3GPP TR 23.722 V1.0.0 (2017-09)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Study on Common API Framework for 3GPP Northbound APIs
(Release 15)
[image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

7Foreword

Introduction
7
1
Scope
8
2
References
8
3
Definitions, symbols and abbreviations
9
3.1
Definitions
9
3.2
Abbreviations
9
4
Analysis of external API frameworks
10
4.1
Introduction
10
4.2
OMA API framework
11
4.2.1
Description
11
4.2.2
Detailed analysis
11
5
Key issues
12
5.1
Publish and discover service API information
12
5.2
Topology hiding of the service
12
5.3
API invoker authentication to access service APIs
12
5.4
API invoker authorization to access service APIs
13
5.5
Charging on invocation of service APIs
13
5.6
Lifecycle management of service APIs
13
5.7
Monitoring service API invocations
13
5.8
Logging API invoker onboarding and service API invocations
13
5.9
Auditing service API invocations
13
5.10
Onboarding API invoker to CAPIF
13
5.11
CAPIF authentication towards API invokers
13
5.12
Service API access control
14
5.13
Secure API communication
14
5.14
Policy configuration
14
5.15
API protocol stack model
14
5.16
API security protocol
14
5.17
CAPIF support for service APIs from multiple providers
14
6
Architectural requirements
15
6.1
General requirements
15
6.2
Service API publish and discover requirements
15
6.2.1
General
15
6.2.2
Requirements
15
6.3
Security requirements
15
6.3.1
General
15
6.3.2
Requirements
15
6.4
Charging requirements
16
6.4.1
General
16
6.4.2
Requirements
16
6.5
Lifecycle management requirements
16
6.5.1
General
16
6.5.2
Requirements
16
6.6
Monitoring service API invocation requirements
17
6.6.1
General
17
6.6.2
Requirements
17
6.7
Logging service API invocation requirements
17
6.7.1
General
17
6.7.2
Requirements
17
6.8
Auditing service API invocation requirements
17
6.8.1
General
17
6.8.2
Requirements
17
6.9
Onboarding API invoker requirements
18
6.9.1
General
18
6.9.2
Requirements
18
6.10
Policy configuration requirements
18
6.10.1
General
18
6.10.2
Requirements
18
6.11
Protocol design requirements
18
6.11.1
General
18
6.11.2
Requirements
18
6.12
Logging API invoker onboarding requirements
18
6.12.1
General
18
6.12.2
Requirements
19
6.13
CAPIF interaction logging requirements
19
6.13.1
General
19
6.13.2
Requirements
19
7
Solutions
19
7.1
High level architecture
19
7.1.1
Solution 1 – High level functional architecture for the CAPIF
19
7.1.1.1
Solution description
19
7.1.1.1.1
General
19
7.1.1.1.2
Architectural Model
19
7.1.1.1.3
Reference points
21
7.1.1.1.4
Deployment options
22
7.1.1.1.4.1
General
22
7.1.1.1.4.2
Option 1 – Centralized deployment
22
7.1.1.1.4.3
Option 2 – Distributed deployment
22
7.1.1.2
Solution evaluation
25
7.1.2
Solution 2 – CAPIF architecture for service APIs from 3rd party service provider
26
7.1.2.1
Solution description
26
7.1.2.1.1
General
26
7.1.2.1.2
Architectural Model
26
7.1.2.1.3
Reference points
27
7.1.2.1.4
Deployment options
27
7.1.2.1.4.1
Option 1 – PLMN operator hosted service APIs and CAPIF core functions
27
7.1.2.1.4.2
Option 2 – 3rd party service provider hosted service APIs and CAPIF core functions
28
7.1.2.1.4.3
Option 3 – PLMN operator-assisted service capability APIs and CAPIF core functions for a 3rd party service provider
28
7.1.2.2
Solution evaluation
29
7.1.3
Solution 3 – High level functional architecture to support service APIs from 3rd party API providers via CAPIF interconnection
30
7.1.3.1
Solution description
30
7.1.3.1.1
General
30
7.1.3.1.2
Architectural Model
30
7.1.3.1.3
Reference points
31
7.1.3.2
Solution evaluation
31
7.2
Solutions to key issues
32
7.2.1
Solution 1: Publish service APIs
32
7.2.1.1
Solution description
32
7.2.1.2
Solution evaluation
32
7.2.2
Solution 2: Discover service APIs
33
7.2.2.1
Solution description
33
7.2.2.2
Solution evaluation
33
7.2.3
Solution 3: Subscription and notifications for the CAPIF events related to service APIs
34
7.2.3.1
Solution description
34
7.2.3.1.1
General
34
7.2.3.1.2
Procedure
34
7.2.3.2
Solution evaluation
35
7.2.4
Solution 4: CAPIF topology hiding
35
7.2.4.1
Solution description
35
7.2.4.1.1
General
35
7.2.4.1.2
Procedure
35
7.2.4.2
Solution evaluation
36
7.2.5
Solution 5: Onboarding API invoker to the CAPIF
36
7.2.5.1
Solution description
36
7.2.5.1.1
General
36
7.2.5.1.2
Procedure
36
7.2.5.2
Solution evaluation
37
7.2.6
Solution 6: Authentication between the API invoker and the CAPIF core functions
38
7.2.6.1
Solution description
38
7.2.6.1.1
General
38
7.2.6.1.2
Procedure
38
7.2.6.2
Solution evaluation
38
7.2.7
Solution 7: Obtaining authorization to access service API
39
7.2.7.1
Solution description
39
7.2.7.1.1
General
39
7.2.7.1.2
Procedure
39
7.2.7.2
Solution evaluation
39
7.2.8
Solution 8: Authentication between the API invoker and the AEF as separate procedure
40
7.2.8.1
Solution description
40
7.2.8.1.1
General
40
7.2.8.1.2
Procedure
40
7.2.8.2
Solution evaluation
40
7.2.9
Solution 9: Secure communication
41
7.2.9.1
Solution description
41
7.2.9.2
Solution evaluation
41
7.2.10
Solution 10: API invoker authorization to access service APIs
41
7.2.10.1
Solution description
41
7.2.10.1.1
General
41
7.2.10.1.2
Procedure
41
7.2.10.2
Solution evaluation
42
7.2.11
Solution 11: Logging service API invocations
42
7.2.11.1
Solution description
42
7.2.11.1.1
General
42
7.2.11.1.2
Procedure
43
7.2.11.2
Solution evaluation
43
7.2.12
Solution 12: Auditing service API invocation
43
7.2.12.1
Solution description
43
7.2.12.1.1
General
43
7.2.12.1.2
Procedure
44
7.2.12.2
Solution evaluation
44
7.2.13
Solution 13: Charging the invocation of service APIs
44
7.2.13.1
Solution description
44
7.2.13.1.1
General
44
7.2.13.1.2
Procedure
44
7.2.13.2
Solution evaluation
45
7.2.14
Solution 14: Monitoring service API invocation
45
7.2.14.1
Solution description
45
7.2.14.1.1
General
45
7.2.14.1.2
Procedure
45
7.2.14.2
Solution evaluation
46
7.2.15
Solution 15: CAPIF access control
46
7.2.15.1
Solution description
46
7.2.15.1.1
General
46
7.2.15.1.2
Procedure
46
7.2.15.2
Solution evaluation
47
7.2.16
Solution 16: CAPIF access control with cascaded AEFs
47
7.2.16.1
Solution description
47
7.2.16.1.1
General
47
7.2.16.1.2
Procedure
47
7.2.16.2
Solution evaluation
48
7.2.17
Solution 17: Authentication between the API invoker and the AEF as part of the API invocation
48
7.2.17.1
Solution description
48
7.2.17.1.1
General
48
7.2.17.1.2
Procedure
49
7.2.17.2
Solution evaluation
49
8
Overall evaluation
49
8.1
General
49
8.2
Architecture evaluation
50
8.3
Solution evaluation
50
9
Conclusions
51
Annex A: API work done by other 3GPP WGs
53
A.1
General
53
A.2
Discussion
53
A.2.1
SA4: API for the interface between MBMS service provider and BM-SC (xMB)
53
A.2.2
SA2, CT3: SCEF to expose the services and capabilities provided by 3GPP network interfaces and protocols
54
A.2.3
CT3: Representational State Transfer (REST) protocol-based St reference point
54
A.2.4
CT3: Representational State Transfer (REST) reference point between the Application Function (AF) and the Protocol Converter (PC)
54
A.3
Summary
55
Annex B: OMA API Program
57
B.1
General
57
B.2
OMA API Architecture
58
B.2.1
General
58
B.2.2
OMA Next Generation Service Interfaces (NGSI) for Abstract APIs
58
B.2.2.1
OMA reference architecture of Abstract APIs
58
B.2.2.2
Service Registration and Discovery
58
B.2.2.3
Identity Control
58
B.2.2.4
Data Configuration and Management
59
B.2.3
OMA RESTful APIs
59
B.2.3.1
Authorization Framework for Network APIs
59
B.2.3.2
RESTful Network API for Capability Discovery
59
B.3
API consistency within OMA APIs
59
Annex C: ETSI MEC API framework
61
C.1
General
61
C.2
MEC Application Enablement
62
C.3
Design aspects of ETSI MEC APIs
63
C.3.1
General
63
C.3.2
Entry point of a Mobile Edge service API
63
C.3.3
API security and privacy considerations
64
C.3.4
API template
64
C.3.5
Patterns of the API
64
Annex D: Change history
65

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.
Introduction

In 3GPP, there are multiple northbound API-related discussions e.g., APIs for Service Capability Exposure Function (SCEF) functionalities defined in 3GPP TS 23.682 [2], API for the interface between MBMS service provider and BM-SC defined in 3GPP TR 26.981[3]. To avoid duplication and inconsistency of approach between each individual API activity, 3GPP has considered the development of a common API framework (CAPIF) that includes common aspects applicable to any northbound APIs.

The present document identifies a common approach for API development within 3GPP, corresponding solutions for the CAPIF for 3GPP northbound APIs, and recommendations for normative work.
1
Scope

The present document is a technical report which identifies the architecture aspects necessary for the development of a CAPIF for 3GPP northbound APIs, and corresponding architectural solutions. The aspects of the study include identifying architecture requirements for the CAPIF (e.g. registration, discovery, identity management) that are applicable to any service APIs when used by northbound entities, as well as any interactions between the CAPIF and the service APIs themselves.

The study takes into consideration the existing work within 3GPP related to APIs as well as API frameworks defined outside 3GPP. The recommendations from the study include architecture solutions that may be considered for normative work, based on the gap analysis of the identified architecture requirements and the existing solutions.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 23.682: "Architecture enhancements to facilitate communications
with packet data networks and applications".

[3]
3GPP TR 26.981: "MBMS Extensions for Provisioning and Content Ingestion".
[4]
3GPP TS 29.122: "T8 reference point for Northbound APIs".

[5]
3GPP TS 29.155: "Traffic steering control; Representational state transfer (REST) over St reference point".

[6]
3GPP TS 29.198-1: "Open Service Access (OSA) Application Programming Interface (API) Part 1: Overview".
[7]
3GPP TS 29.201: "Representational State Transfer (REST) reference point between Application Function (AF) and Protocol Converter (PC)".

[8]
3GPP TS 32.240: "Telecommunication management; Charging management; Charging architecture and principles".

[9]
ETSI GS MEC 009: "Mobile Edge Computing (MEC); General Principles for Mobile Edge Service APIs".
[10]
ETSI GS MEC 003: "Mobile Edge Computing (MEC); Framework and Reference Architecture."
[11]
ETSI GS MEC 011: "Mobile Edge Computing (MEC); Mobile Edge Platform Application Enablement."
[12]
IETF RFC 6749: "The OAuth 2.0 Authorization Framework".

[13]
OMA AD NGSI: "Next Generation Service Interfaces Architecture".

[14]
OMA-ER_Autho4API: "Authorization Framework for Network APIs ".

[15]
OMA-TS-NGSI_Registration_and_Discovery: "NGSI Registration and Discovery".
[16]
OMA-TS-REST_NetAPI_Common: "Common definitions for RESTful Network APIs".

[17]
OMA-WP-Guidelines_for_RESTful_Network_APIs: "OMA whitepaper: Guidelines for RESTful Network APIs".
3
Definitions, symbols and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

API: The means by which an API invoker can access the service.

API invoker: The entity which invokes the CAPIF or service APIs.
API invoker profile: The set of information associated to an API invoker that allows that API invoker to utilize CAPIF APIs and Service APIs.
API exposing function: The entity which provides the service communication entry point for the service APIs.
Common API framework: A framework comprising common API aspects that are required to support service APIs.

Northbound API: A service API exposed to higher-layer API invokers.
Onboarding: One time registration process that enables the API invoker to subsequently access the CAPIF and the service APIs.
Service API: The interface through which a component of the system exposes its services to API invokers by abstracting the services from the underlying mechanisms.
For the purposes of the present document, the following terms and definitions given in 3GPP TS 29.198-1 [6] apply:

Service Capability Server (SCS)

For the purposes of the present document, the following terms and definitions given in 3GPP TS 32.240 [8] apply:

Offline charging

Online charging

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

ACL
Access Control List
AEF
API Exposing Function

AF
Application Function

API
Application Program Interface

AS
Application Server

BM-SC
Broadcast Multicast Service Centre

CAPIF
Common API Framework
CRUD
Create, Read, Update, Delete

DASH
Dynamic Adaptive Streaming over HTTP

DDoS
Distributed Denial of Service

DNS
Domain Name Servers

ETSI
European Telecommunications Standards Institute

GS
Group Specification
HATEOAS
Hypermedia As The Engine Of Application State
HPLMN
Home PLMN

HTTP
Hyper Text Transfer Protocol

HTTPS
Hypertext Transfer Protocol Secure
IDL
Interface Definition Language

IETF
Internet Engineering Task Force
IoT
Internet of Things

IP
Internet Protocol

IP-CAN
IP Connectivity Access Network

ISG
Industry Specification Group

JSON
JavaScript Object Notation
MBMS
Multimedia Broadcast and Multicast Service
MEC
Multi-access Edge Computing

MMS
Multimedia Messaging Service
MTC
Machine Type Communication

NAPS
Northbound API for SCEF – SCS/AS Interworking

NDS/IP
NDS for IP based protocols

NFV
Network Functions Virtualization

NGSI
Next Generation Service Interfaces

OAI
Open API Initiative

OAuth
Open Authorization
OMA
Open Mobile Alliance

OWSER
OMA Web Services
PC
Protocol Converter

PCC
Policy and Charging Control

PCRF
Policy control and Charging Rules Function

PLMN
Public Land Mobile Network

REST
REpresentational State Transfer
RPC
Remote Procedure Call

RTP
Real Time Protocol

SCEF
Service Capability Exposure Function

SCS
Service Capability Server

SMS
Short Message Service

SOAP
Simple Object Access Protocol
TCP
Transmission Control Protocol

TLS
Transport Layer Security
TSSF
Traffic Steering Support Function

UDDI
Universal Description, Discovery and Integration
UE
User Equipment

URI
Uniform Resource Identifier

URL
Uniform Resource Locator

VOD
Video On Demand

VPLMN
Visiting PLMN
WSDL
Web Services Description Language

XML
eXtensible Markup Language
4
Analysis of external API frameworks
4.1
Introduction

The subsequent sub-clauses contain the results of an analysis of external API frameworks against an initial set of CAPIF functionality that was derived from 3GPP TS 23.682 [2]. This analysis has been performed as a starting point of the CAPIF study to get a better understanding of existing functionality.
4.2
OMA API framework
4.2.1
Description

A detailed description of the OMA API framework is provided in annex B.
4.2.2
Detailed analysis
This clause provides the results of a high-level gap analysis of the OMA Network APIs needed to support the IoT networks, based on OMA inputs. Table 4.2.2-1 provides the results of this analysis and lists the gaps identified that may be applicable to the CAPIF.
Table 4.2.2-1: OMA API framework analysis results
	Functionality
	OMA Support (Available/Partial/Gap)
	OMA specification

	Authentication and Authorization
	Partial
	OMA-ER_Autho4 [14]

	Identification of the API consumer
	Partial
	OMA-ER_Autho4 [14]

	Profile Management
	Partial
	OMA-ER_Autho4 [14]

	ACL management
	Partial
	OMA-ER_Autho4 [14]

	Ability for the external entities to discover the exposed service capabilities
	Partial (see note)
	OMA-TS-NGSI_Registration_and_Discovery [15]

	Policy Enforcement
	
	

	Infrastructure policy / network protection
	Gap
	

	Business policy e.g. number portability
	Gap
	

	Application Layer Policy e.g. throttling
	Gap
	

	Assurance
	
	

	Integration with O&M Platforms
	Gap
	

	Usage of APIs
	Gap
	

	Accounting for inter-operator settlements
	Gap
	

	Access: issues related to external interconnection and point of contact
	Gap
	

	Abstraction: hides the underlying 3GPP network interfaces and protocols to allow full network integration
	Available
	(individual OMA API specifications)

	NOTE:
OMA-TS-NGSI_Registration_and_Discovery [15] is applicable to a specific type of web services (OWSER using UDDI and WSDL).

4.3
ETSI MEC API framework

4.3.1
Description

A detailed description of the ETSI MEC API framework is provided in annex C.

4.3.2
Detailed analysis

This clause provides the results of a high-level gap analysis of the ETSI MEC Application enablement (ETSI GS MEC011 [11]) and API principles (ETSI GS MEC009 [9]) specifications. Table 4.3.2-1 provides the results of this analysis and lists the gaps identified that may be applicable to the CAPIF.

Table 4.3.2-1: ETSI MEC API framework analysis results

	Functionality
	ETSI MEC Support (Available/Partial/Gap)
	ETSI MEC specification

	Authentication and authorization
	Partial
	ETSI GS MEC009 [9]

	Identification of the API consumer
	Partial
	ETSI GS MEC009 [9]

	Profile Management
	Partial
	ETSI GS MEC009 [9]

	ACL management
	Partial
	ETSI GS MEC009 [9]

	Ability for the external entities to discover the exposed service capabilities
	Available
	ETSI GS MEC011 [11]

	Policy Enforcement
	
	

	Infrastructure policy / network protection
	Gap
	

	Business policy e.g. number portability
	Gap
	

	Application Layer Policy e.g. throttling
	Gap
	

	Assurance
	
	

	Integration with O&M Platforms
	Gap
	

	Usage of APIs
	Gap
	

	Accounting for inter-operator settlements
	Gap
	

	Access: issues related to external interconnection and point of contact
	Gap
	

	Abstraction: hides the underlying 3GPP network interfaces and protocols to allow full network integration
	Available
	(individual MEC API specifications)

5
Key issues
5.1
Publish and discover service API information

There are several service APIs provided by the service provider. API invokers require service API information to access these service APIs. API invokers need to acquire the service API information from the service provider which includes information such as IP address, port number with details about interfaces, protocols, versions numbers, and environment details to enable access to the service API. Further study is required on the mechanism of providing service API information to the API invokers including publishing of service API information by the service providers and discovering of the service API information by the API invokers.

5.2
Topology hiding of the service

The API invokers may access the service APIs in two scenarios:

a)
Inside the same trust domain as the service API; and

b)
Outside the trust domain of the service API.

Scenario (a) may not require any topology hiding of the service from the API invoker. Scenario (b) requires that the service topology is hidden from the API invoker accessing the service APIs outside the trust domain of the service API to avoid any network security issue. Further study is required on the mechanism to hide topology of the service from the API invokers accessing the service API outside the trust domain of the service API.
5.3
API invoker authentication to access service APIs

A service API may have its own mechanism to authenticate the API invokers. It is difficult to integrate API invokers to different service APIs if they follow their own authentication mechanisms. Further study is required to provide a common API invoker authentication mechanism to access service APIs.
5.4
API invoker authorization to access service APIs

Applications require authorization to access the service APIs. Unauthorized access to service APIs is undesirable from the operator's view. During the service communication, the service verifies the authorization of the application accessing the service API. Further study is required to provide a common authorization mechanisms to access service APIs.
5.5
Charging on invocation of service APIs

CAPIF cannot be considered complete without having appropriate mechanisms to support charging related functions. This key issue will look into the aspects of collection of charging information during the invocation of service APIs, and architecture requirements to address them as part of the CAPIF.
5.6
Lifecycle management of service APIs

The lifecycle management is a key functionality of the CAPIF, which achieves the overall management of service APIs. This key issue identifies aspects related to lifecycle management e.g. starting and stopping of service API, performance reporting parameters, etc.
5.7
Monitoring service API invocations

To monitor the health of service API, capture system load information and prevent potential attacks, service API invocation monitoring functionalities are to be provided by the CAPIF.
5.8
Logging API invoker onboarding and service API invocations

The service APIs are typically invoked by various consumers. Onboarding is a distinct event that occurs prior to the invocation of the service APIs. It is necessary that the service API provider is able to log the API invoker onboarding and the service API invocation events for the purposes of tracing back and analysing statistics. Therefore the API invoker onboarding and the service API invocation logging and storage functionalities are to be included in CAPIF.
The API invoker onboarding and the stored service API invocation log may contain private and sensitive information. Such information needs to be handled carefully to respect potential privacy rules.
5.9
Auditing service API invocations

While the service API provider is able to authorize consumers with API invocation rights, it is necessary for the service providers to detect any abuse of service API invocations. To address this need, auditing capabilities (e.g. querying the service API invocations) will help the service API providers to identify illegal service API invocations.
5.10
Onboarding API invoker to CAPIF

API invoker has to be a recognized user of the CAPIF. Prior to authentication to access service APIs, the API invoker has to complete one time onboarding process to the CAPIF. Completion of onboarding process may need explicit grant by the administrator. Some of the onboarding data may be allowed to be updated by the API invoker.

5.11
CAPIF authentication towards API invokers

While we know that API invoker authentication is required to access service APIs, it may also be necessary for the CAPIF to authenticate to the API invoker accessing service APIs before the actual API traffic is sent over the connection. Further study is required to provide mutual authentication between CAPIF and the API invoker accessing service APIs.
5.12
Service API access control

Service API access control is required to regulate the ability of the API invoker to use the service API. Operators may configure some access control policies (e.g. invocations/sec, max invocations limit). These access control policies are further required to be applied to service communications between the API invoker and the service API.

5.13
Secure API communication

Securing of the communication between API invoker and CAPIF is necessary for ensuring data is accessed only by the authorized entities. Further the communication has to be trustworthy by protecting the data from intentional or accidental changes i.e. to prevent unauthorized users from making modifications to the data.
5.14
Policy configuration
The CAPIF need to support an API provider (or CAPIF administrator) to configure policies. Enforcement of such policies is required to exert control over accessing/using protected network resources from the API invokers.
Such policies would include the following:
-
Infrastructural Policy: policies to protect platforms and network. An example of which maybe ensuring that a service node such as BM-SC is not overloaded.

-
Business Policy: policies related to the specific functionalities exposed. An example may be number portability, service routing, subscriber consent etc.

-
Application Layer Policy: policies that are primarily focused on message payload or throughput provided by an API invoker. An example may be throttling.
5.15
API protocol stack model
In order for the CAPIF to be common across all present and future API invokers for various usages and purposes, a minimum common protocol stack model should be defined so that all API invokers need to support only one and the same protocol stack model. This likely includes aspects such as protocols for transport of the API content itself. In other words, for example, multiple different API implementations requiring API invokers to support different protocols (HTTP in one implementation, and something else in another implementation) does not make sense from the spirit of the framework being common, thus such situation should be avoided.

On the other hand, API message definition, representation, and encoding (e.g. XML, JSON) may be outside of this minimum protocol model due to several reasons: 1) it typically falls under stage 3 specification domain, 2) suitability for API representation and encoding may be influenced by different API invoker needs, and 3) we should not exclude the possibility of any new protocol that may emerge in the future.

5.16
API security protocol
Similar to API protocol stack model key issue discussed in subclause 5.15, CAPIF should also include commonality in the security protocol for all API implementations. In other words, for example, multiple different API implementations requiring API invokers to support different security protocols (HTTPS in one implementation, and something else in another implementation) does not make sense from the spirit of the framework being common, thus such situation should be avoided.
5.17
CAPIF support for service APIs from multiple providers
Multiple API providers can host and operate CAPIF in a completely uncoordinated fashion. In another scenario, multiple API providers may need coordination amongst them. An operator A may establish trust relationships with another operator B or 3rd party service providers. If the operator A hosts CAPIF, it should be possible to offer operator B's or 3rd party service providers' service APIs via the operator A hosted CAPIF. Further study is required on the following aspects:

-
To allow service APIs from multiple providers having trust relationship to be published by a single CAPIF.
-
Common authorization mechanism based on trust relationships between the multiple providers.
-
Use of the common functions like access control, charging, monitoring, policy for the service APIs from multiple providers e.g., maintaining a logical separation of the relevant data between multiple API providers.
-
To allow service API exposing capability to be present in common or in both (respective) API providers.
6
Architectural requirements
6.1
General requirements
[AR-6.1-a] The CAPIF shall support mechanisms (e.g. publish service APIs, authorization, logging, charging) to support service APIs from the 3rd party API providers.

[AR-6.1-b] The CAPIF shall enable API invoker(s) to discover and communicate with service APIs from the 3rd party API providers.

[AR-6.1-c] Reference points internal to CAPIF may be provided as APIs.
6.2
Service API publish and discover requirements
6.2.1
General

This subclause specifies the service API publish and discover related requirements.

6.2.2
Requirements

[AR-6.2.2-a] The CAPIF shall provide a mechanism to publish the service API information to be used by the API invokers.

NOTE:
The published information includes items such as service name, service type, communication type, description, interface details (e.g. IP address, port number, URI), protocols, version numbers, and data format.
[AR-6.2.2-b] The CAPIF shall provide a mechanism for the API invokers to discover the published service API information as specified in [AR-6.2.2-a] according to the API invokers' interest.

6.3
Security requirements
6.3.1
General

This subclause specifies the security related requirements for API invokers accessing the service APIs.

6.3.2
Requirements

[AR-6.3.2-a] The CAPIF shall provide mechanisms to hide the topology of the service from the API invokers accessing the service APIs from outside the trust domain of the service APIs.

[AR-6.3.2-b] The CAPIF shall provide mechanisms to authenticate API invokers to access the service APIs.

[AR-6.3.2-c] The CAPIF shall provide mechanisms to authenticate API invokers upon the service API invocation.

[AR-6.3.2-d] The CAPIF shall provide mechanisms to authorize API invokers to access the service APIs.

[AR-6.3.2-e] The CAPIF shall provide mechanisms to validate authorization of the API invokers upon the service API invocation.

[AR-6.3.2-f] The CAPIF shall provide mechanisms for mutual authentication between the CAPIF and the API invoker accessing service APIs.

[AR-6.3.2-g] The CAPIF shall provide mechanisms to control the service API access for every API invocation.

[AR-6.3.2-h] The communication between the CAPIF and the API invoker shall be confidentiality protected.

[AR-6.3.2-i] The communication between the CAPIF and the API invoker shall be integrity protected.

[AR-6.3.2-j] The CAPIF shall provide authorization mechanism for service APIs from the 3rd party API providers.

[AR-6.3.2-k] The CAPIF shall provide data confidentiality (across API providers) for data (e.g. logging, charging) related to service APIs from multiple API providers.

6.4
Charging requirements
6.4.1
General

This subclause specifies the charging related requirements for the usage or invocation of service APIs.
6.4.2
Requirements

[AR-6.4.2-a] The CAPIF shall support online and offline charging for service APIs.

NOTE:
Details on charging will be specified by SA5.

[AR-6.4.2-b] The CAPIF shall provide mechanisms to record the invocation count of the service APIs for charging purpose.

[AR-6.4.2-c] The CAPIF shall provide mechanisms to record identification of the API invoker and the associated service API invocation for charging purpose.

[AR-6.4.2-d] The CAPIF shall provide mechanisms to record timestamp of the service API invocation.

[AR-6.4.2-e] The CAPIF shall provide mechanisms to record the service API related information, e.g. API location.

6.5
Lifecycle management requirements
6.5.1
General

This subclause specifies the lifecycle management aspects such as monitoring the running status of service APIs and related operations.
6.5.2
Requirements

[AR-6.5.2-a] The CAPIF shall provide mechanisms to monitor the lifecycle of service APIs, e.g. starting and stopping of the service APIs.

[AR-6.5.2-b] The CAPIF shall provide mechanisms to monitor and report the performance status about the service APIs.

[AR-6.5.2-c] The CAPIF shall provide mechanisms to monitor and report the fault information about the service APIs.

[AR-6.5.2-d] The CAPIF shall provide mechanisms to record change events of service APIs, e.g. service APIs relocation.

6.6
Monitoring service API invocation requirements
6.6.1
General
The CAPIF includes monitoring functions. This enables API provider to monitor service API invocations in near real-time, to determine critical aspects such as system load, API usage information, uncover potential overload and attacks (e.g. DDoS) conditions.

6.6.2
Requirements
[AR-6.6.2-a] The CAPIF shall provide mechanisms to capture service API invocation events and make them available to service API provider in near real-time (second level).

[AR-6.6.2-b] The CAPIF shall provide mechanisms to analyse system load and resource usage information, detect overload conditions and existence of threat conditions.
[AR-6.6.2-c] The CAPIF shall provide mechanisms to allow service API provider to apply monitoring filters based on criteria such as invoker's ID and IP address, service API name and version, input parameters, and invocation result.

6.7
Logging service API invocation requirements
6.7.1
General

The CAPIF supports the ability to log and store service API invocations. This enables API providers to record service API invocation events for the purpose of tracing back and statistical analysis.
6.7.2
Requirements
[AR-6.7.2-a] The CAPIF shall provide mechanisms for service API invocation event logging and storage functionality. For each service API invocation event, the service API invocation log shall at least include: invoker's ID and IP address, service API name and version, input parameters, invocation result, and time stamp information.
[AR-6.7.2-b] The service API invocation log shall be stored for a configurable time period, according to the service API provider's policy.
[AR-6.7.2-c] The service API invocation log shall be stored securely, and shall only be accessed by authorized administrators of the service API provider.
NOTE:
There is no relationship between logging and charging.
6.8
Auditing service API invocation requirements
6.8.1
General

The CAPIF includes auditing capabilities. This enables the service API provider to identify illegal service API invocations e.g. by querying the service API invocation log.
6.8.2
Requirements
[AR-6.8.2-a] The CAPIF shall provide mechanisms to audit service API invocation, which enables the service API provider to trace back a specific API invocation, e.g. by querying the service API invocation log.
6.9
Onboarding API invoker requirements
6.9.1
General

This subclause specifies the requirements related to onboarding API invoker to the CAPIF.

6.9.2
Requirements

[AR-6.9.2-a] The CAPIF shall provide capability to onboard the new API invokers.

[AR-6.9.2-b] The CAPIF shall support granting an API invoker's request to onboard with the CAPIF administrator.

6.10
Policy configuration requirements
6.10.1
General

This subclause specifies the policy configuration related requirements.

6.10.2
Requirements

[AR-6.10.2-a] The CAPIF shall support configuring policies such as related to the protection of platforms and network, specific functionalities exposed, message payload or throughput.
6.11
Protocol design requirements

6.11.1
General

In order for the CAPIF to be common across all present and future API invokers for various usages and purposes, a minimum common protocol stack model should be defined so that all API invokers that use the common-framework-based API need to support only one and the same set of protocols, e.g. security layer protocol(s).

6.11.2
Requirements
[AR-6.11.2-a] The CAPIF shall define a minimum common protocol stack model common for all API implementations to be based on.

[AR-6.11.2-b] The CAPIF shall define a common protocol security model for all API implementations to provide confidentiality and integrity protection.

NOTE:
The protocol definition for API framework is within the stage 3 scope. HTTP/TLS (HTTPS) is one example that has been specified in other API work done by other 3GPP WGs, such as 3GPP TS 29.155 [5] and 3GPP TS 29.201 [7].
6.12
Logging API invoker onboarding requirements

6.12.1
General

The ability to log and store API invoker onboarding shall be supported by the CAPIF. This enables API providers to record API invoker onboarding events for the purpose of tracing back and statistical anlaysis.
6.12.2
Requirements

[AR-6.12.2-a] The CAPIF shall provide mechanisms for API invoker onboarding event logging and storage functionality. For each API invoker onboarding event, the API invoker onboarding log shall at least include: invoker's ID, onboarding result, and time stamp information.

[AR-6.12.2-b] The API invoker onboarding log shall be stored according to the service API provider's policy.

[AR-6.12.2-c] The API invoker onboarding log shall be stored securely, and shall only be accessed by authorized administrators of the service API provider.

6.13
CAPIF interaction logging requirements
6.13.1
General

The ability to log and store the API invoker interactions with the CAPIF (e.g. authentication, authorization, discover service APIs) shall be supported by the CAPIF. This enables API providers to record API invoker interaction events for the purpose of tracing back and statistical anlaysis.
6.13.2
Requirements
[AR-6.13.2-a] The CAPIF shall provide mechanisms for the event logging of API invoker interactions with the CAPIF (e.g. authentication, authorization, discover service APIs). For each API invoker interaction with the CAPIF, the log may include items such as invoker's ID and IP address, API name and version, input parameters, invocation result, and time stamp information.
[AR-6.13.2-b] The API invoker interactions log shall be stored for a configurable time period.
[AR-6.13.2-c] The API invoker interactions log shall be stored securely, accessed only by authorized administrators.
7
Solutions

7.1
High level architecture

7.1.1
Solution 1 – High level functional architecture for the CAPIF
7.1.1.1
Solution description

7.1.1.1.1
General

This subclause describes the solution for the high level functional architecture for the CAPIF.
7.1.1.1.2
Architectural Model

Figure 7.1.1.1.2-1 shows the architectural model for the CAPIF which allows API invokers inside the PLMN trust domain and outside the PLMN trust domain to access the service APIs.

[image: image3.emf]API invoker

CAPIF-1e

CAPIF core functions

API exposing function

Service APIs

Service APIsService APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

P

L

M

N

T

r

u

s

t

D

o

m

a

i

n

CAPIF-4

API publishing function

API provider functions

CAPIF APIs

CAPIF-5

API management function

Figure 7.1.1.1.2-1: High level functional architecture for the CAPIF
The CAPIF consists of an API provider functions and the CAPIF core functions. The CAPIF core functions support the API invokers to access the service APIs. The CAPIF core functions consists of the following capabilities:

-
Authenticating the API invoker based on the identity and credentials of the API invoker;

-
Providing authorization for the API invoker prior to accessing the service API;

-
Publishing, storing and discovering service APIs information using an API registry;

-
Controlling the service API access based on PLMN operator configured policies;

-
Storing the logs for the service API invocations and providing the service API invocation logs to authorized entities;

-
Charging based on the logs of the service API invocations;

-
Monitoring the service API invocations;

-
Onboarding a new API invoker;

-
Storing API provider policy configurations related to CAPIF and service APIs; and

-
Auditing support based on log analysis (e.g. detecting abuse).

The API provider functions consists of:

-
API exposing function;

-
API publishing function; and

-
API management function.

The API exposing function is the provider of the service APIs and is also the service communication entry point of the service API to the API invokers. The API exposing function consists of the following capabilities:
-
Authentication is responsible to validate the API invoker based on the identity and credentials provided by the CAPIF core functions;

-
Authorization is responsible to validate the authorization provided by the CAPIF core functions; and

-
Logging is responsible to send service API invocation logs to the CAPIF core functions.

The API publishing function is responsible for the capability to publish the service API information of the API provider to the CAPIF core functions.

The API management function enables the API provider to perform administration of the service APIs. The API management function consists of the following capabilities:

-
Auditing the service API invocation logs received from the CAPIF core functions;

-
Monitoring the events triggered by the CAPIF core functions;

-
Configuring the API provider policies to the CAPIF core functions;

-
Governing the lifecycle management of the service APIs; and

-
Onboarding the new API invokers.

The CAPIF is hosted within the PLMN operator network. The API invoker is typically provided by a 3rd party application provider who has some PLMN service agreement with PLMN operator. The API invoker may reside within the same trust domain as the PLMN operator network.

The API invoker within the PLMN trust domain interacts with the CAPIF via CAPIF-1 and CAPIF-2. The API invoker from outside the PLMN trust domain interacts with the CAPIF via CAPIF-1e and CAPIF-2e. The API provider functions within the PLMN trust domain interacts with the CAPIF core functions via CAPIF-3, CAPIF-4 and CAPIF-5.
NOTE:
The security aspects of CAPIF-1, CAPIF-1e, CAPIF-2 and CAPIF-2e are under SA3 responsibility and out of scope of the present document.
7.1.1.1.3
Reference points
The reference points CAPIF-1 and CAPIF-1e support the functions for the API invoker to discover service APIs, to authenticate and to get authorization.
The reference points CAPIF-2 and CAPIF-2e support the functions for the API invoker to communicate with the service APIs. There can be one or several CAPIF-2 or CAPIF-2e instances between the API invoker and the API exposing function per CAPIF
NOTE:
The aspects related to the specific service API in reference points CAPIF-2 and CAPIF-2e is out of scope of the present document.

The reference point CAPIF-3 supports the interaction between the CAPIF core functions and the API exposing function of the API provider functions for access control, policy control, etc.
The reference point CAPIF-4 supports the interaction between API publishing function of API provider functions and the CAPIF core functions for publishing the service APIs.
The reference point CAPIF-5 supports the interaction between the API management function of API provider functions and the CAPIF core functions:

1.
to provide the service API invocation logs to the API management function;

2.
enabling the API management function to monitor the events triggered due to the service APIs invocations;

3.
to support onboarding new API invokers by provisioning the API invoker information at the CAPIF core functions, requesting explicit grant of new API invokers onboarding and confirming onboarding success;

4.
enabling the API management function to configure policies at the CAPIF core functions e.g. service API invocation throttling, blocking API invocation for certain duration; and

5.
enabling the API provider to govern the lifecycle status of service APIs e.g. pilot or live, trace and access API versioning, control visibility of service API (start or stop of service API).
7.1.1.1.4
Deployment options
7.1.1.1.4.1
General

The CAPIF deployments in centralized and distributed models are described in subclause 7.1.1.1.4.2 and subclause 7.1.1.1.4.3. The CAPIF deployment models shown are not exhaustive and do not provide the representation for the following API provider functions:

-
API publishing function; and

-
API management function.

The above API provider functions can be further deployed in centralized and distributed manner as determined by the PLMN operator.

7.1.1.1.4.2
Option 1 – Centralized deployment

The CAPIF can be deployed centrally as illustrated in the figure 7.1.1.1.4.2-1.

[image: image4.emf]API invokerAPI exposing functionCAPIF core functionsCAPIF-1CAPIF-2CAPIF APIsService APIService APIService API

Figure 7.1.1.1.4.2-1: Centralized deployment of CAPIF

In centralized deployment, the CAPIF core functions and the API exposing function are co-located. The API invoker can interact independently with the CAPIF core functions and the API exposing function including the service APIs. The CAPIF appears as a gateway for all API invoker interactions. The API invoker obtains the service API information and its entry point details from the CAPIF core functions via CAPIF-1. The service communication point of entry for the service API is the API exposing function which also applies any access control or policy control to the internal interactions between the API invoker and the service API in coordination with the CAPIF core functions.

NOTE:
The API invoker can be outside the PLMN trust domain and will access the CAPIF via CAPIF-1e and CAPIF-2e instead of CAPIF-1 and CAPIF-2.

7.1.1.1.4.3
Option 2 – Distributed deployment
The CAPIF can be deployed in a distributed manner illustrated in the figure 7.1.1.1.4.3-1.

[image: image5.emf]API invoker

API exposing function

(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-2

CAPIF-3

Service APICAPIF APIsService APIService API

Figure 7.1.1.1.4.3-1: Distributed deployment of the CAPIF

The API invoker can interact independently with the CAPIF core functions and the API exposing function including the service APIs. In this deployment, API exposing function appears as an agent for all service API invocations from the API invoker. The API invoker obtains the service API information and its entry point details from the CAPIF core functions via CAPIF-1 interface. The first point of entry for the service API is the API exposing function during API invocation. The API exposing function acts as agent for service API applying any access control or policy control to the interactions between the API invoker and the service API in coordination with the CAPIF core functions via CAPIF-3 interface.

The CAPIF can be deployed by splitting the functionality of the API exposing function among multiple API exposing function entities, of which one acts as the entry point. The CAPIF deployment with cascading API exposing functions is as illustrated in the figure 7.1.1.1.4.3-2.

[image: image6.emf]API invoker

API exposing function

(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-3

Service (X&Y) APIs

CAPIF-2

CAPIF-2

API exposing function

(AEF-2)

Service X APIs

API exposing function

(AEF-3)

Service Y APIs

CAPIF APIs

Service (X&Y) APIs

CAPIF-2

Figure 7.1.1.1.4.3-2: Distributed deployment of the CAPIF with cascading API exposing functions
In this deployment option, the API exposing function can have several instances like AEF-1, AEF-2 and AEF-3 which can be assigned with different roles. The roles for each API exposing function are decided by the operator. In this illustration, the API exposing functions AEF-2 and AEF-3 provide service APIs for service X and service Y respectively. The API exposing function AEF-1 provides the service communication entry point to the service APIs for service X APIs and service Y APIs. The API exposing function AEF-1 for instance can hide the topology of service X APIs and service Y APIs from the API invoker. The API exposing function AEF-1 also applies any access control or policy control to the interactions between the API invoker and service X APIs and between the API invoker and service Y APIs, in coordination with the CAPIF core functions using CAPIF-3.

The CAPIF core functions and the API exposing function AEF-1 can be co-located. The API invoker interacts with the CAPIF core functions via CAPIF-1. The API invoker interacts with service (X&Y) APIs on API exposing function AEF-1 via CAPIF-2. The API exposing function AEF-1 forwards the invocation of the service X API or service Y API from the API invoker to the API exposing functions AEF-2 or AEF-3 respectively via CAPIF-2. The API messages are forwarded via CAPIF-2 in the interactions between API exposing functions. The API invoker cannot directly interact with service X APIs and service Y APIs provided by API exposing functions AEF-2 and AEF-3 respectively.

Different splits of responsibility are possible. In another example illustrated in figure 7.1.1.1.4.3-3, the API exposing function AEF-1 could provide topology hiding for API exposing functions AEF-2 and AEF-3, plus access control for AEF-3. The API exposing function AEF-2 would provide its own access control, interacting with the CAPIF core functions via CAPIF-3.

[image: image7.emf]API invoker

API exposing function

(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-3

CAPIF-2

CAPIF-2

API exposing function

(AEF-2)

Service X APIs

API exposing function

(AEF-3)

Service Y APIs

CAPIF APIs

CAPIF-3

Service (X&Y) APIs

Service (X&Y) APIs

CAPIF-2

Figure 7.1.1.1.4.3-3: Another example of distributed deployment of the CAPIF with cascading API exposing functions

NOTE:
The API invoker can be outside the PLMN trust domain and will access the CAPIF via CAPIF-1e and CAPIF-2e instead of CAPIF-1 and CAPIF-2.

7.1.1.2
Solution evaluation

This is the only solution which provides a general architecture that enables the API invokers to access service APIs from the API providers.

Further analysis from a security perspective is required by SA3 for all reference points of CAPIF.

The deployment models for CAPIF architecture specified in subclause 7.1.1.1.4 are basic examples and not necessarily the only ways in which CAPIF entities can be deployed.

This solution will be considered for the Release 15 normative work.

It is required to be determined in the normative phase whether to combine functionalities for API management function and API publishing function and their corresponding reference points to the CAPIF core functions.

7.1.2
Solution 2 – CAPIF architecture for service APIs from 3rd party service provider

7.1.2.1
Solution description

7.1.2.1.1
General

There are several models for providing CAPIF support for 3rd party API provider(s). In all the models, the 3rd party API provider must establish a business relationship with the PLMN operator. The models described corresponds to the key issue on supporting service APIs from multiple API providers as described in subclause 5.17.

7.1.2.1.2
Architectural Model

Figure 7.1.2.1.2-1 shows the architectural model for the CAPIF that allows the 3rd party API providers to utilize the CAPIF core functions provided by the PLMN operator.

[image: image8.emf]CAPIF-1e

CAPIF core functions

API exposing function

Service APIs

Service APIsService APIs

CAPIF-3

CAPIF-2e

CAPIF-1

CAPIF-2

P

L

M

N

T

r

u

s

t

D

o

m

a

i

n

CAPIF-4

API publishing function

API provider functions

CAPIF APIs

CAPIF-3e

CAPIF-4e

CAPIF-5

API management function

API exposing function

Service APIs

Service APIsService APIs

API publishing function

API provider functions

API management function

CAPIF-5e

API invoker

CAPIF-2

3

r

d

p

a

r

t

y

T

r

u

s

t

D

o

m

a

i

n

CAPIF-2e

API invoker

API invoker

CAPIF-1e

Figure 7.1.2.1.2-1: CAPIF architecture for service APIs from 3rd party service provider
The API provider functions exist in both PLMN and 3rd party API provider domains, performing functionality for their respective service APIs. The functional entities of the CAPIF hosted by PLMN operator and the external API provider are specified in the high level functional architecture for the CAPIF specified in the subclause 7.1.1.1. The 3rd party API provider which resides outside the PLMN trust domain has business arrangement with the PLMN operator. The CAPIF core functions existing at the PLMN domain supports functionality for both the PLMN and the 3rd party API provider, however mainting the logical separation between the two domains. The API invoker within the trust domain connects to the CAPIF via CAPIF-1 and CAPIF-2. The API invoker from outside the trust domain connects to the CAPIF via CAPIF-1e and CAPIF-2e. The API provider functions from outside the PLMN trust domain connects to the CAPIF core functions via CAPIF-3e, CAPIF-4e and CAPIF-5e.
7.1.2.1.3
Reference points

The reference points CAPIF-3e, CAPIF-4e and CAPIF-5e are equivalent of the reference points CAPIF-3, CAPIF-4 and CAPIF-5 respectively specified in subclause 7.1.1.1.3, for supporting the interactions corresponding to the services APIs from the 3rd party service provider.

7.1.2.1.4
Deployment options
7.1.2.1.4.1
Option 1 – PLMN operator hosted service APIs and CAPIF core functions
CAPIF core functions is hosted in a PLMN operator domain as illustrated in the figure 7.1.2.1.4.1-1.

[image: image9.emf]API invoker

API invoker

CAPIF-1e

P

L

M

N

o

p

e

r

a

t

o

r

d

o

m

a

i

n

API exposing function

CAPIF core functions

PLMN service capabilities

and PLMN hosted service

capabilities

API management

function

CAPIF-1

CAPIF-2

CAPIF-2e

CAPIF-3

CAPIF-5

CAPIF-4

Service APIs

API publishing function

CAPIF APIs

Figure 7.1.2.1.4.1-1: PLMN operator hosted service APIs and CAPIF core functions
In this option, the service provider and the PLMN operator can be part of the same organization, in which case the business relationship between the two is internal to a single organization. CAPIF along with the service APIs are hosted by the PLMN operator, while the API invoker consuming service APIs may or may not reside within the PLMN operator domain.

CAPIF-5 interface allows API provider to interact with CAPIF core functions for API management functions. CAPI-5 interface supports the following functionality:

1.
enable the API provider to configure policies e.g. API invocation throttling, blocking API invocation for certain duration, whether API invocation is allowed while roaming. Policies can be defined to be enforced per API application or across applications, configure access control list of service APIs per application;
2.
access service API invocation event logs and configure the log storage period;
3.
for CAPIF core functions to request grant of new API invoker onboarding and confirm onboarding successful;
4.
allow API provider to update API invoker profile information;
5.
allow API provider to govern the lifecycle status of service APIs e.g. pilot or live, trace and access API versioning, control visibility of service API (start or stop of service API); and

6.
allow API provider to notify service API events e.g. fault of a Service API or location change of the API invoker invoking service API, load, resource usage, charging records.

7.1.2.1.4.2
Option 2 – 3rd party service provider hosted service APIs and CAPIF core functions
CAPIF core functions is hosted in a 3rd party service provider domain as illustrated in the figure 7.1.2.1.4.2-1.

[image: image10.emf]API invoker

API invoker

CAPIF-1e

CAPIF-1

P

L

M

N

o

p

e

r

a

t

o

r

d

o

m

a

i

n

3

r

d

p

a

r

t

y

S

e

r

v

i

c

e

P

r

o

v

i

d

e

r

d

o

m

a

i

n

CAPIF-2e

CAPIF-2

API exposing function

CAPIF core

functions

PLMN service

capabilities

API management

function

CAPIF-3

CAPIF-5

CAPIF-4

API exposing function

CAPIF core functions

3

rd

party service

capabilities

API management

function

CAPIF-3

CAPIF-5

CAPIF-4

CAPIF-1e

CAPIF-2

API invoker

CAPIF-1

CAPIF-2e

Service APIs

Service APIs

API invoker

API publishing function

API publishing function

CAPIF

APIs

CAPIF

APIs

Figure 7.1.2.1.4.2-1: 3rd party service provider hosted service capability APIs and CAPIF core functions
In this option, the 3rd party service provider has service arrangements with the PLMN operator for network capabilities and they belong to different organizations. The 3rd party service provider hosts both service capability APIs and CAPIF core functions. Since CAPIF is hosted in the 3rd party service provider domain i.e., the CAPIF components are duplicated in both PLMN operator domain and 3rd party service provider domain for enabling access to service APIs exposed by respective domains.

The functionality of the CAPIF components and the interfaces in the 3rd party service provider domain are similar to that of Option 1 – PLMN operator hosted service capability APIs and CAPIF core functions, however the CAPIF functionality is with respect to the service APIs exposed by the 3rd party service provider.

In some deployments, it is possible for the CAPIF components to exist only in the 3rd party service provider domain. In such a option, the service APIs are only exposed by the 3rd party service provider and the PLMN operator’s role may be limited to only providing the network capabilities.
7.1.2.1.4.3
Option 3 – PLMN operator-assisted service capability APIs and CAPIF core functions for a 3rd party service provider
CAPIF core functions is hosted in a PLMN operator domain as illustrated in the figure 7.1.2.1.4.3-1.

[image: image11.emf]API invoker

API invoker

CAPIF-1e

P

L

M

N

o

p

e

r

a

t

o

r

d

o

m

a

i

n

API exposing function

CAPIF core functions

PLMN service

capabilities

API management

function

CAPIF-1

CAPIF-2

CAPIF-2e

CAPIF-3

CAPIF-5

CAPIF-4

3

rd

party service

provider domain

3

rd

party service

provider domain

3

rd

party service

capabilities (e.g.

MCPTT)

API management

function

CAPIF-5e

Service APIs

API publishing function

CAPIF APIs

Figure 7.1.2.1.4.3-1: PLMN operator-assisted service APIs and CAPIF core functions for a 3rd party service provider
In PLMN operator-assisted CAPIF for the 3rd party service provider, the CAPIF components hosted in the PLMN operator domain is utilized by the 3rd party service provider for enabling access to service APIs exposed by the 3rd party service provider domain. So the PLMN operator-assists with both service capability APIs and the CAPIF core functions for the 3rd party service provider.

The functionality of the CAPIF components and the interfaces CAPIF-3 are similar to those of PLMN operator hosted CAPIF, however the functionality supported on CAPIF-3 may be enhanced to support requirements that are necessary to support service APIs exposed by the 3rd party service provider.

CAPIF core functions may need to maintain logical separation between APIs related data storage between the services API exposed by the PLMN operator domain and the 3rd party service provider domain i.e. access to the storage is restricted to the respective domains. Such separation will enable API management entities in both network provider domain and service provider domain to be in control of their framework functionality and the associated data.
Interfaces CAPIF-5e is similar to interface CAPIF-5, however the functionality over CAPIF-5e is with respect to the service APIs exposed by the 3rd party service provider.
7.1.2.2
Solution evaluation

This solution provides the CAPIF architecture for the northbound APIs from the API providers within the PLMN trust domain and also from the 3rd party API providers residing outside the PLMN trust domain.

SA3 may provide the solution details for the security considerations for CAPIF-1e, CAPIF-2e, CAPIF-3e, CAPIF-4e and CAPIF-5e interactions.

This solution can be considered for the normative work.
7.1.3
Solution 3 – High level functional architecture to support service APIs from 3rd party API providers via CAPIF interconnection
7.1.3.1
Solution description

7.1.3.1.1
General

This subclause describes the solution for the high level functional architecture to support service APIs from 3rd party API providers via CAPIF interconnection.
7.1.3.1.2
Architectural Model

Figure 7.1.3.1.2-1 shows the architectural model for the CAPIF which allows API invokers inside the PLMN trust domain and outside the PLMN trust domain to access the service APIs from 3rd party API providers.

[image: image12.emf]API invokerCAPIF-1eCAPIF core functionsAPI exposing functionService APIsService APIsService APIsCAPIF-3CAPIF-2eAPI invokerCAPIF-1CAPIF-2CAPIF-4API publishing functionAPI provider functionsCAPIF APIsCAPIF core functionsAPI exposing functionService APIsService APIsService APIsAPI publishing functionAPI provider functionsCAPIF-3CAPIF-4CAPIF-6CAPIF-2eCAPIF-2e3rd party API provider trust domainPLMN trust domainAPI management functionAPI management functionCAPIF-5CAPIF-5

Figure 7.1.3.1.2-1: High level functional architecture to support service APIs from 3rd party API providers via CAPIF interconnection
Editor's Note:
The ability of an API invoker to access service API from the 3rd party trust domain via CAPIF-2e without authenticating to the CAPIF in the 3rd party trust domain is FFS.

The PLMN operator hosts a CAPIF in the PLMN trust domain and a 3rd party API provider hosts a CAPIF in the 3rd party API provider trust domain. The functional entities of the CAPIF hosted by PLMN operator and the 3rd party API provider are specified in the high level functional architecture for the CAPIF specified in the subclause 7.1.1.1

The 3rd party API provider may have some business arrangement with the PLMN operator. Based on such business arrangement, the CAPIF hosted by the PLMN operator may support the service APIs of 3rd party API provider. The CAPIF hosted by the PLMN operator shall support interconnection with the CAPIF hosted by 3rd party API providers.

The functional entities and reference points within the PLMN trust domain may all be within the PLMN operator's control, or some may be controlled by a trusted business partner which has a trust relationship with the PLMN operator e.g. another operator or a 3rd party API provider. The security requirements for the PLMN trust domain are out of scope of the present document.
It is assumed that within the CAPIF hosted by the 3rd party API provider, the API provider functions are configured only to communicate with the CAPIF core functions in the 3rd party API provider trust domain only. The CAPIF communication between the 3rd party API provider trust domain and the PLMN trust domain is enabled by the interconnection (via CAPIF-6) between the CAPIF core functions hosted by the PLMN operator and the CAPIF core functions hosted by the 3rd party API provider.

The API invoker is onboarded to the CAPIF hosted by the PLMN operator.

NOTE:
The API invoker shares the onboarding relationship with only one CAPIF. Hence, the API invoker cannot connect with the CAPIF core functions hosted by the 3rd party API provider as the identity and other security relationship of the API invoker is only with CAPIF core functions hosted by the PLMN operator.

 The API invoker within the PLMN trust domain:

-
connects with the CAPIF hosted by the PLMN operator via CAPIF-1 and CAPIF-2; and

-
connects with the CAPIF hosted by 3rd party API provider via CAPIF-2e;

The API invoker within the PLMN trust domain shall be able to discover the service APIs from the 3rd party API provider domain via CAPIF-1 interactions and performs the corresponding service API invocations via CAPIF-2e interactions.

The API invoker residing outside the PLMN trust domain:

-
connects with the CAPIF hosted by PLMN operator via CAPIF-1e and CAPIF-2e; and

-
connects with the CAPIF hosted by 3rd party API provider via CAPIF-2e;

The API invoker residing outside the PLMN trust domain shall be able to discover the service APIs from the 3rd party API provider domain via CAPIF-1e interactions and performs the corresponding service API invocations via CAPIF-2e interactions.

The CAPIF core functions hosted by 3rd party API provider connects to the CAPIF core functions hosted by the PLMN operator via CAPIF-6. The security consideration of CAPIF-6 is out of scope of the present document.

7.1.3.1.3
Reference points
The description for reference points CAPIF-1, CAPIF-1e, CAPIF-2, CAPIF-2e, CAPIF-3, CAPIF-4 and CAPIF-5 are specified in subclause 7.1.1.1.3.

The reference point CAPIF-6 supports the following functions:

-
to publish the service API information of the 3rd party API provider on the CAPIF core functions hosted by the PLMN operator;

-
supporting the 3rd party API provider to configure policies (e.g. API invocation throttling, blocking API invocation for certain duration) at the CAPIF core functions hosted by the PLMN operator;

-
supporting the 3rd party API provider to govern the lifecycle status of its service APIs (e.g. pilot or live, trace) and access API versioning, control visibility of its service API (e.g. start or stop of service API) at the CAPIF core functions hosted by the PLMN operator;

-
supporting the authentication, authorization and access control of API invoker for accessing the service APIs in the 3rd party API provider domain;

-
logging the service API invocations in the CAPIF hosted by the 3rd party API provider at the CAPIF core functions hosted by the PLMN operator;
-
enabling charging of the service API invocations in the CAPIF hosted by the 3rd party API provider at the CAPIF core functions hosted by the PLMN operator; and
-
enabling the monitoring of the service API invocations in the CAPIF hosted by the 3rd party API provider at the CAPIF core functions hosted by the PLMN operator;
7.1.3.2
Solution evaluation

This solution enables a CAPIF hosted by the PLMN operator to support service APIs of 3rd party API provider via CAPIF interconnection via CAPIF-6. An alternative implementation of this solution could use CAPIF-3e, CAPIF-4e and CAPIF-5e (see solution 2 in subclause 7.1.2) instead of CAPIF-6 to connect the two CAPIF core functions instances.

The security considerations for authentication, authorization and secure communication for CAPIF-6 require further investigation in SA3.

This solution can be considered for future normative work.
7.2
Solutions to key issues

7.2.1
Solution 1: Publish service APIs

7.2.1.1
Solution description

The following solution corresponds to the key issue on publish specified in subclause 5.1. The CAPIF enables the API publishing function to publish service APIs in order to be discoverable by the API invokers.
Figure 7.2.1.1-1 illustrates the solution for publishing the service APIs. The service API publish mechanism is supported by the CAPIF core functions.

Pre-conditions:

1.
The CAPIF core functions is configured with the details of the API publishing function.

[image: image13.emf]API publishing functionCAPIF core functions1.Service API publish request3.Service API publish response 2.Store API informationAPI invoker 4.New API available notification

Figure 7.2.1.1-1: Solution 1 – Publish Service APIs
1.
The API publishing function sends a service API publish request to the CAPIF core functions, with the details of the service API (e.g. service type, communication type, interfaces, protocols).

2.
Upon receiving the service API publish request, the CAPIF core functions validates the API publishing function. If the validation is successful, the service API information provided by the API publishing function is stored at the CAPIF core functions (API registry).

3.
The CAPIF core functions provides a service API publish response to the API publishing function indicating success or failure result.

4.
The CAPIF core functions may send notification to the API invoker about the availability of new service API to the API invoker, if previously subscribed by the API invoker.
7.2.1.2
Solution evaluation

This is the only solution that enables the API providers to publish the service APIs in order to be discoverable by the API invokers.

This solution will be considered for Release 15 normative work.
7.2.2
Solution 2: Discover service APIs
7.2.2.1
Solution description

The following solution corresponds to the key issue on discover service APIs specified in subclause 5.1.

Figure 7.2.2.1-1 illustrates the solution for discover service APIs.

The service API discovery mechanism is supported by the CAPIF core functions.
Pre-conditions:

1.
API invoker is onboarded and has received an API invoker identity.

2.
The CAPIF core functions is configured with a discovery policy information for API invoker(s). The policy may be based on API invoker’s role (E.g. administrator, guest, application developer).

[image: image14.emf]API invokerCAPIF core functions1.Service API discover request3.Service API discover response2.Retrieve service API(s) information

Figure 7.2.2.1-1: Solution 2 – Discover service APIs
1.
The API invoker sends a service API discover request to the CAPIF core functions. It includes the API invoker identity, and may include query information. The query information may include the details of the required service API (e.g. service type, communication type, interfaces, protocols).

2.
Upon receiving the service API discover request, the CAPIF core functions verifies the identity of the API invoker (via authentication). The CAPIF core functions retrieves the stored service API(s) information from the CAPIF core functions (API registry) as per the query information in the service API discover request. Further, the CAPIF core function applies the discovery policy and performs filtering of service APIs information retrieved from the CAPIF core functions (API registry).
3.
The CAPIF core functions sends a service API discover response to the API invoker with the list of service API information for which the API invoker has the required authorization.
7.2.2.2
Solution evaluation

This is the only solution that enables the discovery of service APIs by the API invokers.

This solution will be considered for Release 15 normative work.
7.2.3
Solution 3: Subscription and notifications for the CAPIF events related to service APIs
7.2.3.1
Solution description

7.2.3.1.1
General

The solution corresponds to the key issues and requirements for service API lifecycle management. The CAPIF enables the API invoker to subscribe to the CAPIF events related to service API changes such as availability events of service APIs (e.g. active, inactive), change in service API information, etc.

NOTE:
Support for subscriptions and notifications can also be part of the actual service APIs. That type of subscriptions and notifications is not covered by the provisions in this clause.
7.2.3.1.2
Procedure

Figure 7.2.3.1.2-1 illustrates the procedure for service API related events subscription.

Pre-conditions:

1.
The API invoker has performed the service discovery and received the details of the service API.

2.
The API invoker is authenticated and authorized to use the service API.

[image: image15.emf]API invokerCAPIF core functions1. Event subscription request2. Check authorization for subscription4. Event subscription response3. Store subscription information

Figure 7.2.3.1.2-1: Procedure for service API related event subscription

1.
The API invoker sends an event subscription request to the CAPIF core functions.

2.
Upon receiving the event subscription request from the API invoker, the CAPIF core functions checks for the relevant authorization for the event subscription. If the API invoker has no authorization, step 4 is performed, where the event subscription response provides the failure reasons for the event subscription.
3.
If the authorization is successful, the CAPIF core functions stores the subscription information.

4.
The CAPIF core functions sends an event subscription response indicating successful operation.

Figure 7.2.3.1.2-2 illustrates the procedure for service API related event notifications.

Pre-conditions:

-
The subscription procedure as illustrated in Figure 7.2.3.1.2-1 is performed.

[image: image16.emf]API invokerCAPIF core functionsAPI invoker2. Retrieve application subscriptions1. Event is generated3. Event notification request4. Event notification response3. Event notification request4. Event notification response

Figure 7.2.3.1.2-2: Procedure for service API related event notifications

1.
The CAPIF core functions generates events to be consumed by the API invoker(s).

2.
For the generated event, the CAPIF core functions retrieves the list of corresponding subscriptions.

3.
The CAPIF core functions sends event notification requests to all the API invoker(s) that have subscribed for the event.

4.
The API invoker sends an event notification response to the CAPIF core functions as an acknowledgement of the event notification request.
7.2.3.2
Solution evaluation

This is the only solution that enables the API invokers to subscribe for receiving notifications for CAPIF events related to service APIs and CAPIF APIs.

This solution will be considered for Release 15 normative work.
7.2.4
Solution 4: CAPIF topology hiding
7.2.4.1
Solution description

7.2.4.1.1
General

The solution corresponds to the key issues and requirements related to topology hiding.

7.2.4.1.2
Procedure

Figure 7.2.4.1.2-1 illustrates the procedure for CAPIF topology hiding.

Pre-conditions:

1.
The API invoker has performed the service discovery and received the details of the service API which includes the information about the service communication entry point of the AEF-1 in the CAPIF.

2.
The API invoker is authenticated and authorized to use the service API.

3.
The AEF-1 in the CAPIF is configured with the entry point address of the service API (provided via AEF-2) and is configured with a policy for topology hiding for the service API.

[image: image17.emf]CAPIF core functionsAPI invokerAEF-1(Service API)AEF-2(Service API)2. Obtain the policy for topology hiding1. Service API invocation3. Service API invocation4. Response to service API invocation5. Response to service API invocation

Figure 7.2.4.1.2-1: Procedure for CAPIF topology hiding

1.
The API invoker performs service API invocation according to the interface of the service API by sending a service API invocation message towards the AEF-1 which exposes the service API towards the API invoker, and acts as topology hiding entity.

2.
If the policy for topology hiding is not configured in AEF-1, then the AEF-1 may obtain the policy for the topology hiding from the CAPIF core functions.

3.
The AEF-1 further resolves the actual destination service API address information according to the topology hiding policy and forwards the incoming service API invocation message to the service API of the related AEF-2.

4.
The AEF-1 receives a response message for service API invocation from service API provided by AEF-2.

5.
The AEF-1 resolves the destination API invoker address and also modifies the source address information of the AEF-2 within the response message as per topology hiding policy and forwards the response message to the API invoker.

7.2.4.2
Solution evaluation

This solution enables topology hiding of the service APIs from the API invoker.

This solution can be considered for Release 15 normative work.
7.2.5
Solution 5: Onboarding API invoker to the CAPIF
7.2.5.1
Solution description

7.2.5.1.1
General

The solution corresponds to the key issues and requirements for onboarding API invoker to the CAPIF. The CAPIF enables a one time onboarding process that enrolls the API invoker as a recognized user of the CAPIF, which may be triggered by the API invoker via CAPIF-1, or may be based on provisioning.
7.2.5.1.2
Procedure

Figure 7.2.5.1.2-1 illustrates the procedure for onboarding API invoker to the CAPIF.

Pre-conditions:

1. API invoker is not a recognized user of the CAPIF.

2. The API invoker has visibility to APIs information (e.g., API catalogue or dashboard - central place for the API provider to manage which APIs are displayed, giving API invokers the ability to enroll for).

Editor's Note:
Establishing trust relationship prior to initiating onboarding request is FFS.

[image: image18.emf]API invokerCAPIF core functions

2. Onboarding approval

1. Onboard API invoker request

3. Onboard API invoker response

4. API invoker is

onboarded

Figure 7.2.5.1.2-1: Procedure for onboarding API invoker to the CAPIF

1.
The API invoker may trigger onboard API invoker request towards CAPIF core functions, providing the information as required for the API management.

2.
The CAPIF core function begins the onboarding process by verifying whether all the necessary information has been provided to onboard the API invoker, and further initiates a grant process. Successful onboarding results in provisioning API invoker profile which includes identity for the API invoker. The authorization information and the list of APIs and the types of APIs that the API invoker can access subsequent to successful onboarding may also be created.

NOTE 1:
Completion of onboarding process may need explicit grant by the CAPIF administrator or the API management, which is left out-of-scope of this solution. CAPIF may be enabled to handle the grant process internally without the need of explicit grant by the CAPIF administrator.

NOTE 2:
API invoker profile consists of at least the identity information for the API invoker, information required for the authentication and authorization by the CAPIF and the CAPIF identity information.
3.
If the API invoker has triggered the onboard API invoker request and is granted permission, the onboard API invoker response provides success indication including information from the provisioned API invoker profile which may include information to allow the API invoker to be authenticated and to obtain authorization for service APIs.

4.
As a result of successful onboarding process, CAPIF core functions are able to authenticate and authorize the API invoker.
7.2.5.2
Solution evaluation

This is the only solution in the present document which enables the enrollment of the API invoker to be a recognized user of the CAPIF. There can be other solutions e.g. offline mechanism where the API invoker visits the API provider directly for enrollment, which is not described in the present document.

This solution will be considered for Release 15 normative work.
7.2.6
Solution 6: Authentication between the API invoker and the CAPIF core functions
7.2.6.1
Solution description

7.2.6.1.1
General

The solution corresponds to the key issues and requirements for authentication between the API invoker and the CAPIF core functions.

7.2.6.1.2
Procedure

Figure 7.2.6.1.2-1 illustrates the procedure for authentication between the API invoker and the CAPIF core functions.

Pre-conditions:

1.
API invoker is onboarded with the CAPIF core functions and the API invoker profile is created.

[image: image19.emf]API invokerCAPIF core functions

2. Identity verificationand authentication

1. Authentication request

3. Authentication response

Figure 7.2.6.1.2-1: Procedure for authentication between the API invoker and the CAPIF core functions

1.
The API invoker triggers authentication to the CAPIF core functions, including the identity confirmed after successful onboarding.

2.
Upon receiving the authentication request, the CAPIF core functions verifies the identity with the API invoker profile and authenticates the API invoker.

NOTE 1:
The authentication process is outside the scope of the present document and will be defined by SA3.

3.
The CAPIF core functions returns the result of API invoker identity verification in the authentication response.

NOTE 2:
CAPIF core functions can share the information required for authentication of the API invoker at the AEF.

7.2.6.2
Solution evaluation

This is the only solution which allows the API invokers to get authenticated with the CAPIF core functions. This solution will be considered for Release 15 normative work.

Details of the authentication process are the responsibility of SA3.

7.2.7
Solution 7: Obtaining authorization to access service API
7.2.7.1
Solution description

7.2.7.1.1
General

The solution corresponds to the key issues and requirements related to authorization for service API access. The API invoker requires to execute this procedure when it needs to obtain or re-obtain (e.g. upon expiry of the authorization information) the authorization to access the service API. Once the API invoker receives the authorization to access the service API, the API invoker can perform one or multiple service API invocations as per the permission limit. This procedure may be performed during the API invoker onboarding process.

7.2.7.1.2
Procedure

Figure 7.2.7.1.2-1 illustrates the procedure for obtaining authorization to access the service API.

Pre-conditions:

1.
The API invoker is onboarded and has received an API invoker identity.

[image: image20.emf]API invokerCAPIF core functions

2.Validate and authenticate the API invoker

1. Obtain service API authorizationrequest

3. Obtain service API authorization response

Figure 7.2.7.1.2-1: Procedure for the API invoker obtaining authorization for service API access

1.
The API invoker sends an obtain service API authorization request to the CAPIF core function for obtaining permission to access the service API by including the API invoker identity information and any information required for authentication of the API invoker.

2.
The CAPIF core functions validates the API invoker (using authentication information) and checks for the API invoker subscription information for the requested service API.

NOTE 1:
The authentication process is outside the scope of the present document and will be defined by SA3.

3.
Based on the API invoker's subscription information the authorization information to access the service APIs is sent to the API invoker in the obtain service API authorization response.
NOTE 2:
The mechanism for distribution of the authorization information for the API invoker to the API exposing function is not in the scope of the present document.

7.2.7.2
Solution evaluation

This is the only solution that enables the API invoker to receive the authorization information to access the service APIs.

Details of the authorization process are the responsibility of SA3.

This solution will be considered for Release 15 normative work.
7.2.8
Solution 8: Authentication between the API invoker and the AEF as separate procedure
7.2.8.1
Solution description

7.2.8.1.1
General

The solution corresponds to the key issues and requirements for authentication of the API invoker by the AEF.

To reduce latency during API invocation, the API invoker associated authentication information can be made available at the AEF after authentication between the API invoker and the CAPIF core functions.
7.2.8.1.2
Procedure

Figure 7.2.8.1.2-1 illustrates the procedure for authentication between the API invoker and the AEF.

Pre-conditions:

1.
Optionally, CAPIF core functions have shared the information required for authentication of the API invoker with the AEF.

[image: image21.emf]API invokerCAPIF core functions

3. Identity verificationand authentication

1. Authentication request

API exposing

function

4. Authentication response

2. Obtain API invoker information for authentication

Figure 7.2.8.1.2-1: Procedure for authentication between the API invoker and the AEF as separate procedure
1.
The API invoker triggers authentication to the AEF, including the API invoker identity.

2.
The AEF obtains the API invoker information required for authentication by the AEF, if not available.

3.
The AEF verifies the identity of the API invoker and authenticates the API invoker.

NOTE:
The authentication process is outside the scope of the present document and will be defined by SA3.

4.
The AEF returns the result of API invoker identity verification in the authentication response.

7.2.8.2
Solution evaluation

This is the only solution enabling explicit authentication by the API invokers to get authenticated with the AEF. This solution will be considered for Release 15 normative work.
Details of the authentication process are the responsibility of SA3.

7.2.9
Solution 9: Secure communication
7.2.9.1
Solution description

The solution considers secure communication in CAPIF.

A secure communication channel is mandatory for the following communications in CAPIF.
-
CAPIF-1 supported functionality (e.g. obtaining authorization) between the API invoker and the CAPIF core functions

-
CAPIF-2 supported functionality (e.g. service API invocation) between the API invoker and the AEF.

-
CAPIF-3 supported functionality (e.g. sharing authorization information) between the AEF and CAPIF core functions

-
CAPIF-4 supported functionality (e.g. publishing service APIs) between the API publishing function and CAPIF core functions
-
CAPIF-5 supported functionality (e.g. enabling auditing, monitoring) between the API management function and CAPIF core functions
7.2.9.2
Solution evaluation

The present document has identified the need for securing the communication over CAPIF reference points. Details for providing secure communication over CAPIF reference points are the responsibility of SA3.
7.2.10
Solution 10: API invoker authorization to access service APIs
7.2.10.1
Solution description

7.2.10.1.1
General

The solution corresponds to the key issues and requirements for API invoker authorization to access service APIs.

A secure communication channel is mandatory in CAPIF as described in Solution 9.
To reduce latency during API invocation, the API invoker associated authorization information can be made available at the AEF after authentication between the API invoker and the CAPIF core functions.
7.2.10.1.2
Procedure

Figure 7.2.10.1.2-1 illustrates the procedure for API invoker authorization to access service APIs and secure communication.

Pre-conditions:

1.
Optionally API invoker is authenticated by the AEF.

2.
Optionally the API invoker associated authorization information is available at AEF.

[image: image22.emf]API invokerCAPIF core functions

1. API invocation request

API exposing

function

4. API invocation response

2a. Obtain Authorization information

5. Execute API logic

2. Check authorization

2. Check authorization

3. Execute API logic

Figure 7.2.10.1.2-1: Procedure for API invoker authorization to access service APIs and secure communication
1.
The API invoker triggers service API invocation request to the AEF, including the service API to be invoked. Authentication may also be performed if not authenticated previously.

NOTE:
API invoker may trigger several service API invocations asynchronously.
2.
Upon receiving the service API invocation request, the AEF checks whether API invoker is authorized to invoke that service API, based on the authorization information.

2a.
If the AEF does not have information required to authorize service API invocation, the AEF obtains the authorization information from the CAPIF core functions.

3.
The AEF executes the service logic for the invoked service API.

4.
API invoker receives the service API invocation response as a result of the service API invocation.

7.2.10.2
Solution evaluation

This is the only solution which allows authorization upon receiving the API invocation requests from the API invokers. This solution will be considered for Release 15 normative work.
Details of the authorization process are the responsibility of SA3.
7.2.11
Solution 11: Logging service API invocations
7.2.11.1
Solution description

7.2.11.1.1
General

The solution corresponds to the key issues and requirements for logging service API invocations at AEF.

7.2.11.1.2
Procedure

Figure 7.2.11.1.2-1 illustrates the procedure for logging service API invocations at AEF.

Pre-conditions:

1.
API invoker(s) has invoked certain service API(s).

[image: image23.emf]CAPIF core functions

2. Log API

invocation

3. API invocation log response

API exposing

function

1. API invocation log request

Figure 7.2.11.1.2-1: Procedure for logging service API invocations

1.
Upon invocation of service API(s) from one more API invokers, the AEF triggers API invocation log request including the API invoker information such as invoker's ID and IP address, location, timestamp and API information such as service API name and version, input parameters, invocation result towards the CAPIF core functions.

NOTE:
The AEF can collect the log information associated to several API invocations before triggering API invocation log request asynchronously.
2.
CAPIF core functions makes a log entry and stores the information e.g., for charging purposes, for access by authorized users and entities.

NOTE:
API invocation log is stored for a configured duration.
3.
AEF receives the API invocation log response from the CAPIF core functions.

7.2.11.2
Solution evaluation

This is the only solution that enables logging the service API invocations.

This solution will be considered for Release 15 normative work.
7.2.12
Solution 12: Auditing service API invocation
7.2.12.1
Solution description

7.2.12.1.1
General

The solution corresponds to the key issues and requirements for auditing service API invocation.

7.2.12.1.2
Procedure

Figure 7.2.12.1.2-1 illustrates the procedure for auditing service API invocation.

Pre-conditions:

1.
Service API invocation logs are available at the CAPIF core functions.

[image: image24.emf]CAPIF core functions

2. Service API

invocation logs

3. Auditing service API response

API management

1. Auditing service API request

4. Log auditing

Figure 7.2.12.1.2-1: Procedure for auditing service API invocation
1.
API management triggers Auditing service API request to the CAPIF core functions.

2.
Upon receiving the Auditing service API request, the CAPIF core functions locates the necessary log information for auditing purposes.

3.
The CAPIF core functions returns the log information to the API management in Auditing service API response.

4.
API management analyses the received log information to detect the abuse of service API invocations.

NOTE:
API management action subsequent to auditing service API response is out-of-scope of this specification.
7.2.12.2
Solution evaluation

This is the only solution enabling auditing of the service API invocations. This solution will be considered for Release 15 normative work.

7.2.13
Solution 13: Charging the invocation of service APIs
7.2.13.1
Solution description

7.2.13.1.1
General

The solution corresponds to the key issues and requirements for charging the invocation of service APIs.

7.2.13.1.2
Procedure

Figure 7.2.13.1.2-1 illustrates the procedure for charging the invocation of service APIs.

[image: image25.emf]CAPIF core functions

2. Charging

procedure

3. API invocation charging response

API exposing

function

1. API invocation charging request

Figure 7.2.13.1.2-1: Procedure for charging the invocation of service APIs
1.
Upon invocation of service API(s) from one more API invokers, the AEF triggers an API invocation charging request and includes API invoker information (e.g. invoker's ID and IP address, location, timestamp) and API information (e.g. service API name and version, invoked operation, input parameters, invocation result) towards the CAPIF core functions.

NOTE:
These requests can be triggered asynchronously.

2.
CAPIF core functions perform a charging procedure which includes storing the information for access by authorized API management.

3.
AEF receives the API invocation charging response from CAPIF core functions.

7.2.13.2
Solution evaluation

This is the only solution that enables charging the service API invocations.

Details of the charging solution for CAPIF including offline and online charging are responsibility of SA5.

This solution will be considered for Release 15 normative work.
7.2.14
Solution 14: Monitoring service API invocation
7.2.14.1
Solution description

7.2.14.1.1
General

The solution corresponds to the key issues and requirements for monitoring service API invocation.

7.2.14.1.2
Procedure

Figure 7.2.14.1.2-1 illustrates the procedure for monitoring service API invocation.

Pre-conditions:

1.
API management function has subscribed to monitoring event including filters such as invoker's ID and IP address, service API name and version, input parameters, and invocation result.

[image: image26.emf]CAPIF core functions

1. Monitoring

event detected

2. Monitoring service API notification

API management

function

Figure 7.2.14.1.2-1: Procedure for monitoring service API invocation
1.
The CAPIF core functions monitors the service API invocations applying the monitoring filters specified before.

2.
Detection of a monitoring event triggers the CAPIF core functions to notify the API management function with the details of the monitored event.

NOTE:
API provider action subsequent to monitoring service API notification is out-of-scope of this specification.
7.2.14.2
Solution evaluation

This is the only solution which allows the API management function to receive the monitoring event notifications from the CAPIF. This solution will be considered for Release 15 normative work.

There is no solution described in the present document for API management function subscribing the CAPIF events. This will be addressed in the normative phase.
7.2.15
Solution 15: CAPIF access control
7.2.15.1
Solution description

7.2.15.1.1
General

The solution corresponds to the key issues and requirements related to some common access control requirements for service API invocations.

7.2.15.1.2
Procedure

Figure 7.2.15.1.2-1 illustrates the procedure for CAPIF access control.

Pre-conditions:

1.
The API invoker has performed the service discovery and received the details of the service API which includes the information about the service communication entry point of the AEF in the CAPIF.

2.
The API invoker is authenticated and authorized to use the service API.

3.
The AEF in the CAPIF is configured with at least one access policy to be applied to the service API invocation corresponding to the API invoker and service API.

[image: image27.emf]CAPIF core functionsAPI invokerAEF(Service API)2. Obtain the policy for access control1. Service API invocation4. Response to service API invocation3. Access control on Service API invocation

Figure 7.2.15.1.2-1: Procedure for CAPIF access control
1.
The API invoker performs service API invocation according to the interface of the service API by sending a service API invocation message towards the AEF which exposes the service API towards the API invoker, and acts as access control entity.

2.
If the access control policy is not configured with AEF, then the AEF may obtain the access control policy configuration from the CAPIF core functions.

3.
Upon receiving the service API invocation from the API invoker, the AEF checks for configuration for access control. As per the configuration for access control, the AEF performs access control on the service API invocation message as per the operator policy.

4.
The API invoker receives a response message for service API invocation from the AEF providing the service API.

7.2.15.2
Solution evaluation

This solution allows the API exposing function to perform access control on the service API invocations from the API invoker. The aspect of revoking authorization of the API invoker based on access control is not addressed in this solution and can be further considered for enhancements in the normative phase.

This solution can be considered for Release 15 normative work.
7.2.16
Solution 16: CAPIF access control with cascaded AEFs
7.2.16.1
Solution description

7.2.16.1.1
General

The solution corresponds to the key issues and requirements related to some common access control requirements for service API invocations. It provides access control, based on two cascaded API Exposing Function (AEF) instances. While one AEF instance provides the entry point for the service API and acts as access controller, further AEF instances deliver the functionality of the actual service APIs.

7.2.16.1.2
Procedure

Figure 7.2.16.1.2-1 illustrates the procedure for CAPIF access control.

Pre-conditions:

1.
The API invoker has performed the service discovery and received the details of the service API which includes the information about the service communication entry point of the AEF-1 in the CAPIF.

2.
The API invoker is authenticated and authorized to use the service API.

3.
The AEF-1 in the CAPIF is configured with at least one access policy to be applied to the service API invocation corresponding to the API invoker and service API.

[image: image28.emf]API invokerAEF-1(Access controller)AEF-2(Service API)2. Access control on service API invocation1. Service API invocation3. Service API invocation4. Response to service API invocation5. Response to service API invocation

Figure 7.2.16.1.2-1: Procedure for CAPIF access control with cascaded AEFs

1.
The API invoker performs service API invocation according to the interface of the service API by sending a service API invocation message towards theAEF-1 which exposes the service API towards the API invoker, and acts as access control entity.

2.
Upon receiving the service API invocation from the API invoker, the AEF-1 checks for configuration for access control. As per the configuration for access control, the AEF-1 performs access control on the service API invocation message as per the operator policy.3.
The AEF-1 forwards the incoming service API invocation message to the service API provided by AEF-2.

4.
The AEF-1 receives a response message for service API invocation from AEF-2.

5.
The AEF-1 resolves the destination API invoker address and modifies the source address information of AEF-2 within the response message and forwards the response message to the API invoker.

7.2.16.2
Solution evaluation

This solution allows the API exposing function to perform access control on the service API invocations from the API invoker, using cascaded AEFs. This solution can be combined with solution 4 (CAPIF topology hiding, subclause 7.2.4).

The aspect of revoking authorization of the API invoker based on access control is not addressed in this solution and can be further considered for enhancements in the normative phase.

This solution can be considered for Release 15 normative work.
7.2.17
Solution 17: Authentication between the API invoker and the AEF as part of the API invocation
7.2.17.1
Solution description

7.2.17.1.1
General

The solution corresponds to the key issues and requirements for authentication of the API invoker by the AEF.

To reduce latency during API invocation, the API invoker associated authentication information can be made available at the AEF after authentication between the API invoker and the CAPIF core functions.
7.2.17.1.2
Procedure

Figure 7.2.17.1.2-1 illustrates the procedure for authentication of the API invoker by the AEF, where the authentication information is carried in the API invocation request.

NOTE: This solution can be combined with solution 10 (subclause 7.2.10).

Pre-conditions:

1.
Optionally, CAPIF core functions have shared the information required for authentication of the API invoker with the AEF.

[image: image29.emf]API invokerCAPIF core functions3. Identity verification and authentication1. Service API invocation request with authentication informationAPI exposing function4. Service API invocation response2. Obtain API invoker information for authentication

Figure 7.2.17.1.2-1: Procedure for authentication between the API invoker and the AEF as part of the API invocation

1.
The API invoker invokes a service API invocation request to the AEF, and includes in this request authentication information, including API invoker identity.

2.
The AEF obtains the API invoker information required for authentication by the AEF, if not available.

3.
The AEF verifies the identity of the API invoker and authenticates the API invoker.

NOTE:
The authentication process is outside the scope of the present document and will be defined by SA3.

4.
If the verification was successful, the AEF returns the result of the service API invocation in the Service API invocation response.

7.2.17.2
Solution evaluation

This is the only solution enabling authentication of the API invokers with the AEF as part of a service API invocation.

This solution will be considered for Release 15 normative work.

Details of the authentication process are the responsibility of SA3.
8
Overall evaluation

8.1
General

The following subclauses contain an overall evalation of the solutions presented in this technical report, and their applicability to the identified key issues.

-
Subclause 8.2 provides an evaluation of the high level architecture specified in subclause 7.1; and

-
Subclause 8.3 lists the solutions for the key issues including impact on other working groups that will need consideration.

8.2
Architecture evaluation

The high level architecture solution in subclause 7.1.1 describes the baseline functional model for a common API framework. The architecture solutions in subclauses 7.1.2 and 7.1.3, consider the scenarios for multiple API providers. A summary of the architecture solutions specified in this technical report are listed in table 8.2-1.

Table 8.2-1 Architecture evaluation

	Architecture solution
	Applicable key issues

(subclause reference)
	Evaluation
(subclause reference)
	Dependency on other working groups

	7.1.1
Solution 1 – High level functional architecture for the CAPIF
	5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17
	7.1.1.2
	SA3, SA5

	7.1.2
Solution 2 – CAPIF architecture for service APIs from 3rd party service provider
	5.17
	7.1.2.2
	SA3, SA5

	7.1.3
Solution 3 – High level functional architecture to support service APIs from 3rd party API providers via CAPIF interconnection
	5.17
	7.1.3.2
	SA3, SA5

8.3
Solution evaluation

All the solutions specified in this technical report are listed in table 8.3-1. It includes the mapping of the solutions to the key issues (clause 5) and corresponding solution evaluations. Also it lists the impact on other working groups that will need consideration during the Release 15 normative phase.
Table 8.3-1 Solution evaluation

	Solution
	Applicable key issues

(subclause reference)
	Evaluation
(subclause reference)
	Dependency on other working groups

	7.2.1
Solution 1: Publish service APIs
	5.1
	7.2.1.2
	None

	7.2.2
Solution 2: Discover service APIs
	5.1
	7.2.2.2
	None

	7.2.3
Solution 3: Subscription and notifications for the CAPIF events related to service APIs
	5.1, 5.6
	7.2.3.2
	None

	7.2.4
Solution 4: CAPIF topology hiding
	5.2
	7.2.4.2
	None

	7.2.5
Solution 5: Onboarding API invoker to the CAPIF
	5.10
	7.2.5.2
	None

	7.2.6
Solution 6: Authentication between the API invoker and the CAPIF core functions
	5.3
	7.2.6.2
	SA3

	7.2.7
Solution 7: Obtaining authorization to access service API
	5.3
	7.2.7.2
	SA3

	7.2.8
Solution 8: Authentication between the API invoker and the AEF as separate procedure
	5.3
	7.2.8.2
	SA3

	7.2.9
Solution 9: Secure communication
	5.13
	7.2.9.2
	SA3

	7.2.10
Solution 10: API invoker authorization to access service APIs
	5.4, 5.12
	7.2.10.2
	SA3

	7.2.11
Solution 11: Logging service API invocations
	5.8
	7.2.11.2
	None

	7.2.12
Solution 12: Auditing service API invocation
	5.9
	7.2.12.2
	None

	7.2.13
Solution 13: Charging the invocation of service APIs
	5.5
	7.2.13.2
	SA5

	7.2.14
Solution 14: Monitoring service API invocation
	5.7
	7.2.14.2
	None

	7.2.15
Solution 15: CAPIF access control
	5.12
	7.2.15.2
	None

	7.2.16
Solution 16: CAPIF access control with cascaded AEFs
	5.12
	7.2.16.2
	None

	7.2.17
Solution 17: Authentication between the API invoker and the AEF as part of the API invocation
	5.3
	7.2.17.2
	SA3

9
Conclusions

This technical report fulfills the objectives of the CAPIF study, including the following:

1)
Identification of key issues (clause 5) and corresponding architecture requirements (clause 6) for a common API framework towards northbound APIs

2)
High-level functional architecture solution(s) (clause 7.1) including the support for multiple API providers and multiple deployment models

3)
Analysis of existing API activities
a)
API work done by other 3GPP WGs (Annex A)
b)
OMA API framework (clause 4.1, Annex B)
c)
ETSI MEC API framework (clause 4.2, Annex C)

4)
Individual solutions (clause 7.2) addressing the key issues

5)
Overall evaluation (clause 8) of all the solutions

NOTE 1:
The identification of common northbound API development guidelines have not been addressed during the study, and will be progressed during the normative phase.

NOTE 2:
Some of the solutions have dependency on other working groups as identified in subclause 8.3, in particular SA3 and SA5 WGs.

The results from the study will be considered for follow-up normative work in Release 15 as follows:

1)
The architecture requirements (clause 6) will be considered as the basis for technical specification during the normative phase;
2)
The high-level architecture solution (subclause 7.1.1) will be used as the baseline functional model with necessary enhancements as appropriate;
3)
All the individual solutions (subclause 7.2) will be considered to be the candidate solutions for the normative phase, as per the overall evaluation (clause 8); and
4)
Leveraging external frameworks from the study will be considered during the normative phase.

NOTE 3:
Architecture solutions (subclauses 7.1.2 and 7.1.3) supporting multiple API providers can be considered for future normative work.

Annex A:
API work done by other 3GPP WGs

A.1
General
NOTE:
Although the scope of the present document covers stage-2 aspects of the CAPIF, this annex contains both stage 2 and stage 3 aspects of the 3GPP specifications for informative purpose.
This annex describes the existing relevant 3GPP specifications on API work that has been done by various WGs in the past, and summarises key points for each of them.

Although the scope of the CAPIF study is independent from the work already done in other 3GPP WGs, it is important to study the work already done in other 3GPP WGs and take it into account.

A.2
Discussion

A.2.1
SA4: API for the interface between MBMS service provider and BM-SC (xMB)
3GPP TR 26.981 [3]: contains MBMS Extensions for Provisioning and Content Ingestion (v14.0.0, 2017-03).

According to the introduction clause, this TR intends to "identify key functionality of an interface from external application service/content providers to the BM-SC for provisioning and content ingestion in order to leverage all delivery methods and procedures through the interface."
3GPP TR 26.981 [3] captures 5 use cases (clause 4) and describes corresponding provisioning and ingestion procedures (clause 5). They are mainly related to TV broadcast delivery over MBMS.

Use case 1: Live Video from multiple cameras angles into a stadium.
Use case 2: Nation-Wide TV channels.
Use case 3: VOD prepositioning.
Use case 4: Software Update.
Use case 5: TV Program Guide update delivery.
3GPP TR 26.981 [3] also looks into existing protocols for provisioning interface (i.e. API) in clause 7:
1)
Hypertext Transfer Protocol (HTTP);
2)
Diameter;
3)
EXtensible Markup Language (XML);
4)
Representational State Transfer (REST); and
5)
Simple Object Access Protocol (SOAP).
As the conclusion, 3GPP TR 26.981 [3] recommends to use RESTful API and OAI as the modelling language for RESTful API.

	[Quote from Clause 8 Conclusion]

It is recommended RESTful APIs to provide the interface specification for the interface. The benefits of RESTful APIs outweigh the complexities of other protocols. RESTful APIs not only simplify the interface specification, but also simplifies implementation tasks and has lesser overhead compared to other protocols.

It is recommended to use OAI (formerly known as Swagger) as modelling language for RESTful APIs.

A.2.2
SA2, CT3: SCEF to expose the services and capabilities provided by 3GPP network interfaces and protocols
3GPP TS 23.682 [2]: contains Architecture enhancements to facilitate communications with packet data networks and applications. 3GPP TS 29.122 [4]: contains T8 reference point for Northbound APIs.
Northbound APIs for SCEF – SCS/AS Interworking (NAPS) work item defines the SCEF API to the SCS/AS. This functionality is based on the requirements specified by oneM2M. The detail of the API is specified in 3GPP TS 23.682 [2] and 3GPP TS 29.122 [4]. At the time of writing the present document, the NAPS work item is in progress.

T8 is the logical interface between the SCEF and the SCS/AS. The SCEF provides a set of APIs to the SCS/AS so that the latter can access the service and capabilities provided by 3GPP network entities in order to realize MTC application services.

A.2.3
CT3: Representational State Transfer (REST) protocol-based St reference point
3GPP TS 29.155 [5]: contains Traffic steering control; Representational state transfer (REST) over St reference point (v14.1.0, 2017-03).

This is a stage 3 TS that defines the St reference point between PCRF and Traffic Steering Support Function (TSSF) (clause 1).

St reference point is based on REST protocol-based interface for the PCRF to provision the traffic steering control information to the TSSF for the IP-CAN session. It is based on JSON / HTTP / TCP. The PCRF uses HTTP methods (POST, PUT, GET, PATCH, DELETE) to create, query, modify, remove to manage the session/resource for traffic steering control information to the TSSF (clause 4). To secure the communication, NDS/IP network layer security or HTTPS (HTTP/TLS) transport layer security is used (clause 6).

The discovery of TSSF (TSSF URI) is done by pre-configuration in PCRF (subclause 5.5).
A.2.4
CT3: Representational State Transfer (REST) reference point between the Application Function (AF) and the Protocol Converter (PC)
3GPP TS 29.201 [7]: contains Representational State Transfer (REST) reference point between Application Function (AF) and Protocol Converter (PC) (v14.0.0, 2016-12).
This is a stage 3 TS that defines the reference point between AF and PC in order for the AF to communicate with PCRF. The AF runs applications that communicate with PCRF to obtain PCC information for traffic plane resources (subclause 4.2, 4.3).

The interface to PCRF (Rx) is Diameter based. If the AF uses RESTful based API, then a protocol converter (PC) is needed to translate the protocols in the middle. The PCRF and PC can be located within the VPLMN/HPLMN; the AF can be located in the same PLMN with the PC or in 3rd party network attached to that PLMN (subclause 4.2, 4.3). Figure 4.2-1 (REST-Rx reference model) is quoted below:

[image: image30.emf]

PC

REST-Rx

AF

PCRF

Rx

Figure A.2.4-1: 3GPP TS 29.201 fig. 4.2.1 The REST-Rx reference model
PCC procedure over RESTful reference point (REST-Rx) covers the following functionalities (subclause 4.5) along with message diagrams (Annex A):

1.
Initial Provisioning of Session Information;
2.
Modification of Session Information;
3.
AF Session Termination;
4.
Gate Related Procedures;
5.
Subscription to Notification of Signalling Path Status; and
6.
Traffic Plane Events.
REST-Rx reference point is based on REST protocol-based interface for the AF to communicate with PCRF via PC. It is based on XML / HTTP / TCP. The AF uses HTTP methods (POST, PUT, DELETE) to create, modify, and delete the resource state (subclause 5.3). To secure the communication, HTTPS (HTTP/TLS) transport layer security is used (clause 7).
A.3
Summary

Based on the discussion above, this subclause summarises aspects from the TS and TR documents listed earlier.

Table A.3-1 captures the high level summary.

Table A.3-1 Summary of API work done in other WGs in 3GPP

	WG
	Specification
	Protocol
	Note

	SA4
	3GPP TR 26.981 [3]
(MBMS Extensions for Provisioning and Content Ingestion)

Stage 2
	Recommends use of RESTful API and OAI as the modelling language.
	This study (FS_xMBMS) concluded in March 2017 (Rel.14).

Carry over to the normative work is not clear (at least no SA4 WI exists for this).

	SA2
	3GPP TS 23.682 [2]
(SCEF)

Stage 2
	(SA2 NAPS work item in progress)
	(SA2 NAPS work item in progress. Planned completion date is Sept 2017)

	CT3
	3GPP TS 29.155 [5]
(Traffic steering control over St ref. point)

Stage 3
	JSON / HTTP(S) / TCP
	First introduction in Rel.13 (2015).

Annex A defines call flows.

Annex B defined JSON schema.

	CT3
	3GPP TS 29.201 [7]
(Reference point between AF and PC)

Stage 3
	XML / HTTP(S) / TCP
	First introduction in Rel.12 (2014).

Annex A defines call flows.

Annex B defined XML schema

Previous work done, as discussed in this annex, addresses the needs to define specific application services (e.g. file transfer, video transmission, protocol conversion, etc.). In this respect, none of these previous API work in 3GPP has addressed common API framework definition that the CAPIF study addresses.
A.4
CAPIF relationship with 3GPP functionalities

This subclause describes the relationship between the CAPIF and the 3GPP functionalities:

1.
CAPIF can be adopted by any 3GPP functionality providing service APIs;

2.
AEF represents an instance of service API exposure functions e.g. SCEF;

3.
CAPIF core functions are an evolution of some of the capabilities exposed by the northbound APIs (e.g. authentication, authorization, discovery, API management function); and

4.
Aspects about mapping specific APIs onto appropriate network interfaces is an internal implementation issue of the entity exposing the northbound APIs and is out of scope of the CAPIF.
Annex B:
OMA API Program

B.1
General

NOTE:
Although the scope of the present document covers stage-2 aspects of the CAPIF, this annex contains both stage 2 and stage 3 aspects of the OMA specifications for informative purpose.
The OMA API program has an inventory of APIs (http://www.openmobilealliance.org/wp/API_Inventory.html) which provides standardized interfaces to the service infrastructure residing within communication networks and on devices. Focused primarily between the service access layer and generic network capabilities, OMA API specifications allow operators and other service providers to expose device capabilities and network resources in an open and programmable way to any developer community independent of the development platform. By deploying OMA APIs, fundamental capabilities such as SMS, MMS, location services, payment and other core network assets are now exposed in a standardized way. OMA Service Exposure Framework is depicted in figure B.1-1

[image: image31.emf]

OMA APIs provide an

abstracted view of network

capabilities

SCEF

e.g., 3GPP network

Figure B.1-1: OMA Service Exposure Framework

OMA API landscape spreads across various dimensions:

-
Abstract APIs: Focus on functional aspects and protocol independent aspects i.e., does not include a specific protocol binding for its operations;
-
API binding technologies: SOAP/WSDL web services, HTTP protocol binding using REST architectural style; and
-
Network API: exposed by a resource residing in the network.
B.2
OMA API Architecture

B.2.1
General
This subclause discusses the OMA API architecture for Abstract APIs and HTTP/SOAP APIs.

B.2.2
OMA Next Generation Service Interfaces (NGSI) for Abstract APIs
B.2.2.1
OMA reference architecture of Abstract APIs
The OMA reference architecture of Abstract APIs or NGSI is shown in figure B.2.2.1-1:

[image: image32.emf]

OMA service enablers, 3GPP network capabilities via native interfaces

Figure B.2.2.1-1: NGSI Architectural Diagram

Although the scope of NGSI (see OMA AD NGSI [13]) is standardization of functional interfaces and framework aspects, the excerpts below give more emphasis on those related to framework aspects.
B.2.2.2
Service Registration and Discovery

The Service Registration and Discovery component supports NGSI interface messages for the following functions:

-
Registration of Services; and
-
Search for Services.

This component exposes the NGSI-11 and NGSI-12 interfaces. The NGSI-11 interface supports Registration of Services. The NGSI-12 interface supports Search for Services.

B.2.2.3
Identity Control

The Identity Control component supports NGSI interface messages for the following functions:

-
Management of the Identity including Identifiers; and
-
Control of the Federation of the Identity.

This component exposes the NGSI-13 and NGSI-14 interfaces.

B.2.2.4
Data Configuration and Management

The Data Configuration and Management component supports NGSI interface messages for the following functions:

-
Management (i.e. create, read, update, delete) of data stored in a document;
-
Subscription management of notifications regarding data change in the content of a document; and
-
Notifications of data change in the content of a document.

The data supported can be of the type of XML or non-XML data. This component exposes the NGSI-1, NGSI-2 and NGSI-3 interfaces.

B.2.3
OMA RESTful APIs

B.2.3.1
Authorization Framework for Network APIs

The Authorization Framework for Network APIs enables a Resource Owner owning network resources exposed by Network APIs and RESTful APIs in particular, to authorize third-party Applications (desktop, mobile and web Applications) to access these resources via that API on the Resource Owner's behalf.

OMA RESTful Network APIs may be complemented with a common delegated authorization framework based on the OAuth 2.0 Authorization Framework as specified in IETF RFC 6749 [12], for access of third party Applications via those APIs.

B.2.3.2
RESTful Network API for Capability Discovery

The RESTful Network API for Capability Discovery contains HTTP protocol bindings for Capability Discovery, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML and JSON).

B.3
API consistency within OMA APIs

OMA has developed following specifications in order to ensure consistency across all the APIs that are developed:
-
Common Definitions and Specifications for RESTful Network APIs [16]: To ensure consistency for developers using the various RESTful Network APIs specified in OMA, this "Common" technical specification aims to contain all items that are common across all HTTP protocol bindings using REST architectural style for the various individual interface definitions, such as naming conventions, content type negotiation, representation formats and serialization, and fault definitions. It also provides a repository for common data types, and further covers:
-
Common specifications for RESTful Network APIs include use of REST guidelines, handling of unsupported formats, API authoring style, resource creation, encoding in HTTP requests/responses;
-
Data items include addressing, common data types; and

-
Error handling.
-
Whitepaper on Guidelines for RESTful Network APIs [17]: This whitepaper is intended to provide the guidelines and best priorities for defining RESTful Network APIs in OMA.

-
Generic principles for defining RESTful Network APIs include:

-
Services should be defined in terms of resources that are addressable as URLs.
-
Use of nouns in URLs is recommended over the use of verbs.
-
Mapping of HTTP i.e., verbs POST, GET, PUT, DELETE for CRUD (Create, Read, Update, Delete) operations.
-
Use standard HTTP Status codes in responses for both successful and failed operations.
-
It is recommended to specify API versioning by inserting the API version in the resource URL path.
-
The API specifications should include examples.
-
APIs should support ability to add extra data elements in the request/reply body and extra query parameters in the URL to enhance usability.
-
If a message contains sensitive data, such as passwords, account numbers, and card numbers (as in account management and payment APIs), security consideration to protect these information is required.
-
API Documentation:

-
Each RESTful Network API should be specified in a resource-oriented manner and the resources used by the API should be defined and explained. Use cases and sequence diagrams should be provided.

-
RESTful Network API data types and enumeration types must be specified with an associated detailed description including optionality. This will enable a developer to understand how to use the parameter.

-
Error handling, examples, common data formats, backward and forward compatibility.
Annex C:
ETSI MEC API framework
C.1
General

NOTE:
Although the scope of the present document covers stage-2 aspects of the CAPIF, this annex contains both stage 2 and stage 3 aspects of the ETSI ISG MEC specifications for informative purpose.

Multi-access Edge Computing (MEC) offers application developers and content providers cloud-computing capabilities and an IT service environment at the edge of the network. This environment is characterized by ultra-low latency and high bandwidth as well as real-time access to radio network information that can be leveraged by applications. Operators can open their Network edge to authorized third-parties, allowing them to flexibly and rapidly deploy innovative applications and services towards mobile subscribers, enterprises and vertical segments.

In its first phase, ETSI ISG MEC has covered aspects of Mobile Edge Computing (i.e., of the hosting of applications in various places close to the edge of the mobile network, and of enabling local or remote applications to provide and consume services). In its second phase, ETSI ISG MEC has changed its name to "Multi-access Edge Computing" to indicate that it extends its scope to other access networks, such as WiFi or fixed, and looks at using NFV for MEC deployments. The MEC API framework has been developed to be flexible and generic with the goal to have applicability beyond the mobile edge, and moreover, harmonization with the API principles used at ETSI NFV has been one of the main design principles.

ETSI ISG MEC has developed its own RESTful API Framework (see ETSI GS MEC009 [9]). The ETSI MEC framework and reference architecture specified in ETSI GS MEC 003 [10] provides aspects of the interaction of application with services of the mobile edge platform. The MEC application enablement specified in ETSI GS MEC 011 [11] specifies the Mp1 interface including the aspects about the API supporting functions.

The reference architecture of ETSI MEC is shown in figure C.1-1:

[image: image33.emf]Mobile edge hostVirtualisation infrastructure

Data plane

Operations Support SystemUE appVirtualisationinfrastructure managerUser app LCM proxy

Other mobile edgeplatform

Mobile edge platformMobile edge platform managerMobile edge orchestrator

Mm3Mm1Mm4Mx2Mm8Mm9Mp2Mp1Mm7Mm6

ME appMEapp

Mm2Mm5

Traffic rulescontrolME serviceService registryDNS handlingME platform element mgmt

CFS portal

Mx1

Other mobile edge host

Mobile edge

system level

Mobile edge host level

ME app rules & reqts mgmtMEapp lifecycle mgmt

MEapp

Service

Mp1Mp3

Figure C.1-1: ETSI MEC reference architecture

The MEC services can be hosted on the mobile edge platform or provided by applications. They are accessible via APIs through the Mp1 reference point by the applications.

C.2
MEC Application Enablement

The mobile edge platform offers an environment where mobile edge applications can discover, advertise, consume and offer mobile edge services.
Via the Mp1 reference point between the mobile edge platform and the applications, basic functions of application enablement are provided via a REST API.

The functions of application enablement include:
a.
mobile edge service assistance:

-
authentication and authorization of producing and consuming mobile edge services;

-
a means for service producing mobile edge applications to register towards the mobile edge platform the mobile edge services they provide, and to update the mobile edge platform about changes of the mobile edge service availability;

-
a means to notify the changes of the mobile edge service availability to the relevant mobile edge application; and
-
a means for applications to discover the available mobile edge services.
b.
mobile edge application assistance:

-
mobile edge application start-up procedure; and
-
mobile edge application graceful termination/stop.
c.
traffic routing:

-
traffic rules update, activation and deactivation;

d.
DNS rules:

-
DNS rules activation and deactivation;

e.
timing:

-
providing access to time of day information;

f.
transport information:

-
providing information about available transports.

Items (c) and (d) are used to control the traffic routing feature provided by the mobile edge host. Items (a) and (f) relate to functionality of a service API registry. Item (b) relates to application management and item (e) is used for time synchronization.

The API defined for application enablement follows the API principles that are defined in ETSI GS MEC009 [9]. This way, a unified approach for API registration / discovery and for the actual APIs is followed.

The APIs of ETSI MEC are primarily REST-based. In addition, support high volume, low latency distribution of information beyond the capabilities of HTTP-based APIs, the ETSI MEC API framework allows for the use of so-called "alternative transports". Alternative transports are based on the use of implemenation technologies such as message buses or RPC techniques, combined with serializers that create a compact, typical binary, on-the-wire representation of the data. Alternative transports allow higher throughput than HTTP and are typically not be fully standardized. By the use of the "alternative transports" concept, the API registry allows to signal the necessary configuration parameters of the actual transport, such as IP addresses, ports, URIs etc; as well as the used serializers.

C.3
Design aspects of ETSI MEC APIs
C.3.1
General

ETSI MEC defines an API framework for Mobile Edge Service APIs in ETSI GS MEC 009 [9]. It is based on REST and its implementation based on Richardson Maturity Model. All Mobile Edge service APIs shall implement at least Level 2 of the Richardson Maturity Model. It is mostly a client-server model. Any API designed should be compliant with it.
As part of the API framework, ETSI MEC defines:

a.
Entry point of a Mobile Edge service API;
b.
API security and privacy considerations;
c.
API template; and
d.
Patterns of the API.
C.3.2
Entry point of a Mobile Edge service API
The important aspects of the API entry point are:

a.
Every API needs to have only one entry point. The URL of the entry point needs to be communicated to API clients so that they can find the API.

b.
The API description should consist of information like API version, features, resources, etc.

c.
API entry point can be manually provided to the API developer or is automatically discovered.

C.3.3
API security and privacy considerations
Security and privacy considerations to allow proactive protection of the APIs against the known security and privacy issues, e.g. DDoS, frequency attack, unintended or accidental information disclosure, etc. A design for a secure API should consider at least the following aspects:

a.
Control the frequency of the API calls (calls/min).

b.
Anonymity of the real identities.

c.
Authorization of the applications. For this, two schemes are defined – one based on OAuth and one based on TLS credentials.
C.3.4
API template

The details of the API are specified in an API template. It includes the following structure:
1.
Sequence Diagrams – Provide the description of procedures for the API.

2.
Data Model – Provides the details of different data types like the resource data types, subscription criteria data types, notification data types, referenced structured data types, referenced simple data types and enumerations.

3.
API definition – Provides the details of the API, such as global definitions and resource structure, description and definition of each resource, methods associated to each resource (i.e. GET, PUT, PATCH, POST, DELETE).

C.3.5
Patterns of the API

The patterns are used to model common operations and data types in the RESTful MEC APIs. The defined patterns are used consistently throughout the REST-based mobile edge service APIs. The following patterns are specified:

a.
Name syntax;
b.
Resource identification;
c.
Resource representations and content format negotiation;
d.
Resource creation;
e.
Reading a resource;
f.
Queries on a resource;
g.
Updating a resource;
h.
Deleting a resource;
i.
Task resources;
j.
Subscribe/Notify;
k.
Asynchronous operations;
l.
Links (HATEOAS);
m.
Error responses; and
n.
Authorization

Annex D:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2017-04
	SA6#16
	
	
	
	
	TR skeleton
	0.0.0

	2017-04
	SA6#16
	
	
	
	
	Implementation of the following p-CRs approved by SA6:

S6-170439; S6-170400; S6-170440; S6-170453; S6-170454; S6-170455; S6-170482; S6-170481; S6-170458; S6-170460; S6-170483; S6-170462.
	0.1.0

	2017-04
	n/a
	
	
	
	
	Correction of styles of figure and figure titles, moving history annex as the last annex.
	0.1.1

	2017-05
	SA6#17
	
	
	
	
	Implementation of the following p-CRs approved by SA6:

S6-170694; S6-170697; S6-170698; S6-170705; S6-170706; S6-170746; S6-170755; S6-170758; S6-170760; S6-170781; S6-170782; S6-170783. S6-170784; S6-170785; S6-170786; S6-170787; S6-170788.
	0.2.0

	2017-07
	SA6#18
	
	
	
	
	Implementation of the following p-CRs approved by SA6:

S6-170983; S6-170984; S6-170986; S6-170991; S6-170999; S6-171079; S6-171080; S6-171096; S6-171097; S6-171101; S6-171108; S6-171109. S6-171110; S6-171111; S6-171112; S6-171113; S6-171116; S6-171117; S6-171118; S6-171130; S6-171131.
	0.3.0

	2017-09
	SA6-adhoc on CAPIF and FRMCS
	
	
	
	
	Implementation of the following p-CRs approved by SA6:

S6a170289; S6a170194; S6a170390; S6a170291; S6a170348; S6a170293; S6a170258; S6a170294; S6a170391; S6a170352; S6a170392; S6a170354; S6a170355; S6a170356; S6a170397; S6a170358; S6a170359; S6a170304; S6a170360; S6a170398; S6a170399; S6a170308; S6a170400; S6a170265; S6a170310; S6a170311; S6a170362; S6a170363; S6a170369; S6a170370; S6a170316; S6a170371; S6a170372; S6a170373; S6a170374; S6a170375; S6a170376; S6a170377; S6a170378; S6a170379; S6a170380; S6a170403; S6a170401.
	0.4.0

	2017-09
	n/a
	
	
	
	
	Correction of specification references, figure number, headings formatting and reference to correct subclause numbers.
	0.4.1

	2017-09
	SA#77
	SP-170755
	
	
	
	Submitted for Approval at SA#77
	1.0.0

_1566223026.vsd
API invoker

API invoker

CAPIF-1e

_1566271719.vsd
API invoker

API invoker

CAPIF-1e

_1566656787.vsd
�

API invoker

CAPIF-1e

CAPIF core functions

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

PLMN Trust Domain

CAPIF-4

API publishing function

API provider functions

CAPIF APIs

API invoker

CAPIF-3e

CAPIF-4e

CAPIF-5

API management function

API exposing function

Service APIs

Service APIs

Service APIs

API publishing function

API provider functions

API management function

CAPIF-5e

CAPIF-2

3rd party Trust Domain

CAPIF-2e

CAPIF-1e

_1566657954.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1566301808.vsd

_1566302740.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1566238231.vsd
�

API invoker

AEF-1
(Service API)

AEF-2
(Service API)

_1566256790.vsd
�

�

API invoker

CAPIF-1e

CAPIF core functions

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

CAPIF-4

API publishing function

�

API provider functions

CAPIF APIs

�

CAPIF core functions

API exposing function

Service APIs

Service APIs

Service APIs

API publishing function

�

API provider functions

CAPIF-3

CAPIF-4

CAPIF-6

CAPIF-2e

CAPIF-2e

�

�

3rd party API provider trust domain

PLMN trust domain

API management function

API management function

CAPIF-5

CAPIF-5

_1566237824.vsd
API invoker

API exposing function

CAPIF core functions

CAPIF-1

CAPIF-2

CAPIF APIs

Service API

Service API

Service API

_1562432913.vsd
�

API publishing function

CAPIF core functions

1.Service API publish request

3.Service API publish response

2.Store API information

API invoker

4.New API available notification

_1566126373.vsd
�

API invoker

CAPIF-1e

CAPIF core functions

API exposing function

Service APIs

Service APIs

Service APIs

CAPIF-3

CAPIF-2e

API invoker

CAPIF-1

CAPIF-2

_1566195326.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1566222121.vsd
API invoker

API invoker

CAPIF-1e

_1566187045.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1565274314.vsd
�

API invoker

CAPIF core functions

1. Event subscription request

_1565274334.vsd
�

API invoker

CAPIF core functions

API invoker

2. Retrieve application subscriptions

1. Event is generated

_1565415995.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1563618578.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1565273453.vsd
�

API invoker

AEF
(Service API)

_1562432930.vsd
�

API invoker

CAPIF core functions

1.Service API discover request

3.Service API discover response

2.Retrieve service API(s) information

_1556450041.vsd
API invoker

API exposing function
(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-3

Service (X&Y) APIs

CAPIF-2

CAPIF-2

API exposing function
(AEF-2)

Service X APIs

API exposing function
(AEF-3)

Service Y APIs

CAPIF APIs

Service (X&Y) APIs

CAPIF-2

_1562038898.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1562084425.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1562142101.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1562042015.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

1. Auditing service API request

_1556450077.vsd
API invoker

API exposing function
(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-3

CAPIF-2

CAPIF-2

API exposing function
(AEF-2)

Service X APIs

API exposing function
(AEF-3)

Service Y APIs

CAPIF APIs

CAPIF-3

Service (X&Y) APIs

Service (X&Y) APIs

CAPIF-2

_1554201958.doc

[image: image1]

Rx

PC

REST-Rx

PCRF

AF

_1556450021.vsd
API invoker

API exposing function
(AEF-1)

CAPIF core functions

CAPIF-1

CAPIF-2

CAPIF-3

Service API

CAPIF APIs

Service API

Service API

_1553441803.doc
[image: image1.png]

OMA APIs provide an abstracted view of network capabilities

SCEF

e.g., 3GPP network

_1553439468.doc
[image: image1.emf]

OMA service enablers, 3GPP network capabilities via native interfaces

