MenuID is removed and is not displayed by the ME.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	HelpAvailable
	[in]
	If non zero the application can supply help.

	NextAction
	[in]
	The (optional) next action value

CatSetMenuString allows the application to define a menu entry together with an icon. A non-zero value can be supplied if a next action indicator is required. This function will implicitly request that the application be notified of menu selection envelopes i.e. there is no requirement to call the CatNotifiyOnEnvelope function. An application can have several menu entries and must examine the menu selection envelope to decide which menu selection caused it to be invoked.

The ordering of menu entries within a menu presented by the ME is based on increasing integer values of identifiers selected by the application. Note that any application’s menu item ordering may be further overridden by an external source, e.g. card issuer, via a request to the SIM Toolkit framework—this mechanism is beyond the scope of this document.

5.4.2. CatNotifyOnFrameworkEvent

void
CatNotifyOnFrameworkEvent(CatFrameworkEventType Event, BYTE Enabled);

	Event
	[in]
	A framework event the application is interested in, see CatFrameworkEventType for details.

	Enabled
	[in]
	If non-zero the framework event is monitored otherwise the framework event isn’t monitored. By default only application lifecycle events are monitored.

CatNotifyOnFrameworkEvent enables the application to add/remove a framework event to/from the set of framework events that it is interested in.

5.4.3. CatNotifyOnEnvelope

void
CatNotifyOnEnvelope(CatEnvelopeTagType Tag, BYTE Enabled);

	Tag
	[in]
	The particular envelope type to monitor; see CatEnvelopeTagType for details.

	Enabled
	[in]
	If non-zero the envelope type is monitored otherwise the envelope type isn’t monitored.

CatNotifyOnEnvelope enables the application to add/remove an envelope monitoring event to/from the set of the envelope monitoring events it is interested in. Note that the monitoring of MENU SELECTION, TIMER EXPIRATION and EVENT DOWNLOAD envelopes is handled by the framework.

5.4.4. CatNotifyOnEvent

void
CatNotifyOnEnvelopent(CatEventType EventType, BYTE Enabled);

	EventType
	[in]
	The particular event type to monitor; see CatEventType for details.

	Enabled
	[in]
	If non-zero the event type is monitored otherwise the event isn’t monitored.

CatNotifyOnEvent enables the application to add/remove an ME monitored event to/from the set of ME monitored events it is interested in.

5.5. Man-Machine Interface

5.5.1. CatAddItem

void
CatAddItem(BYTE ItemTextLength, const void *ItemText, BYTE ItemIdentifier);

	PRIVATE
ItemTextLength
	[in]
	The length in bytes of ItemText.

	ItemText
	[in]
	Text associated with item.

	ItemIdentifier
	[in]
	Specifies a unique identifier to be associated with this selection. This value is returned in the SelectedItem parameter of CatSelectItem if this item is selected from the menu.

CatAddItem adds an item to a list for the user to select. It is not a proactive command.

To display a list of items for the user to choose from, at least three calls that must be issued with no intervening global services for mobile commmunications (GSM) proactive commands in between them. This application programming interface (API) call is the second call. CatAdditem must be called after CatSelectItem and before CatEndSelectItem. CatAddItem may be called multiple times consecutively add items to a selection list.

5.5.2. CatSelectItem

void
CatSelectItem (BYTE TitleLength, const void *Title,
 CatSelectItemOptions Options);

	TitlePRIVATE
Length
	[in]
	The length in bytes of Title.

	Title
	[in]
	Title of the list of choices.

	Options
	[in]
	Acceptable values for this parameter are listed in CatSelectItemOptions.

CatSelectItem displays a list of items on the mobile equipment for the user to choose from. Even though this function, by name, maps to a GSM proactive command, this API does not itself issue a proactive command. CatEndSelectItem must be called for an actual proactive command to be issued.

To display a list of items for the user to choose from, at least three calls must be issued with no intervening GSM proactive commands between them. This API call is the first. The other two APIs required are CatAddItem and CatEndSelectItem.

5.5.3. CatEndSelectItem

CatGeneralResult
CatEndSelectItem (BYTE *SelectedItem,
 const CatIconIdentifier *IconIdentifier);

	PRIVATE
SelectedItem
	[out]
	Index of item selected by user.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SELECT ITEM proactive command.

CatEndSelectItem issues the proactive command SELECT ITEM that displays on the mobile equipment a list of items for the user to choose from. The terminal response is parsed and if successful the SelectedItem parameter is updated.

To display a list of items for the user to choose from, at least three calls must be issued with no intervening global services for mobile communications (GSM) proactive commands in between them. This function call is the last. The other two APIs required are CatSelectItem and CatAddItem.

5.5.4. CatDisplayText

CatGeneralResult
CatDisplayText (CatDCSValue TextDCS, BYTE TextLength, const void *Text,
 CatDisplayTextOptions Options,
 const CatIconIdentifier *IconIdentifier,
 BYTE ImmediateResponse);

	PRIVATE
TextDCS
	[in]
	The data coding scheme for Text. Acceptable values for this parameter are listed in CatDCSValue.

	TextLength
	[in]
	The length in bytes of Text.

	Text
	[in]
	String to display on ME.

	Options
	[in]
	Acceptable values for this parameter are listed in CatDisplayTextOptions.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	ImmediateResponse
	[in]
	True—program continues execution as soon as ME receives instruction.
False—program waits until text is cleared on the mobile equipment before continuing, and the Immediate Response TLV is not passed to the mobile equipment.

	RETURN
	
	The GeneralResult code of the DISPLAY TEXT proactive command.

CatDisplayText issues a proactive command that displays text on the display of the mobile equipment.

5.5.5. CatGetInKey

CatGeneralResult
CatGetInKey (CatDCSValue TitleDCS, BYTE TitleLength, const void *Title,
 CatGetInKeyOptions Options,
 const CatIconIdentifier *IconIdentifier,
 CatDCSValue *DCSOut, void *KeyOut);

	PRIVATE
TitleDCS
	[in]
	The data coding scheme for Title. Acceptable values for this parameter are listed in CatDCSValue

.

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display on ME.

	Options
	[in]
	Acceptable values for this parameter are listed in CatGetInKeyOptions.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	DcsOut
	[out]
	The packing type of the returned key. This parameter is set to one of the values listed in CatDCSValue

.

	KeyOut
	[out]
	The key pressed.

	RETURN
	
	The GeneralResult code of the GET INKEY proactive command.

CatGetInKey issues the proactive command GET INKEY. The terminal response is parsed and if successful the DCSOut and KeyOut parameters are updated

5.5.6. CatGetInput

CatGeneralResult
CatGetInput(CatDCSValue TitleDCS, BYTE TitleLength, const void *Title,
 CatGetInputOptions Options,
 CatDCSValue DefaultReplyDCS,
 BYTE DefaultReplyLength, const void *DefaultReply,
 BYTE MinimumResponseLength,
 BYTE MaximumResponseLength,
 const CatIconIdentifier *IconIdentifier,
 CatDCSValue *MsgOutDCS, BYTE *MsgOutLength, void *MsgOut);

	PRIVATE
TitleDCS
	[in]
	The data-coding scheme for Title. Acceptable values for this parameter are listed in CatDCSValue

.

	TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display on ME while waiting for the user to press a key.

	Options
	[in]
	Acceptable values for this parameter are listed in CatGetInputOptions.

	DefaultReplyDCS
	[in]
	The data coding scheme for DefaultReply. Acceptable values for this parameter are listed in CatDCSValue

.

	DefaultReplyLength
	[in]
	The length in bytes of DefaultReply.

	DefaultReply
	[in]
	Default response string; use NULL for "no reply"—no Default Reply tag length value (TLV) is sent to the ME.

	MinimumResponseLength
	[in]
	Minimum allowed length for the response, in either characters or digits.

	MaximumResponseLength
	[in]
	Maximum allowed length for the response, in either characters or digits.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	MsgOutDCS
	[out]
	Packing type of the returned data. This parameter is set to one of the values listed in CatDCSValue

.

	MsgOutLength
	[out]
	Length of the returned message in bytes.

	MsgOut
	[out]
	A pointer to where the returned string or message is placed.

	RETURN
	
	The GeneralResult code of the GET INPUT proactive command.

CatGetInput issues the proactive command GET INPUT. The terminal response is parsed and if successful MsgOutDCS, MsgOutLength, MsgOut parameters are updated.

5.5.7. CatSetupIdleModeText

CatGeneralResult
CatSetupIdleModeText (CatDCSValue TextDCS, BYTE TextLength, const void *Text,
 const CatIconIdentifier *IconIdentifier);

	PRIVATE
TextDCS
	[in]
	The data-coding scheme for Text. Acceptable values for this parameter are listed in CatDCSValue

.

	TextLength
	[in]
	The length in bytes of Text.

	Text
	[in]
	String to display while mobile equipment is idle.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SETUP IDLE MODE TEXT proactive command.

CatSetupIdleModeText issues the proactive command SET UP IDLE MODE TEXT that sets the mobile equipment's default text string.

5.5.8. CatPlayTone

CatGeneralResult
CatPlayTone (BYTE TextLength, const void *Text,
 CatTone Tone,
 CatTimeUnit Units, BYTE Duration,
 const CatIconIdentifier *IconIdentifier);

	PRIVATE
TextLength
	[in]
	The length in bytes of the string Text to display on the ME.

	Text
	[in]
	String to display on ME while sound is being played.

	Tone
	[in]
	Specifies tone to play. Acceptable values for this parameter are listed in CatTone.

	Units
	[in]
	Unit of time specified for duration parameter. Acceptable values for this parameter are listed in CatTimeUnit.

	Duration
	[in]
	Amount of time to play the tone, in units specified in the Units parameter

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the PLAY TONE proactive command.

CatPlayTone issues the proactive command PLAY TONE.

5.6. Timers

5.6.1. CatGetTimer

BYTE
CatGetTimer (void);

	RETURN
	
	The identifier of the timer.

CatGetTimer returns the ID of an available timer. If no timer is available, this function returns zero. Timer identifiers are assigned by the framework.

5.6.2. CatFreeTimer

void
CatFreeTimer (BYTE TimerID);

	PRIVATE
TimerID
	[in]
	ID of timer to free; obtained from CatGetTimer.

CatFreeTimer frees the handle to the specified timer, making it available for the next request. It is not a proactive command. No information is passed to the mobile equipment by this function.

The value returned is zero if the TimerID is valid and is freed, otherwise a non-zero value is received.

5.6.3. CatStartTimer

void
CatStartTimer (BYTE TimerID, CatTimerValue *TimerValue);

	PRIVATE
TimerID
	[in]
	ID of the timer to initialize; obtained from CatGetTimer.

	TimerValue
	[in]
	Initial value of the timer. The value is specified in a structure of type CatTimerValue.

CatStartTimer issues a proactive TIMER MANAGEMENT command to initializ a timer to the parameter values.

5.6.4. CatGetTimerValue

void
CatGetTimerValue (BYTE TimerID, CatTimerValue *TimerValue);

	PRIVATE
TimerID
	[in]
	ID of the timer from which to obtain values; obtained from CatGetTimer

	TimerValue
	[out]
	The time remaining to run of timer TimerID. The value is returned in a structure of type CatTimerValue.

CatGetTimerValue issues a proactive TIMER MANAGEMENT command to obtain the timer's current value.

5.7. Supplementary Card Reader Management

These functions access the supplementary card-reader on a dual-slot ME.

5.7.1. CatPowerOnCard

CatGeneralResult
CatPowerOnCard (CatDevice DeviceID, void *ATR, BYTE *ATRLength, void *ATR);

	PRIVATE
DeviceID
	[in]
	The device to power on. An acceptable value for this parameter is a card reader device selected from CatDevice.

	ATR
	[out]
	Pointer to where answer to reset (ATR) will be stored.

	ATRLength
	[out]
	Number of bytes returned by the card as the ATR.

	RETURN
	
	The GeneralResult code of the POWER ON CARD proactive command.

CatPowerOnCard issues the proactive command POWER ON CARD that powers on a supplementary card reader. The terminal response is parsed and if successful the ATR and ATRLength parameters are.

5.7.2. CatPowerOffCard

CatGeneralResult
CatPowerOffCard (CatDevice DeviceID);

	PRIVATE
DeviceID
	[in]
	The device to power off. An acceptable value for this parameter is a card reader device selected from CatDevice.

	RETURN
	
	The GeneralResult code of the POWER OFF CARD proactive command.

CatPowerOffCard issues the proactive command POWER OFF CARD that turns off the supplementary card reader.

5.7.3. CatPerformCardAPDU

CatGeneralResult
CatPerformCardAPDU (CatDevice DeviceID,

BYTE CAPDULength,const void *CAPDU, BYTE CAPDULength,
 BYTE *RAPDULength, void *RAPDU, BYTE *RAPDULength);

	PRIVATE
DeviceID
	[in]
	The device to send the command APDU (C-APDU) to. An acceptable value for this parameter is a card reader device selected from CatDevice.

	CAPDU
	[in]
	Pointer to the command C-APDU to be sent to the additional card device.

	CAPDULength
	[in]
	The number of bytes in the C-APDU.

	RAPDU
	[out]
	Pointer to the buffer that will contain the response APDU (R-APDU) returned by the card in the additional card reader. You must allocate enough space to hold the R-APDU sent by the card.

	RAPDULength
	[out]
	The number of bytes returned by the card in the additional card reader.

	RETURN
	
	The GeneralResult code of the PERFORM CARD APDU proactive command.

CatPerformCardAPDU issues the proactive command PERFORM CARD APDU that sends application program data units (APDU) to the supplementary card reader. The terminal response is parsed and if successful the RAPDU and RAPDULength parameters are updated.

5.7.4. CatGetReaderStatus

CatGeneralResult
CatGetReaderStatus (CatDevice DeviceID, CatReaderStatusOptions Options,
 BYTE *Status);

	PRIVATE
DeviceID
	[in]
	Device to detect status of. An acceptable value for this parameter is a card reader device selected from CatDevice.

	Options
	[in]
	Selects what type of status information to return. An acceptable value for this parameter is selected from CatGetReaderStatusOptions.

	Status
	[out]
	Status of additional card reader.

	RETURN
	
	The GeneralResult code of the GET READER STATUS proactive command.

CatGetReaderStatus issues the proactive command GET READER STATUS that retrieves the status of the additional card readers on the mobile equipment. The terminal response is parsed and if successful the Status parameter is updated.

5.8. GSMUICC File Store Access

These functions are required by 02.19, chapter 4.3.

The abstract type FID is used to denote the file and a set of pre-processor macros are defined that enumerate all of the standard files of a GSM 11.11NAA file store. A FID could be implemented as an unsigned 16 bit number as follows

typedef unsigned short FID;

#define FID_MF
 0x3F00

The starting file-context of a Toolkit Application is the MF. When a Tooolkit Application exits, the file-context is lost.

The Access Control privileges of the application are granted during installation according to the level of trust. When an application requests access to UICC or operator specific files, the Card Application Toolkit Framework checks if this access is allowed by examination of the file control information stored on the card. If access is granted the CAT Framework will process the access request, if access is not granted, an appropriate statusword will be returned .

[Contents and coding of the file(s) containing access control information will be defined in ETSI TS 101.221]

All GSMUICC functions return the status bytes according to ETSI TS 101 221 GSM11.11., where 90 00 represents “success.”

5.8.1. CatSelect

UINT16
CatSelect (FID FileIdentifier, CatFileStatus *status);

	PRIVATE
FileIdentifier
	[in]
	The file to select.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatSelect selects the specified file as the current working file.

5.8.2. CatStatus

UINT16
CatStatus (CatFileStatus *status);

	PRIVATE
NumBytes
	[out]
	The number of bytes written.

	Buffer
	[out]
	The status of the currently selected file.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatStatus returns the file status of the currently selected file as specified in ETSI TS 101 221 GSM11.11.

5.8.3. CatGetCHVStatus

void
CatGetCHVStatus (BYTE CHV[4]);

	CHVType
	[out]
	Updates the CHV array with CHV1, CHV2, UNBLOCKCHV1,
and UNBLOCKCHV2 with CHV1 at array element zero.

CatGetCHVStatus returns the current CHV values. The format of the returned bytes is specified in ETSI TS 101 221 GSM11.11..

5.8.4. CatReadBinary

UINT16
CatReadBinary (unsigned short Offset,
 void *NumBytes,
 void *Buffer);

	Offset
	[in]
	The offset into the file.

	PRIVATE
NumBytes
	[in]
	The number of bytes to read.

	Buffer
	[out]
	The buffer into which the data is written.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatReadBinary reads NumBytes from position Offset in the currently selected file into Buffer.

5.8.5. CatUpdateBinary

UINT16
CatUpdateBinary (unsigned short Offset,
 BYTE *NumBytes,
 const void *Buffer);

	Offset
	[in]
	The offset into the file.

	PRIVATE
NumBytes
	[in]
	The number of bytes to write.

	Buffer
	[in]
	The buffer containing the data to write to the file.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatUpdateBinary writes NumBytes contained in Buffer to position Offset in the currently selected file.

5.8.6. CatReadRecord

UINT16
CatReadRecord (BYTE RecordNumber,
 CatRecordAccessModes Mode,
 BYTE NumBytes,
 void *Buffer);

	RecordNumber
	[in]
	The record number to read from.

	Mode
	[in]
	How to interpret the RecordNumber. One of
REC_ACC_MODE_NEXT,
REC_ACC_MODE_PREVIOUS, REC_ACC_MODE_ABSOLUTE_CURRENT.

	PRIVATE
NumBytes
	[in]
	The number of bytes to read from the record.

	Buffer
	[out]
	The buffer into which the data is written.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatReadRecord reads NumBytes from the record RecordNumber of the currently selected file into Buffer.

5.8.7. CatUpdateRecord

UINT16
CatUpdateRecord (BYTE RecordNumber,
 CatRecordAccessModes Mode,
 BYTE NumBytes,
 const void *Buffer);

	RecordNumber
	[in]
	The record number to write into.

	Mode
	[in]
	How to interpret the RecordNumber. One of
REC_ACC_MODE_NEXT,
REC_ACC_MODE_PREVIOUS, REC_ACC_MODE_ABSOLUTE_CURRENT.

	PRIVATE
NumBytes
	[in]
	The number of bytes to write into the record.

	Buffer
	[out]
	The buffer containing the data to write to the file.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatUpdateRecord writes NumBytes into the record RecordNumber of the currently selected file from Buffer.

5.8.8. CatSeek

UINT16
CatSeek (CatSeekModes Mode,
 BYTE PatternLength,
 const void *Pattern);

	Mode
	[in]
	Defines the seek method, One of
SEEK_FROM_BEGINNING_FORWARD,
SEEK_FROM_END_BACKWARD,
SEEK_FROM_NEXT_FORWARD,
SEEK_FROM_PREVIOUS_BACKWARD

	PRIVATE
PatternLength
	[in]
	The size in bytes of the pattern to search for.

	Pattern
	[in]
	The buffer containing the pattern to search for.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatSeek searches the currently selected file for a pattern of length patternLength contained in Pattern. If the pattern is found the current record is set appropriately.

5.8.9. CatIncrease

UINT16
CatIncrease(unsigned long Increment,
 unsigned long *Value);

	Increment
	[in]
	The value to increase by.

	PRIVATE
Value
	[out]
	The new value.

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatIncrease adds Increment to the current record of the selected cylic file and returns the new Value. The most significant byte of Increment is ignored.

5.8.10. CatInvalidate

UINT16
CatInvalidate (void);

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatInvalidate invalidates the selected file.

5.8.11. CatRehabilitate

UINT16
CatRehabilitate (void);

	RETURN
	
	The returned 16-bit unsigned value is a concatenation of the SW response bytes with SW1 as the high byte and SW2 as the low byte, so a successful execution would return 0x9000.

CatRehabilitate rehabilitates the selected file.

5.9. Miscellaneous

5.9.1. CatGetTerminalProfile

void
CatGetTerminalProfile (BYTE *Profile,
 BYTE *ProfileOutLength, BYTE *Profile);

	Profile
	[out]
	Where the terminal profile is written.

	ProfileOutLength
	[out]
	The number of bytes written to Profile.

CatGetTerminalProfile returns the stored terminal profile in Profile.

5.9.2. CatMoreTime

CatGeneralResult
CatMoreTime (void);

	RETURN
	
	The GeneralResult code of the MORE TIME proactive command.

CatMoreTime issues the proactive command MORE TIME to the mobile equipment that it needs more time to process an application.

5.9.3. CatPollingOff

CatGeneralResult
CatPollingOff (void);

	RETURN
	
	The GeneralResult code of the POLLING OFF proactive command.

CatPollingOff issues the proactive command POLLING OFF that disables proactive polling; this essentially turns off CatPollInterval.

5.9.4. CatPollInterval

CatGeneralResult
CatPollInterval (CatTimeUnit Unit, BYTE Interval,
 CatTimeInterval *ActualIntervalOut);

	PRIVATE
Unit
	[in]
	Desired time interval. Acceptable values for this parameter are listed in CatTimeUnit

.

	Interval
	[in]
	Interval in units.

	ActualIntervalOut
	[out]
	Response from mobile equipment negotiating the interval. This may or may not be the same as Unit and Interval. The value returned is in a structure of type CatTimeInterval.

	RETURN
	
	The GeneralResult code of the POLL INTERVAL proactive command.

CatPollInterval issues the proactive command POLL INTERVAL that requests the mobile equipment to set a time interval between status application program data units (APDU) that the mobile equipment sends to the subscriber identity module (SIM)UICC. The mobile equipment responds with a time interval of its own that most closely matches the application programming interface (API) request.

Polling can be disabled by using CatPollingOff.

5.9.5. CatRefresh

CatGeneralResult
CatRefresh (CatRefreshOptions Options);

CatGeneralResult
CatRefreshWithFileList (CatRefreshOptions Options
 BYTE FileListLength,
 const void *FileList);

	OptionsPRIVATE

	[in]
	Informs the ME of what needs refreshing. Acceptable values for this parameter are listed in CatRefreshOptions.

	FileListLength
	[in]
	The length, in bytes, of FileList.

	FileList
	[in]
	The file identifiers of the files that have changed.

	RETURN
	
	The GeneralResult code of the SIM REFRESH proactive command.

CatRefresh issues the proactive command REFRESH that informs mobile equipment that the SIMNAA has changed configuration due to SIMUICC activity (such as an application running).

5.9.6. CatLanguageNotification

void
CatLanguagenotification (CatLanguageNotificationOptions Options,
 const void *Language);

	Options
	[in]
	Language options. An acceptable value for this parameter is a card reader device selected from CatLanguageNotificationOptions.

	LanguagePRIVATE

	[in]
	The 2-character language code as defined by ISO 639 [6], encoded using SMS default 7-bit coded alphabet as defined by GSM 03.38 [7].

	RETURN
	
	The GeneralResult code of the LANGUAGE NOTIFICATION proactive command.

CatLanguageNotification issues the proactive command LANGUAGE NOTIFICATION that notifies the mobile equipment about the language currently used for any text string within proactive commands or envelope command responses.

5.9.7. CatLaunchBrowser

CatGeneralResult
CatLaunchBrowser (CatLaunchBrowserOptions Options,
 BYTE TitleLength, const void *Title,
 BYTE URLLength, const void *URL,
 const CatIconIdentifier *IconIdentifier);

	Options
	[in]
	Options used to launch the browser. Acceptable values for this parameter are listed in CatLaunchBrowserOptions.

	PRIVATE
TitleLength
	[in]
	The length in bytes of the string Title

	Title
	[in]
	String to display on the ME during the user confirmation phase.

	PRIVATE
URLLength
	[in]
	The length in bytes of URL.

	URL
	[in]
	The URL to open the browser at.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the LAUNCH BROWSER proactive command.

CatLaunchBrowser and CatLaunchBrowserEx issue the proactive command LAUNCH BROWSER that launches a browser on the ME.

CatGeneralResult
CatLaunchBrowserEx (const CatLaunchBrowserExParams *params);

The structure CatLaunchBrowserExParams has the following members:

typedef struct
{
 // Mandatory fields
 CatLaunchBrowserOptions Options,
 BYTE URLLength;
 const void *URL;

 // Optional fields
 BYTE BrowserIdentityLength;
 const void *BrowserIdentity;
 BYTE BearerLength;
 const BYTE *Bearer;
 BYTE NumProvisioningFileReferences;
 BYTE *ProvisioningFileReferenceLengths;
 const BYTE **ProvisioningFileReferences;
 BYTE GatewayProxyIdLength;
 const void * GatewayProxyId;
 CatAlphaString Title;
 CatIconIdentifier IconIdentifier;
} CatLaunchBrowerExParams;
with the following members:

	PRIVATE
URLLength
	[in]
	The length in bytes of URL.

	URL
	[in]
	The URL to open the browser at.

	BrowserIdentityLength
	[in]
	Length in bytes of BrowserIdentity.

	BrowserIdentity
	[in]
	The browser identity. If BrowserIdentity is NULL, no BROWSER IDENTITY TLV is sent to the ME.

	BearerLength
	[in]
	Length in bytes of Bearer.

	Bearer
	[in]
	The list of bearers in order of priority requested. The type CatBearer defines the values acceptable. If Bearer is NULL, no BEARER TLV is sent to the ME.

	NumProvisioningFileReferences
	[in]
	The number of Provisioning File References.

	ProvisioningFileReferenceLengths
	[in]
	A pointer to the array of Provisioning File References lengths.

	ProvisioningFileReferences
	[in]
	A pointer to the array of Provisioning File References.

	GatewayProxyIdLength
	[in]
	Length in bytes of GatewayProxyId.

	GatewayProxyId
	[in]
	The gateway or proxy identity. If GatewayProxyId is NULL, no TEXT STRING TLV describing the gateway/proxy is sent to the ME.

	Title
	[in]
	String to display on the ME; see CatAlphaString.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

5.10. Low-level Interface

This section presents a low-level programming interface which allows you to

· Construct proactive commands and send them to the mobile equipment.

· Access the terminal response from the mobile equipment.

· Search the terminal response and contents of envelopes for specified TLVs.

· Unpack the contents of envelopes from the ME and send responses.

It is required by 02.19 chapter 10.2 .These functions are provided so that functionality that is not provided in the high level API is still accessible. All of these functions work on a single data buffer that has a single data pointer and can only be accessed sequentially. The high-level proactive functions may make use of the data buffer so consequently the high-level proactive functions should not be used whilst using the low-level functions.

5.10.1. CatResetBuffer

void
CatResetBuffer(void);

This function resets the data pointer to the beginning of the buffer.

5.10.2. CatStartProactiveCommand

void
CatStartProactiveCommand(BYTE Command,
 BYTE Options,
 BYTE To);

	PRIVATE
Command
	[in]
	Command byte of proactive command.

	Options
	[in]
	Command options of proactive command.

	To
	[in]
	The destination device identity.

CatStartProactiveCommand resets the data pointer and starts the construction of a proactive command by writing the command tag, command details and device identities to the data buffer. The data pointer is left pointing after the device identities so that proactive command specific data can be written.

5.10.3. CatSendProactiveCommand

CatGeneralResult
CatSendProactiveCommand (BYTE *Length);

	Length
	[out]
	Pointer that is updated with the length of the terminal response

	RETURN
	[out]
	The general result byte of the terminal response

CatSendProactiveCommand sends the contents of the data buffer as a proactive command and updates the data buffer with the terminal response. The general result byte of the terminal response is returned by this function. The length of the terminal response is written to *Length. The data pointer is set to point to the additional information of the terminal response.

5.10.4. CatOpenEnvelope

CatEnvelopeTagType
CatOpenEnvelope(BYTE *Length);

	Length
	[out]
	Pointer that is updated with the length of the envelope

	RETURN
	[out]
	The envelope tag

CatOpenEnvelope returns the envelope tag of the data buffer and the length of the envelope data. The data pointer is set to point to the envelope data.

5.10.5. CatSendEnvelopeResponse

void
CatSendEnvelopeResponse (void);

CatSendEnvelopeResponse sends the contents of the data buffer as a successful envelope response.

5.10.6. CatSendEnvelopeErrorResponse

void
CatSendEnvelopeErrorResponse (void);

This function sends the contents of the data buffer as an unsuccessful envelope response.

5.10.7. CatPutData

void
CatPutData(BYTE Length,
 const void *Data)

	PRIVATE
Length
	[in]
	Length of Data

	Data
	[in]
	Pointer to Data.

CatPutData appends Length bytes of data to the data buffer

5.10.8. CatPutByte

void
CatPutByte (BYTE Data)

	Data
	[in]
	Data byte.

CatPutByte appends the supplied data byte to the data buffer.

5.10.9. CatPutTLV

void
CatPutTLV (BYTE Tag,
 BYTE Length,
 const void *Value);

	PRIVATE
Tag
	[in]
	Tag byte.

	Length
	[in]
	Length of value.

	Value
	[in]
	A pointer to the value.

CatPutTLV appends a general TLV to the data buffer.

5.10.10. CatPutBytePrefixedTLV

void
CatPutBytePrefixedTLV (BYTE Tag,
 BYTE Prefix,
 BYTE Length,
 const void *Value);

	PRIVATE
Tag
	[in]
	Tag byte.

	Prefix
	[in]
	Prefix byte.

	Length
	[in]
	Length of value.

	Value
	[in]
	A pointer to the value.

CatPutBytePrefixedTLV appends a TLV to the data buffer with a single byte placed before the Value.

5.10.11. CatPutOneByteTLV

void
CatPutOneByteTLV (BYTE Tag,
 BYTE Value);

	PRIVATE
Tag
	[in]
	Tag byte.

	Value
	[in]
	Value byte.

CatPutOneByteTLV appends a single byte valued TLV to the data buffer.

5.10.12. CatPutTwoByteTLV

void
CatPutTwoByteTLV (BYTE Tag,
 BYTE Value1,
 BYTE Value2);

	PRIVATE
Tag
	[in]
	Tag byte.

	Value1
	[in]
	First Value byte.

	Value2
	[in]
	Second Value byte.

CatPutTwoByteTLV appends a two byte valued TLV to the data buffer.

5.10.13. CatGetByte

BYTE
CatGetByte (void)

	RETURN
	[out]
	Data byte.

CatGetByte returns the byte at the current data pointer and increments the data pointer by one.

5.10.14. CatGetData

const void *
CatGetData (BYTE Length)

	PRIVATE
Length
	[in]
	Length of Data

	RETURN
	[out]
	Pointer to Data.

CatGetData returns the current data pointer and increments the data pointer by Length bytes.

5.10.15. CatFindNthTLV

const void *
CatFindNthTLV (BYTE Tag,
 BYTE Occurrence,
 BYTE *Length);

	Tag
	[in]
	Tag to find.

	Occurrence
	[in]
	Occurrence of Tag to find with “1” being the first.

	Length
	[out]
	Length of found TLV.

	RETURN
	[out]
	Pointer to data of found TLV

CatFindNthTLV finds the nth TLV that matches Tag in the data buffer, where nth is specified by the Occurrence parameter. If a match is found the data pointer is updated to the found TLV, the function returns a pointer to the found value and updates Length with the data length. If no match was found the function returns the null pointer and the data pointer is left unchanged.

5.10.16. CatFindNthTLVInUserBuffer

const void *
CatFindNthTLVInUserBuffer (BYTE BufferLen,
 const void *Buffer,
 BYTE Tag,
 BYTE Occurrence,
 BYTE *Length);

	BufferLen
	[in]
	Length of buffer

	Buffer
	[in]
	Buffer to search

	Tag
	[in]
	Tag to find.

	Occurrence
	[in]
	Occurrence of Tag to find with “1” being the first.

	Length
	[out]
	Length of found TLV.

	RETURN
	[out]
	Pointer to data of found TLV

CatFindNthTLVInUserBuffer finds the nth TLV that matches Tag is the supplied buffer. The function returns a pointer to the found value and updates Length with the data length. If no match was found the function returns the null pointer.

5.11. Network Services

5.11.1. CatGetLocationInformation

CatGeneralResult
CatGetLocationInformation (CatLocationInformation *LocationInformation);

	LocationInformation
	[out]
	A pointer to where the location information from the mobile equipment is placed. Refer to the CatLocalInformation section for member details.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.
	
	The GeneralResult code of the DISPLAY TEXT proactive command.

CatProvideLocationInformation requests the mobile equipment to send location information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.11.2. CatGetTimingAdvance

CatGeneralResult
CatGetTimingAdvance (CatTimingAdvance *TimingAdvance);

	TimingAdvance
	[out]
	A pointer to where the timing advance information from the mobile equipment is placed. Refer to the CatTimingAdvance section for member details.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatProvideTimingAdvance requests the mobile equipment to send timing advance information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.11.3. CatGetIMEI

CatGeneralResult
CatGetIMEI (BYTE IMEI[8]);

	IMEI
	[out]
	A pointer to where the IMEI of the mobile equipment is placed.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetIMEI requests the mobile equipment to send the IMEI to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.11.4. CatGetNetworkMeasurementResults

CatGeneralResult
CatGetNetworkMeasurementResults (BYTE MeasurementResults[10]);

	MeasurementResults
	[out]
	A pointer to where the network measurement results from the mobile equipment is placed.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetNetworkMeasurementResults requests the mobile equipment to send the network measurement results to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.11.5. CatGetDateTimeAndTimeZone

CatGeneralResult
CatGetDateTimeAndTimeZone (BYTE DateTimeAndTimeZone[7]);

	DateTimeAndTimeZone
	[out]
	A pointer to where the date, time, and time zone from the mobile equipment is placed.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetDateTimeAndTimeZones requests the mobile equipment to send the date, time, and time zone information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.11.6. CatGetLanguage

CatGeneralResult
CatGetLanguage (BYTE Language[2]);

	DateTimeAndTimeZone
	[out]
	A pointer to where the language from the mobile equipment is placed.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatGetLanguage requests the mobile equipment to send the language information to the SIM using the PROVIDE LOCAL INFORMATION proactive command.

5.11.7. CatSetupCall

CatGeneralResult
CatSetupCall (BYTE CallSetupMessageLength, const void *CallSetupMessage,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE DiallingNumberLength, const void *DiallingNumber,
 CatSetupCallOptions Options,
 const CatIconIdentifier *UserConfirmationIconIdentifier,
 BYTE CallSetupMessageLength, const void *CallSetupMessage,
 const CatIconIdentifier *CallSeupIconIdentifier);
	PRIVATE
UserConfirmationMessageLength
	[in]
	Length in bytes of UserConfirmationMessage.

	UserConfirmationMessage
	[in]
	Message to display for user confirmation or NULL.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier.

	DiallingNumberLength
	[in]
	Length in bytes of DiallingNumber.

	DialingNumber
	[in]
	Number to call is coded as binary-coded decimal.

	Options
	[in]
	Acceptable values for this parameter are listed in CatSetupCallOptions.

	UserConfirmationIconIdentifier
	[in]
	Optional icon identifier to use during the user confirmation phase; see CatIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

	PRIVATE
CallSetupMessageLength
	[in]
	Length in bytes of CallSetupMessage.

	CallSetupMessage
	[in]
	Message to display for call set up or NULL.

	CallSetupIconIdentifier
	[in]
	Optional icon identifier to use during the call setup phase; see CatIconIdentifier for member details. If CallSetupIconIdentifier is NULL or if CallSetupIconIdentifier.UseIcon is zero, no call setup phase icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SET UP CALL proactive command.

CatSetupCall and CatSetupCallEx issue the SET UP CALL proactive command to the ME.

CatGeneralResult
CatSetupCallEx (const CatSetupCallExParams *Params);

The type CatSetupCallExParams is defined as follows:

typedef struct
{
 // Mandatory fields
 CatSetupCallOptions Options;
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI;
 BYTE DiallingNumberLength;
 const void *DialingNumber;

 // Optional fields
 CatAlphaString UserConfirmationMessage;
 BYTE CapabilityConfigParamsLength;
 const void *CapabilityConfigParams;
 BYTE CalledPartySubaddressLength;
 const void *CalledPartySubaddress;
 CatTimeInterval RedialMaximumDuration;
 CatIconOption UserConfirmationIcon;
 CatAlphaString CallSetupMessage;
 CatIconOptions CallSetupIcon;
} CatSetupCallExParams;

with the following members:

	Options
	Acceptable values for this parameter are listed in CatSetupCallOptions.

	TONandNPI
	Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier.

	DiallingNumberLength
	Length in bytes of DiallingNumber.

	DialingNumber
	Number to call is coded as binary-coded decimal.

	UserConfirmationPRIVATE
Message
	String to display during the user confirmation phase; see CatAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME.

	CapabilityConfigParamsLength
	Length in bytes of CapabilityConfigParams.

	CapabilityConfigParams
	A pointer to the capability configuration parameters as coded for EFCCP.

	CalledPartySubaddressLength
	Length in bytes of CalledPartySubaddress.

	CalledPartySubaddress
	The called party subaddress.

	RedialMaximumDuration
	An optional maximum duration for the redial mechanism. If the timeInterval member of this structure is zero, no duration TLV is sent to the ME.

	UserConfirmationIcon
	The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

	CallSetupPRIVATE
Message
	String to display during the call set up phase; see CatAlphaString.

	CallSetupIcon
	The icon to display during the call setup phase.

Optional parameters are specifically chosen to use an all-zero binary representation. This means that it is simple to set up only the required members of the SetupCallExParams structure by zeroing the whole structure using memset, filling in the required members, and sending the result to CatSetupCallEx. As all optional parameters use a zero binary representation, the memset serves to initialise them all to the “not present” status.

5.11.8. CatSendShortMessage

CatGeneralResult
CatSendShortMessage (BYTE TitleLength, const void *Title,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE AddressLength, const void *Address,
 BYTE SmsTPDULength, const void *SmsTPDU,
 CatSendShortMessageOptions Options,
 const CatIconIdentifier *IconIdentifier);

	PRIVATE
TitleLength
	[in]
	Length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is sending a message.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier

.

	AddressLength
	[in]
	Length in bytes of Address.

	Address
	[in]
	Address of the service center where message is being sent.

	SmsTPDULength
	[in]
	Length in bytes of SmsTPDU.

	SmTPDU
	[in]
	Formatted short message service (SMS) message to send.

	Options
	[in]
	Specifies who packs the message. Acceptable values for this parameter are listed in CatSendShortMessageOptions.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SEND SHORT MESSAGE proactive command.

CatSendShortMessage issues the SEND SHORT MESSAGE proactive.

5.11.9. CatSendSS

CatGeneralResult
CatSendSS (BYTE TitleLength, const void *Title,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE SSStringLength, const void *SSString,
 const CatIconIdentifier *IconIdentifier);

	PRIVATE
TitleLength
	[in]
	Length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is sending a message.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed CatTypeOfNumberAndNumberingPlanIdentifier

.

	SSStringLength
	[in]
	Length in bytes of SSString.

	SSString
	[in]
	SS string to mobile equipment.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SEND SS proactive command.

CatSendSS issues the SEND SS proactive command to the mobile equipment.

5.11.10. CatSendUSSD

CatGeneralResult
CatSendUSSD (BYTE TitleLength, const void *Title,
 CatDCSValue MessageDCS, BYTE MessageLength, const void *Message,
 CatDCSValue *MsgOutDCS, BYTE *MsgOutLength, void *MsgOut,
 const CatIconIdentifier *IconIdentifier);

	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is sending a message.

	MessageDCS
	[in]
	The data-coding scheme for Message. Acceptable values for this parameter are listed in CatDCSValue

.

	MessageLength
	[in]
	The length in bytes of Message.

	Message
	[in]
	Message to send.

	MsgOutDCS
	[out]
	Identifies type of DCS for the returned message.

	MsgOutLength
	[out]
	Length of the returned message in bytes.

	MsgOut
	[out]
	Returned string or message.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SEND USSD proactive command.

CatSendUSSD issues the SEND USSD proactive command. The terminal response is parsed and if successful the MsgOutDCS, MsgOutLength and MsgOut parameters are updated.

5.11.11. CatOpenCSChannel

CatGeneralResult
CatOpenCSChannel(CatOpenChannelOptions Options,
 BYTE UserConfirmationLength, const void *UserConfirmation,
 const CatIconIdentifier *UserConfimationIconIdentifier,
 CatTypeOfNumberAndNumberingPlanIdentifier TONandNPI,
 BYTE DiallingNumberLength, const void *DiallingNumber,
 BYTE BearerDescription[3],
 UINT16 *BufferSize,
 CatDevice *ChannelIdentifier);

	Options
	[in]
	Acceptable values for this parameter are listed in CatOpenChannelOptions.

	PRIVATE
UserConfirmationLength
	[in]
	Length in bytes of UserConfirmation.

	UserConfirmation
	[in]
	String to display when ME alerts user that channel is to be opened.

	UserConfirmationIconIdentifier
	[in]
	Optional icon identifier to use during the user confirmation phase; see CatIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

	TONandNPI
	[in]
	Acceptable values for this parameter are listed in CatTypeOfNumberAndNumberingPlanIdentifier.

	DiallingNumberLength
	[in]
	Length in bytes of DiallingNumber.

	DialingNumber
	[in]
	Number to call is coded as binary-coded decimal.

	BearerDescription
	[in/out]
	Initially contains the bearer description parameters (data rate, bearer service and connection element) and is modified to the actual bearer description as allocated by the ME.

	BufferSize
	[in/out]
	Initially contains the desired buffer size and is modified to the actual buffer size as allocated by the ME.

	ChannelIdentifier
	[out]
	The channel identifier that has been allocated by the ME.

	RETURN
	
	The GeneralResult code of the OPEN CHANNEL proactive command.

CatGeneralResult
CatOpenCSChannelEx(const CatOpenCSChannelExParams *Params,
 CatDevice *ChannelIdentifier,
 BYTE BearerDescription[3],
 UINT16 *BufferSize);

	PRIVATE
Params
	[in]
	Constant parameter set as defined below.

	ChannelIdentifier
	[out]
	The channel identifier that has been allocated by the ME.

	BearerDescription
	[out]
	An array to which the actual bearer description allocated by the ME will be written.

	BufferSize
	[out]
	The actual buffer size allocated by the ME.

	RETURN
	
	The GeneralResult code of the PROVIDE LOCAL INFORMATION proactive command.

CatOpenCSChannel and CatOpenCSChannelEx issue the proactive command OPEN CHANNEL related to a CS bearer. The terminal response is parsed and if the command was successful the BearerDescription, BufferSize and ChannelIdentifier parameters are updated.

The type CatOpenCSChannelExParams is defined as follows:

typedef struct
{
 // Mandatory fields
 CatOpenChannelOptions Options;
 BYTE AddressLength;
 const BYTE *Address;
 BYTE BearerDescription[3];
 UINT16 BufferSize;

 // Optional fields
 CatAlphaString UserConfirmationMessage;
 CatIconIdentifier UserConfirmationIconIdentifier;
 BYTE SubAddressLength;
 const BYTE *SubAddress;
 BYTE Duration1Defined;
 CatTimeInterval Duration1;
 BYTE Duration2Defined;
 CatTimeInterval Duration2;
 CatAddressType LocalAddress;
 CatTextString UserLogin;
 CatTextString UserPassword;
 CAT_MEInterfaceTransportLevelType CAT_MEInterfaceTransportLevel;
 CatAddressType DataDestinationAddress;
} CatOpenCSChannelExParams;

With the following members:

	Options
	Acceptable values for this parameter are listed in CatOpenChannelOptions. This field is mandatory.

	AddressLength
	Length in bytes of Address. This field is mandatory.

	Address
	The address to call. This field is mandatory.

	BearerDescription
	The desired bearer parameters (data rate, bearer service and connection element). This field is mandatory.

	BufferSize
	The desired buffer size. This field is mandatory.

	UserConfirmationPRIVATE
Message
	String to display during the user confirmation phase; see CatAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME. If UserConfirmationPRIVATE
Message is not null but UserConfirmationPRIVATE
MessageLength is zero, a user confirmation message TLV is passed to the ME with the length component set to zero.

	UserConfirmationIconIdentifier
	The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

	SubAddressLengthPRIVATE

	Length in bytes of SubAddress.

	SubAddress
	The subaddress to call.

	Duration1Defined
	Set to nonzero if Duration1 is defined.

	Duration1
	Duration of reconnect tries; see CatTimeInterval.

	Duration2Defined
	Set to nonzero if Duration2 is defined.

	Duration2
	Duration of timeout; see CatTimeInterval.

	LocalAddress
	The LocalAddress; see CatAddressType.

	UserLogin
	The user login string.

	UserPassword
	The user password string.

	CAT_MEInterfaceTransportLevel
	See CAT_MEInterfaceTransportLevelType.

	DataDestinationAddress
	The DataDestinationAddress; see CatAddressType.

5.11.12. CatOpenGPRSChannel

CatGeneralResult
CatOpenGPRSChannel(CatOpenChannelOptions Options,
 BYTE UserConfirmationLength, const void *UserConfirmation,
 const CatIconIdentifier *UserConfirmationIconIdentifier,
 BYTE BearerDescription[8],
 UINT16 *BufferSize,
 CatDevice *ChannelIdentifier);

	Options
	[in]
	Acceptable values for this parameter are listed in CatOpenChannelOptions.

	PRIVATE
UserConfirmationLength
	[in]
	Length in bytes of UserConfirmation.

	UserConfirmation
	[in]
	String to display when ME alerts user that channel is to be opened.

	UserConfirmationIconIdentifier
	[in]
	Optional icon identifier to use during the user confirmation phase; see CatIconIdentifier for member details. If UserConfirmationIconIdentifier is NULL or if UserConfirmationIconIdentifier.UseIcon is zero, no user confirmation phase icon identifier is sent to the ME.

	BearerDescription
	[in/out]
	Initially contains the bearer description and is modified to the actual bearer description as allocated by the ME.

	BufferSize
	[in/out]
	Initially contains the desired buffer size and is modified to the actual buffer size as allocated by the ME.

	ChannelIdentifier
	[out]
	The channel identifier that has been allocated by the ME.

	RETURN
	
	The GeneralResult code of the OPEN CHANNEL proactive command.

CatGeneralResult
CatOpenGPRSChannelEx(const CatOpenGPRSChannelExParams *Params,
 CatDevice *ChannelIdentifier,
 BYTE ActualBearerDescription[8],
 UINT16 *ActualBufferSize);

	PRIVATE
Params
	[in]
	Constant parameter set as defined below.

	ChannelIdentifier
	[out]
	The channel identifier that has been allocated by the ME.

	ActualBearerDescription
	[out]
	An array to which the actual bearer description allocated by the ME will be written.

	ActualBufferSize
	[out]
	The actual buffer size allocated by the ME.

	RETURN
	
	The GeneralResult code of the OPEN CHANNEL proactive command.

CatOpenGPRSChannel and CatOpenGPRSChannelEx issues the proactive command OPEN CHANNEL related to a GPRS bearer. The terminal response is parsed and if the command was successful the BearerDescription, BufferSize and ChannelIdentifier parameters are updated.

The type CatOpenGPRSChannelExParams is defined as follows:

typedef struct
{
 // Mandatory fields
 GsmOpenChannelOptions Options;
 BYTE AddressLength;
 const BYTE *Address;
 BYTE BearerDescription[8];
 UINT16 BufferSize;

 // Optional fields
 CatAlphaString UserConfirmationMessage;
 CatIconIdentifier UserConfirmationIconIdentifier;
 BYTE AccessPointNameLength;
 const BYTE *AccessPointName;
 CatAddressType LocalAddress;
 CAT_ME_InterfaceTransportLevelType CAT_ME_InterfaceTransportLevel;
 CatAddressType DataDestinationAddress;
} GsmOpenGPRSChannelExParams;

With the following members:

	Options
	Acceptable values for this parameter are listed in CatOpenChannelOptions. This field is mandatory.

	AddressLength
	Length in bytes of Address. This field is mandatory.

	Address
	The address to call. This field is mandatory.

	BearerDescription
	The desired bearer. This field is mandatory.

	BufferSize
	The desired buffer size. This field is mandatory.

	UserConfirmationPRIVATE
Message
	String to display during the user confirmation phase; see CatAlphaString. If this parameter is null, no user confirmation message TLV is passed to the ME. If UserConfirmationPRIVATE
Message is not null but UserConfirmationPRIVATE
MessageLength is zero, a user confirmation message TLV is passed to the ME with the length component set to zero.

	UserConfirmationIconIdentifier
	The icon to display during the user confirmation phase. If the UseIcon member of this structure is zero, no user confirmation icon TLV is sent to the ME.

	AccessPointNameLength
	The length in bytes of AccessPoint.

	AccessPointName
	The Access Point Name.

	LocalAddress
	See CatAddressType.

	CAT_ME_InterfaceTransportLevel
	See CAT_MEInterfaceTransportLevelType.

	DataDestinationAddress
	See CatAddressType.

5.11.13. CatCloseChannel

CatGeneralResult
CatCloseChannel (CatDevice ChannelIdentifier,
 BYTE TitleLength, const void *Title,
 const CatIconIdentifier *IconIdentifier);

	ChannelIdentifier
	[in]
	The channel identifier as returned from one of the open commands

	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is closing the channel.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the CLOSE CHANNEL proactive command.

CatCloseChannel issues a CLOSE CHANNEL proactive command that closes an open channel.

5.11.14. CatReceiveData

CatGeneralResult
CatReceiveData (CatDevice ChannelIdentifier,
 BYTE TitleLength, const void *Title,
 BYTE RequestedChannelDataLength,
 const CatIconIdentifier *IconIdentifier,
 BYTE *ChannelData,
 BYTE *NumChannelBytesRead,
 BYTE *NumChannelBytesLeft);

	ChannelIdentifier
	[in]
	The channel identifier as returned from one of the open commands

	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is receiving data.

	RequestedChannelDataLength
	[in]
	The number of bytes requested to be read.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	ChannelData
	[out]
	Received channel data.

	NumChannelBytesRead
	[out]
	The number of bytes received as channel data.

	NumChannelBytesLeft
	[out]
	The number of bytes remaining to be read from the channel buffer, or 255 if there are more than 255 bytes left to be read.

	RETURN
	
	The GeneralResult code of the RECEIVE DATA proactive command.

CatReceiveData issues a RECEIVE DATA proactive command that receives data from an open channel. The terminal response is parsed and if the command is successful the received data is copied into the ChannelData array and the NumChannelBytesRead and NumChannelBytesLeft parameters are updated.

5.11.15. CatSendData

CatGeneralResult
CatSendData (CatDevice ChannelIdentifier,
 CatSendDataOptions Options,
 BYTE TitleLength, const void *Title,
 BYTE ChannelDataLength
 const void *ChannelData,
 const CatIconIdentifier *IconIdentifier,
 BYTE *ActualBytesSent);

	ChannelIdentifier
	[in]
	The channel identifier as returned from one of the open commands

	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display while mobile equipment is receiving data.

	Options
	[in]
	Specifies who packs the message. Acceptable values for this parameter are listed in CatSendDataOptions.

	ChannelDataLength
	[in]
	The number of bytes to be sent from ChannelData.

	ChannelData
	[in]
	The data to be sent.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	ActualBytesSent
	[out]
	The number of bytes sent (derived from the CHANNEL DATA LENGTH TLV in the TERMINAL RESPONSE).

	RETURN
	
	The GeneralResult code of the SEND DATA proactive command.

CatSendData issues the proactive command SEND DATA that sends data to an open channel.

5.11.16. CatGetChannelStatus

CatGeneralResult
CatGetChannelStatus (CatDevice ChannelIdentifier, void *ChannelStatus);

	ChannelIdentifier
	[in]
	The channel identifier.

	PRIVATE
ChannelStatus
	[out]
	Returned channel status bytes.

	RETURN
	
	The GeneralResult code of the GET CHANNEL STATUS proactive command.

CatGetChannelStatus issues a proactive command GET CHANNEL STATUS. The terminal response is parsed if the command is successful to find the status of the supplied channel.

5.11.17. CatServiceSearch
catGeneralResult
catReceiveData (catBearer BearerId,
 BYTE AttributeLength, void *Attributes,
 void *ServiceAvailability);

	PRIVATE
BearerId
	[in]
	The identifier of the bearer whose services will be searched.

	AttributeLength
	[in]
	The length of the following attribute array.

	Attributes
	[in]
	Attributes which describe bearer services, typically in a bearer specific format.

	ServiceAvailability
	[in]
	List of services offered by the bearer that satisfy the attributes, typically in a bearer specific format.

Search for a particular service on a bearer.

5.11.18. CatGetServiceInformation
catGeneralResult
catReceiveData (BYTE TitleLength, const BYTE *Title,
 const catIconIdentifier *IconIdentifier,
 BYTE BearerId,
 BYTE *AttributeLength, void *Attributes,
 void *ServiceInformation);

	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	String to display acquiring service information.

	IconIdentifier
	[in]
	Optional icon identifier; see catIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	BearerId
	[in]
	The identifier of the bearer whose service information is requested.

	AttributeLength
	[in]
	The number of bytes in the following attribute array.

	Attributes
	[in]
	Attributes describing the service information requested.

	ServiceInformation
	[out]
	The requested information.

Retrieve information about a particular service on a bearer.

5.11.19. CatDeclareService
catGeneralResult
catReceiveData (BYTE BearerId, BYTE ServiceId,
 catTransportProtocol TransportProtocol,
 WORD *PortNumber,
 BYTE ServiceRecordLength,
 void *ServiceRecord);

	PRIVATE
BearerId
	[in]
	The identifier of the bearer for which this service is being offered.

	TransportProtocol
	[in]
	The transport protocol on which the service is provided.

	PortNumberh
	[in]
	The port on which the service is provided.

	ServiceRecordLength
	[in]
	The number of bytes in the following service record.

	ServiceRecord
	[in]
	The service record describing the service.

Describe a new service.

5.11.20. CatRunATCommand

CatGeneralResult
CatRunATCommand (BYTE TitleLength, const void *Title,
 BYTE CommandLength, const void *Command,
 const CatIconIdentifier *IconIdentifier,
 void *Response, BYTE *ResponseLength);

	PRIVATE
TitleLength
	[in]
	Length in bytes of Title.

	Title
	[in]
	String to display on mobile equipment while command is executing.

	CommandLength
	[in]
	Length in bytes of Command.

	Command
	[in]
	AT command string

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	Response
	[out]
	Mobile equipment response string.

	ResponseLength
	[out]
	Length in bytes of mobile equipment response string.

	RETURN
	
	The GeneralResult code of the RUN AT COMMAND proactive command.

CatRunATCommand issues the proactive command RUN AT COMMAND that sends an AT command to the mobile equipment. The terminal response is parsed and if successful the parameters Response and ResponseLength are updated.

5.11.21. CatSendDTMFCommand

CatGeneralResult
CatSendDTMFCommand (BYTE TitleLength, const void *Title,
 BYTE DTMFCodeLength, const void *DTMFCode,
 const CatIconIdentifier *IconIdentifier);
	PRIVATE
TitleLength
	[in]
	The length in bytes of Title.

	Title
	[in]
	Title displayed while the DTMF string is sent to the network.

	DTMFCodeLength
	[in]
	The length in bytes of DTMFCode.

	DTMFCode
	[in]
	DTMF string sent to the network.

	IconIdentifier
	[in]
	Optional icon identifier; see CatIconIdentifier for member details. If IconIdentifier is NULL or if IconIdentifier.UseIcon is zero, no icon identifier is sent to the ME.

	RETURN
	
	The GeneralResult code of the SEND DTMF COMMAND proactive command.

CatSendDTMF issues the SEND DTMF COMMAND proactive command that sends a dual tone multiple frequency (DTMF) string to the network.

5.12. Supporting Data Types

5.12.1. CatFrameworkEventType

typedef enum
{
 // Command monitoring events
 EVENT_TERMINAL_PROFILE_COMMAND,
 EVENT_STATUS_COMMAND
 EVENT_ENVELOPE_COMMAND,
 // Application lifecycle events start here
 EVENT_APPLICATION_LIFECYCLE_INSTALL = 0x20
 // Framework fabricated events start here
 EVENT_UPDATE_EF_SMS = 0x40
} GsmFrameworkEventType;

5.12.2. CatEnvelopeTagType
typedef enum {
 SMS_PP_DOWNLOAD_TAG = 0xD1,
 CELL_BROADCAST_TAG = 0xD2,
 MENU_SELECTION_TAG = 0xD3,
 CALL_CONTROL_TAG = 0xD4,
 MO_SHORT_MESSAGE_CONTROL_TAG = 0xD5,
 EVENT_DOWNLOAD_TAG = 0xD6,
 TIMER_EXPIRATION = 0xD7
} CatEnvelopeTagType;

5.12.3. CatEventType

typedef enum {
 MT_CALL_EVENT = 0x00,
 CALL_CONNECTED_EVENT = 0x01,
 CALL_DISCONNECTED_EVENT = 0x02,
 LOCATION_STATUS_EVENT = 0x03,
 USER_ACTIVITY_EVENT = 0x04,
 IDLE_SCREEN_AVAILABLE = 0x05,
 CARD_READER_STATUS = 0x06,
 LANGUAGE_SELECTION = 0x07,
 BROWSER_TERMINATION = 0x08,
 DATA_AVAILABLE = 0x09,
 CHANNEL_STATUS = 0x0A
} CatEventType;

5.12.4. CatTextString

typedef struct

{

 CatDCSValue DCSValue;
 BYTE TextStringLength;
 const void *TextString;
} CatTextString;

5.12.5. CatAlphaString

typedef struct

{
 BYTE AlphaStringLength;
 const void *AlphaString;
} CatTextString;

5.12.6. CatIconIdentifier

typedef struct

{

 BYTE UseIcon;

 BYTE IconIdentifier;
 BYTE IconOptions;

} CatIconIdentifier;

The CatIconIdentifier structure is defined as follows:

	UseIcon
	If zero, the icon identifier is not used in the proactive command. If non-zero, the IconIdentifier and IconOption members are used in the proactive command.

	IconIdentifier
	Index of the icon to display.

	IconOptions
	Options with which to display the icon selected from CatIconOption. This is specified as a BYTE rather than CatIconOptios as, in C, an enumeration uses the same storage as an int which is at least 16 bits, whereas the proactive commands that use these identifiers use 8-bit quantities.

5.12.7. CatIconOption

typedef enum

{

 SHOW_WITHOUT_TEXT = 0x00,

 SHOW_WITH_TEXT = 0x01

} CatIconOption;

5.12.8. CatDCSValue

typedef enum

{

 DCS_SMS_PACKED = 0x00,

 DCS_SMS_UNPACKED = 0x04,

 DCS_SMS_UNICODE = 0x08

} CatDCSValue;

5.12.9. CatDisplayTextOptions

typedef enum

{

 NORMAL_PRIORITY_AUTO_CLEAR = 0x00,

 NORMAL_PRIORITY_USER_CLEAR = 0x80,

 HIGH_PRIORITY_AUTO_CLEAR = 0x01,

 HIGH_PRIORITY_USER_CLEAR = 0x81

} CatDisplayTextOptions;

5.12.10. CatGetInKeyOptions

typedef enum

{

 YES_NO_OPTION_NO_HELP = 0x04,

 YES_NO_OPTION_WITH_HELP = 0x84,

 DIGITS_ONLY_NO_HELP = 0x00,

 DIGITS_ONLY_WITH_HELP = 0x80,

 SMS_CHARACTER_NO_HELP = 0x01,

 SMS_CHARACTER_WITH_HELP = 0x81,

 UCS2_CHARACTER_NO_HELP = 0x03,

 UCS2_CHARACTER_WITH_HELP = 0x83

} CatGetInKeyOptions;

5.12.11. CatGetInputOptions

typedef enum

{

 PACKED_DIGITS_ONLY_NO_HELP = 0x08,

 PACKED_DIGITS_ONLY_WITH_HELP = 0x88,

 PACKED_DIGITS_ONLY_NO_ECHO_NO_HELP = 0x0C,

 PACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP = 0x8C,

 UNPACKED_DIGITS_ONLY_NO_HELP = 0x00,

 UNPACKED_DIGITS_ONLY_WITH_HELP = 0x80,

 UNPACKED_DIGITS_ONLY_NO_ECHO_NO_HELP = 0x04,

 UNPACKED_DIGITS_ONLY_NO_ECHO_WITH_HELP = 0x84,

 PACKED_SMS_ALPHABET_NO_HELP = 0x09,

 PACKED_SMS_ALPHABET_WITH_HELP = 0x89,

 PACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x0D,

 PACKED_SMS_ALPHABET_NO_ECHO_HELP = 0x8D,

 UNPACKED_SMS_ALPHABET_NO_HELP = 0x01,

 UNPACKED_SMS_ALPHABET_WITH_HELP = 0x81,

 UNPACKED_SMS_ALPHABET_NO_ECHO_NO_HELP = 0x05,

 UNPACKED_SMS_ALPHABET_NO_ECHO_WITH_HELP = 0x85,

 UCS2_ALPHABET_NO_HELP = 0x03,

 UCS2_ALPHABET_WITH_HELP = 0x83,

 UCS2_ALPHABET_NO_ECHO_NO_HELP = 0x07,

 UCS2_ALPHABET_NO_ECHO_WITH_HELP = 0x87

} CatGetInputOptions;

5.12.12. CatSelectItemOptions

typedef enum

{

 PRESENT_AS_DATA_VALUES_NO_HELP = 0x01,

 PRESENT_AS_DATA_VALUES_WITH_HELP = 0x81,

 PRESENT_AS_NAVIGATION_OPTIONS_NO_HELP = 0x03,

 PRESENT_AS_NAVIGATION_OPTIONS_WITH_HELP = 0x83,

 DEFAULT_STYLE_NO_HELP = 0x00,

 DEFAULT_STYLE_WITH_HELP = 0x80

} CatSelectItemOptions;

5.12.13. CatTimeUnit

typedef enum

{

 GSM_MINUTES = 0x00,

 GSM_SECONDS = 0x01,

 GSM_TENTHS_OF_SECONDS = 0x02

} CatTimeUnit;

5.12.14. CatTone

typedef enum

{

 DIAL_TONE = 0x01,

 CALLER_BUSY = 0x02,

 CONGESTION = 0x03,

 RADIO_PATH_ACKNOWLEDGE = 0x04,

 CALL_DROPPED = 0x05,

 SPECIAL_INFORMATION_OR_ERROR = 0x06,

 CALL_WAITING_TONE = 0x07,

 RINGING_TONE = 0x08,

 GENERAL_BEEP = 0x10,

 POSITIVE_ACKNOWLEDGE_TONE = 0x11,

 NEGATIVE_ACKNOWLEDGE_TONE = 0x12

} CatTone;

5.12.15. CatRefreshOptions

typedef enum

{

 REFRESH_SIM_INIT_AND_FULL_FILE_CHANGE_NOTIFICATION = 0x00,
 REFRESH_FILE_CHANGE_NOTIFICATION = 0x01,

 REFRESH_SIM_INIT_AND_FILE_CHANGE_NOTIFICATION = 0x02,

 REFRESH_SIM_INIT = 0x03,
 REFRESH_SIM_RESET = 0x04

} CatRefreshOptions;

5.12.16. CatGetReaderStatusOptions

typedef enum

{

 CARD_READER_STATUS = 0x00,
 CARD_READER_IDENTIFIER = 0x01
} CatGetReaderStatusOptions;

5.12.17. CatDevice

typedef enum

{

 DEVICE_KEPYAD = 0x01,

 DEVICE_DISPLAY = 0x02,

 DEVICE_EARPIECE = 0x03,

 DEVICE_CARD_READER_0 = 0x10,

 DEVICE_CARD_READER_1 = 0x11,

 DEVICE_CARD_READER_2 = 0x12,

 DEVICE_CARD_READER_3 = 0x13,

 DEVICE_CARD_READER_4 = 0x14,

 DEVICE_CARD_READER_5 = 0x15,

 DEVICE_CARD_READER_6 = 0x16,

 DEVICE_CARD_READER_7 = 0x17,

 DEVICE_CHANNEL_1 = 0x21,

 DEVICE_CHANNEL_2 = 0x22,

 DEVICE_CHANNEL_3 = 0x23,

 DEVICE_CHANNEL_4 = 0x24,

 DEVICE_CHANNEL_5 = 0x25,

 DEVICE_CHANNEL_6 = 0x26,

 DEVICE_CHANNEL_7 = 0x27,

 DEVICE_SIM = 0x81,

 DEVICE_ME = 0x82,

 DEVICE_NETWORK = 0x83

} CatDevice;

5.12.18. CatGeneralResult

typedef enum

{

 CAT_COMMAND_SUCCESSFUL = 0x00,

 CAT_COMMAND_SUCCESSFUL_WITH_PARTIAL_COMPREHENSION = 0x01,

 CAT_COMMAND_SUCCESSFUL_WITH_MISSING_INFORMATION = 0x02,

 CAT_REFRESH_SUCCESSFUL_WITH_ADDITIONAL_EFS_READ = 0x03,

 CAT_COMMAND_SUCCESSFUL_BUT_ICON_NOT_FOUND = 0x04,

 CAT_COMMAND_SUCCESSFUL_BUT_MODIFIED_BY_CALL_CONTROL = 0x05,

 CAT_COMMAND_SUCCESSFUL_BUT_LIMITED_SERVICE = 0x06,

 CAT_COMMAND_SUCCESSFUL_WITH_MODIFICATION = 0x07,

 CAT_ABORTED_BY_USER = 0x10,

 CAT_BACKWARD = 0x11,

 CAT_NO_RESPONSE = 0x12,

 CAT_HELP_REQUIRED = 0x13,

 CAT_USSD_ABORTED_BY_USER = 0x14,

 CAT_ME_UNABLE_TO_PROCESS_COMMAND = 0x20,

 CAT_NETWORK_UNABLE_TO_PROCESS_COMMAND = 0x21,

 CAT_USER_REJECTED_SETUP_CALL = 0x22,

 CAT_USER_CLEARED_BEFORE_RELEASE = 0x23,

 CAT_ACTION_CONTRADICT_TIMER_STATE = 0x24,

 CAT_TEMP_PROBLEM_IN_CALL_CONTROL = 0x25,

 CAT_LAUNCH_BROWSER_ERROR = 0x26,

 CAT_COMMAND_BEYOND_ME_CAPABILITIES = 0x30,

 CAT_COMMAND_TYPE_NOT_UNDERSTOOD = 0x31,

 CAT_COMMAND_DATA_NOT_UNDERSTOOD = 0x32,

 CAT_COMMAND_NUMBER_NOT_KNOWN = 0x33,

 CAT_SS_RETURN_ERROR = 0x34,

 CAT_SMS_RP_ERROR = 0x35,

 CAT_REQUIRED_VALUES_MISSING = 0x36,

 CAT_USSD_RETURN_ERROR = 0x37,

 CAT_MULTIPLE_CARD_COMMAND_ERROR = 0x38,

 CAT_PERMANENT_PROBLEM_IN_SMS_OR_CALL_CONTROL = 0x39,

 CAT_BEARER_INDEPENDENT_PROTOCOL_ERROR = 0x3A

} CatGeneralResult;

5.12.19. CatTimerValue

typedef struct

{

 BYTE hour;

 BYTE minute;

 BYTE second;

} CatTimerValue;

The CatTimerValue data type has three one-byte values:

	hourPRIVATE

	Hours part of timer.

	minute
	Minutes part of timer.

	second
	Seconds part of timer.

5.12.20. CatTimeInterval

typedef struct

{

 BYTE timeUnit;

 BYTE timeInterval;

} CatTimeInterval;

The CatTimInterval data type has two one-byte values:

	timeUnit
	One of the CatTimeUnit enumeration values. This is specified as a BYTE rather than CatTimeUnit as, in C, an enumeration uses the same storage as an int which is at least 16 bits, whereas the proactive commands that use these identifiers use 8-bit quantities.

	timeInterval
	The number of timeUnits.

5.12.21. CatFileStatus

typedef struct

{

 BYTE increaseAllowed;

 BYTE accessConditions[3];

 BYTE fileStatus; // 00=transparent, 01=linear, 03=cyclic
 BYTE lengthOfTrailer;

 BYTE structureOfEF;

 BYTE recordLength;
 BYTE trailer[36]; // Not 36, need to figure out how big this actually is

} CatEFStatus;

typedef struct

{

 BYTE rfu1[4];

 BYTE lengthOfTrailer;

 BYTE fileCharacteristics;
 BYTE numberOfDFs;
 BYTE numberofCHVs;
 BYTE rfu2;

 BYTE CHV1Status;

 BYTE unblockCHV1Status;

 BYTE CHV2Status;

 BYTE unblockCHV2Status;

 BYTE rfu3;

 BYTE adminReserved[10];

} CatDFStatus;

typedef struct

{

 BYTE rfu[2];

 UINT16 fileSize;

 UINT16 fileID;

 BYTE fileType; // 00=RFU, 01=MF, 02=DF, 04=EF

 union
 {

 CatEFStatus ef;
 CatDFStatus df;
 } u;

} CatFileStatus;

5.12.22. CatLanguageNotificationOptions

typedef enum

{

 LANGUAGE_NON_SPECIFIC_NOTIFICATION = 0x00,
 LANGUAGE_SPECIFIC_NOTIFICATION = 0x01
} CatLanguageNotificationOptions;

5.12.23. CatLocationInformation

typedef struct

{

 BYTE mobileCountryNetworkCodes[3];
 BYTE LAC[2];
 BYTE cellID[2];
} CatLocationInformation;

5.12.24. CatTimingAdvance

typedef struct

{

 BYTE MEStatus;
 BYTE timingAdvance;
} CatTimingAdvance;
5.12.25. CatLaunchBrowserOptions

typedef enum

{

 LAUNCH_BROWSER_IF_NOT_ALREADY_LAUNCHED = 0x00,

 USE_EXISTING_BROWSER = 0x02,

 CLOSE_EXISTING_BROWSER_AND_LAUNCH_NEW_BROWSER = 0x03

} CatLaunchBrowserOptions;

5.12.26. CatSetupCallOptions

typedef enum

{

 CALL_ONLY_IF_NOT_BUSY = 0x00,

 CALL_ONLY_IF_NOT_BUSY_WITH_REDIAL = 0x01,

 CALL_AND_PUT_ALL_OTHER_CALLS_ON_HOLD = 0x02,

 CALL_AND_PUT_ALL_OTHER_CALLS_ON_HOLD_WITH_REDIAL = 0x03,

 CALL_AND_DISCONNECT_ALL_OTHER_CALLS = 0x04,

 CALL_AND_DISCONNECT_ALL_OTHER_CALLS_WITH_REDIAL = 0x05

} CatSetupCallOptions;

5.12.27. CatTypeOfNumberAndNumberingPlanIdentifier

typedef enum

{

 TON_UNKNOWN_AND_NPI_UNKNOWN = 0x80,

 TON_INTERNATIONAL_AND_NPI_UNKNOWN = 0x90,

 TON_NATIONAL_AND_NPI_UNKNOWN = 0xA0,

 TON_NETWORK_AND_NPI_UNKNOWN = 0xB0,

 TON_SUBSCRIBER_AND_NPI_UNKNOWN = 0xC0,

 TON_UNKNOWN_AND_NPI_TELEPHONE = 0x81,

 TON_INTERNATIONAL_AND_NPI_TELEPHONE = 0x91,

 TON_NATIONAL_AND_NPI_TELEPHONE = 0xA1,

 TON_NETWORK_AND_NPI_TELEPHONE = 0xB1,

 TON_SUBSCRIBER_AND_NPI_TELEPHONE = 0xC1,

 TON_UNKNOWN_AND_NPI_DATA = 0x83,

 TON_INTERNATIONAL_AND_NPI_DATA = 0x93,

 TON_NATIONAL_AND_NPI_DATA = 0xA3,

 TON_NETWORK_AND_NPI_DATA = 0xB3,

 TON_SUBSCRIBER_AND_NPI_DATA = 0xC3,

 TON_UNKNOWN_AND_NPI_TELEX = 0x84,

 TON_INTERNATIONAL_AND_NPI_TELEX = 0x94,

 TON_NATIONAL_AND_NPI_TELEX = 0xA4,

 TON_NETWORK_AND_NPI_TELEX = 0xB4,

 TON_SUBSCRIBER_AND_NPI_TELEX = 0xC4,

 TON_UNKNOWN_AND_NPI_NATIONAL = 0x88,

 TON_INTERNATIONAL_AND_NPI_NATIONAL = 0x98,

 TON_NATIONAL_AND_NPI_NATIONAL = 0xA8,

 TON_NETWORK_AND_NPI_NATIONAL = 0xB8,

 TON_SUBSCRIBER_AND_NPI_NATIONAL = 0xC8,

 TON_UNKNOWN_AND_NPI_PRIVATE = 0x89,

 TON_INTERNATIONAL_AND_NPI_PRIVATE = 0x99,

 TON_NATIONAL_AND_NPI_PRIVATE = 0xA9,

 TON_NETWORK_AND_NPI_PRIVATE = 0xB9,

 TON_SUBSCRIBER_AND_NPI_PRIVATE = 0xC9,

 TON_UNKNOWN_AND_NPI_ERMES = 0x8A,

 TON_INTERNATIONAL_AND_NPI_ERMES = 0x9A,

 TON_NATIONAL_AND_NPI_ERMES = 0xAA,

 TON_NETWORK_AND_NPI_ERMES = 0xBA,

 TON_SUBSCRIBER_AND_NPI_ERMES = 0xCA

} CatTypeOfNumberAndNumberingPlanIdentifier;

5.12.28. CatSendShortMessageOptions

typedef enum

{

 PACKING_NOT_REQUIRED = 0x00,

 PACKING_BY_THE_ME_REQUIRED = 0x01

} CatSendShortMessageOptions;

5.12.29. CatSendDataOptions

typedef enum

{

 STORE_DATA_IN_TX_BUFFER = 0x00,
 SEND_DATA_IMMEDIATELY = 0x01

} CatSendDataOptions;

5.12.30. CatMEInterfaceTransportLevelType

typedef struct
{
 enum
 {
 UDP = 0x01,
 TCP = 0x02
 } TransportProtocolType;
 UINT16 CAT_ME_PortNumber;
} CAT_MEInterfaceTransportLevelType;

5.12.31. CatBearer

typedef enum

{

 BEARER_SMS = 0x00,
 BEARER_CSD = 0x01,
 BEARER_USSD = 0x02,
 BEARER_GPRS = 0x03

} CatBearer;

5.12.32. CatOpenChannelOptions

typedef enum

{

 ON_DEMAND_LINK_ESTABLISHMENT = 0x00,
 IMMEDIATE_LINK_ESTABLISHMENT = 0x01
} CatOpenChannelOptions;

5.12.33. CatAddressType

typedef struct
{
 enum

 {

 IPV4 = 0x21,

 IPV6 = 0x97

 } AddressType;
 BYTE AddressLength;
 const void *Address;
} CatAddressType;

5.12.34. CatFID

#define FID_DF_GRAPHICS 0x5F50

#define FID_DF_TELECOM 0x7F10

#define FID_EF_ADN 0x6F3A

#define FID_EF_ARR 0x2F06

#define FID_EF_BDN 0x6F4D

#define FID_EF_CCP 0x6F3D

#define FID_EF_DIR 0x2F00

#define FID_EF_EXT1 0x6F4A

#define FID_EF_EXT2 0x6F4B

#define FID_EF_EXT3 0x6F4C

#define FID_EF_EXT4 0x6F4E

#define FID_EF_FDN 0x6F3B

#define FID_EF_ICCID 0x2FE2

#define FID_EF_IMG 0x4F20

#define FID_EF_LND 0x6F44

#define FID_EF_MSISDN 0x6F40

#define FID_EF_PL 0x2F05

#define FID_EF_SDN 0x6F49

#define FID_EF_SMS 0x6F3C

#define FID_EF_SMSP 0x6F42

#define FID_EF_SMSR 0x6F47

#define FID_EF_SMSS 0x6F43

#define REC_ACC_MODE_ABSOLUTE 0x04

#define REC_ACC_MODE_CURRENT 0x04

#define REC_ACC_MODE_NEXT 0x02

#define REC_ACC_MODE_PREVIOUS 0x03

Annex A (Informative), example

/**

** Example of Toolkit Application written for the C SIM API

*/

#pragma AID A0000000090001

#include <stdlib.h>

#include "application.h"

#include "cat.h"

#include "catlow.h"

#define DF_GSM 0x7F20

#define EF_PUCT 0x6F41

const BYTE SERVER_OPERATION = 0x0F;

const BYTE EXIT_REQUESTED_BY_USER = 0x10;

static const char menuEntry[] = "Service1";

static const char menuTitle[]= "MyMenu";

static char item1[] = "ITEM1";

static char item2[] = "ITEM2";

static char item3[] = "ITEM3";

static char item4[] = "ITEM4";

static char textDText[] = "Hello, world";

static char textGInput[] = "Your name?";

BYTE ItemIdentifier;

static BYTE * byteptr;

static void * bufptr;

static BYTE buffer[10];

static BYTE itemId;

static BYTE result;

static BYTE repeat;

void main(void)

{

switch (CatGetFrameworkEvent())

 {

 case EVENT_APPLICATION_LIFECYCLE_INSTALL:

// Define the application Menu Entry and register to the EVENT_MENU_SELECTION

CatSetMenuString (1,sizeof(menuEntry),(const void *)MenuEntry,NULL,0,0);

// register to the EVENT_UNFORMATTED_SMS_PP_ENV

CatNotifyOnEnvelope(SMS_PP_DOWNLOAD_TAG,1);

 break;

 case EVENT_ENVELOPE_COMMAND:

 {

 BYTE length;

 switch (CatOpenEnvelope(&length))

 {

 case MENU_SELECTION_TAG:

 // Prepare the Select Item proactive command

 // Append the Menu Title

 CatSelectItem (sizeof(MenuTitle),

(const void *)MenuTitle,

DEFAULT_STYLE_NO_HELP);

 // add all the Item

 CatSelectAddItem(sizeof(item1),(const void *)item1,1);

 CatSelectAddItem(sizeof(item2),(const void *)item2,2);

 CatSelectAddItem(sizeof(item3),(const void *)item3,3);

 CatSelectAddItem(sizeof(item4),(const void *)item4,4);

 // ask the CAT Toolkit Framework to send

 //the proactive command and check the result

 if (!CatEndSelectItem(&ItemId,NULL))

 {

 switch(ItemId)

 {

 case 1:

 case 2:

 case 3: // DisplayText

 CatDisplayText (DCS_SMS_UNPACKED,

sizeof(textDText),

(const void *) textDText,

 NORMAL_PRIORITY_USER_CLEAR, NULL, 0);

 break;

 case 4: // Ask the user to enter data and display it

 repeat=0;

 do

 {

 if (CatGetInput(DCS_SMS_UNPACKED,

 sizeof(textGInput),

 (const void *) textGInput,

 UNPACKED_SMS_ALPHABET_NO_HELP,

 DCS_SMS_UNPACKED, 0, NULL,

 0, sizeof(buffer), NULL,

 (CatDCSValue *)&result,

 &repeat,

 (void *)buffer)==EXIT_REQUESTED_BY_USER)

 break;

 // display the entered text

 CatDisplayText ((CatDCSValue)result,

 repeat, (const void *) buffer,

 NORMAL_PRIORITY_USER_CLEAR, NULL, 0);

 } while (repeat);

 }

 }

 break;

 case EVENT_UNFORMATTED_SMS_PP_ENV:

 CatOpenEnvelope(&result);

byteptr=(BYTE *)catGetData(1); /* go to numberlength */

result=(*byteptr)>>1;

 /* calculate numberlength, rounded up */

if ((*byteptr)&1)result++;

 catGetData(result+12);

/* move to the beginning of the data */

 // get the offset of the instruction in the TP-UD field

 CatGetData(SERVER_OPERATION);

 result=CatGetBYTE();

switch(result)

 {

 case 0x41 : // Update of a gsm file

 bufptr=CatGetData(3);

 // write these data in the EFpuct

 CatSelect(FID_DF_GSM);

 CatSelect(FID_EF_PUCT);

 CatUpdateBinary(0,3,bufptr);

 break;

 case 0x36 : // change the MenuTitle for the SelectItem

bufptr=CatGetData(sizeof(menuTitle));

 memcpy(bufptr,memuTitle,sizeof(menuTitle));

 }

 }

 }

 break;

 default:

 CatExit();

 break;

 }

 CatExit();

 }

History

	Document history

	V0.0.0
	August 2000
	First draft for comment

	V0.0.1
	November 2000
	Revised first draft, containing typographical and grammatical amendments and alterations.

	V0.0.2
	January 2001
	Revised to present a ‘C’-language bindings as the main document. MULTOS implementation detail moved to Annex.

	V0.1.0
	March 2001
	Significant restructuring and changes to make the C binding completely platform independent.

	V0.1.1
	May 2001
	Reworked after meeting T3 ad hoc #34, Edinburgh, according to the meeting report.

	V0.2.0
	October 2001
	Reorganisation, reworked towards 3G , changed Sim to Cat, changed order of some function-parameters so all are in the order ‘length, value’

	V0.3.0
	October 2001
	Added lots of explanation to explain the scope of this API, added a C version of the Java example in 03.19

	V1.0.0
	December 2001
	Added specification number. For presentation to TSG-T #14 for information.

	V1.1.0
	May, 2002
	Added load file format.

_953458302.unknown

_1065016905.doc

Registered

event

or install

Update

Information

Request

Toolkit

application

Proactive

command

handler

Proactive

response

handler

APDU

handler

Toolkit

application

triggering

Load/delete Toolkit

Application 03.48

New Toolkit

application

Registry handler

NAA

file

access

Mobile

Equipment

APDU

Toolkit

event

Terminal response

Envelope response

handler

Terminal

response data

Proactive command

91

xx

Proactive command

Fetch command

Response data

Registry

File access

Request

File data

NAA File system

File data

Allowed Access/

Command

Toolkit application

information

Create new Toolkit

application from SMS-PP

