3GPP TR 23.722 V0.1.1 (2017-04)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Study on Common API Framework for 3GPP Northbound APIs
(Release 15)
[image: image1.jpg]

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

Contents

5Foreword

Introduction
5
1
Scope
6
2
References
6
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
7
4
Gap Analysis
7
4.x
<existing API framework>
7
4.x.1
Description
7
4.x.2
Gaps
7
4.1
OMA API framework
7
4.1.1
Description
7
4.1.2
Gaps
7
5
Key issues
8
5.x
<key issue x>
8
5.x.1
Description
8
5.1
Discovery of service API information
8
5.1.1
Key issue description
8
5.2
Topology hiding of the service
9
5.2.1
Key issue description
9
5.3
Application authentication to access service APIs
9
5.3.1
Key issue description
9
5.4
Application authorization to access service APIs
9
5.4.1
Key issue description
9
5.5
Charging on invocation of service APIs
9
5.5.1
Key issue description
9
5.6
Lifecycle management of service APIs
9
5.6.1
Key issue description
9
5.7
Monitoring service API invocations
10
5.7.1
General
10
5.8
Logging service API invocations
10
5.8.1
Description
10
5.9
Auditing service API invocations
10
5.9.1
Description
10
6
Architectural requirements
10
6.1
General requirements
10
6.x
<Common aspect x> requirements
10
6.x.1
Description
10
6.x.2
Requirements
10
6.2
Service API discovery requirements
10
6.2.1
General
10
6.2.2
Requirements
11
6.3
Security requirements
11
6.3.1
General
11
6.3.2
Requirements
11
6.4
Charging requirements
11
6.4.1
General
11
6.4.2
Requirements
11
6.5
Lifecycle management requirements
11
6.5.1
General
11
6.5.2
Requirements
11
6.6
Monitoring service API invocation requirements
12
6.6.1
General
12
6.6.2
Requirements
12
6.7
Logging service API invocation requirements
12
6.7.1
General
12
6.7.2
Requirements
12
6.8
Auditing service API invocation requirements
12
6.8.1
General
12
6.8.2
Requirements
12
7
Solutions
13
7.x
Solution #x: <title>
13
7.x.1
Solution description
13
7.x.2
Solution evaluation
13
7.1
Solution 1 – High Level Architecture for common API framework
13
7.1.1
Solution description
13
7.1.2
Solution evaluation
14
7.2
Solution 2 – Service API discovery
14
7.2.1
Solution description
14
8
Overall evaluation
15
9
Conclusions
15
Annex A: OMA API Program
16
A.1
General
16
A.2
OMA API Architecture
16
A.2.1
OMA Next Generation Service Interfaces (NGSI) for Abstract APIs
17
A.2.1.1 Service Registration and Discovery
17
A.2.1.2 Identity Control
17
A.2.1.3 Data Configuration and Management
17
A.2.2
OMA RESTful APIs
18
A.2.2.1 Authorization Framework for Network APIs
18
A.2.2.2 RESTful Network API for Capability Discovery
18
A.3
API consistency within OMA APIs
18
Annex B: Change history
20

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.
Introduction

In 3GPP, there are multiple northbound API-related discussions e.g., APIs for Service Capability Exposure Function (SCEF) functionalities defined in 3GPP TS 23.682 [2], API for the interface between MBMS service provider and BM-SC defined in 3GPP TR 26.981[3]. To avoid duplication and inconsistency of approach between each individual API activity, 3GPP has considered the development of a common API framework that includes common aspects applicable to any northbound APIs.

The present document identifies a common approach for API development within 3GPP, corresponding solutions for common API framework for 3GPP northbound APIs, and recommendations for normative work.
1
Scope

The present document is a technical report which identifies the architecture aspects necessary for the development of a common API framework for 3GPP northbound APIs, and corresponding architectural solutions. The aspects of the study include identifying architecture requirements for the common API framework aspects (e.g. registration, discovery, identity management) that are applicable to any service APIs when used by northbound entities, as well as any interactions between the common API framework aspects and the service APIs themselves.

The study takes into consideration the existing work within 3GPP related to APIs and as well as API frameworks defined outside 3GPP. The recommendations from the study include architecture solutions that may be considered for normative work, based on the gap analysis of the identified architecture requirements and the existing solutions.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 23.682: "Architecture enhancements to facilitate communications
with packet data networks and applications".

[3]
3GPP TR 26.981: "MBMS Extensions for Provisioning and Content Ingestion"
3
Definitions, symbols and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

API: The means by which application can access the service.

API provider: The entity which exposes the capabilities of the service provider in the form of service APIs.

Service API: The capabilities exposed by the service or application for consumption by other applications.

Editor's Note:
The definition of Northbound API is FFS.
3.2
Symbols

For the purposes of the present document, the following symbols apply:

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply.
An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

API
Application Program Interface

BM-SC

Broadcast Multicast Service Centre

CAPIF
Common API Framework for 3GPP Northbound APIs
HTTP

Hyper Text Transfer Protocol

IETF
Internet Engineering Task Force
IoT
Internet of Things

JSON
JavaScript Object Notation
MBMS

Multimedia Broadcast and Multicast Service
MMS
Multimedia Messaging Service
NGSI
Next Generation Service Interfaces

OMA
Open Mobile Alliance

REST
REpresentational State Transfer
SCEF
Service Capability Exposure Function

SMS
Short Message Service

SOAP
Simple Object Access Protocol
XML
eXtensible Markup Language
4
Gap Analysis
4.x
<existing API framework>
Editor’s Note:
Add proper title describing the existing API framework.

4.x.1
Description

Editor’s Note:
This clause will describe the API framework.

4.x.2
Gaps
Editor’s Note:
This clause will investigate existing API frameworks and identify potential gaps.
4.1
OMA API framework
4.1.1
Description

Editor’s Note:
This clause will describe the API framework.

4.1.2
Gaps

Editor’s Note:
This clause will investigate existing API frameworks and identify potential gaps.

OMA worked on high-level gap analysis identifying the required enhancements to existing OMA Network APIs and the new network APIs needed to support the IoT networks. Table 4.1.2-1 lists the gaps identified in the analysis by OMA that may be applicable to CAPIF.
Table 4.1.2-1: OMA gap analysis

	Functionality
	OMA Support? (Available/Partial/Gap)
	SCEF APIs (Net API)
	SCEF API 23.682 (e20) section

	Authentication for attaching SCS/AS
	Partial
	OMA-ER-Autho4 covers much of this
	4.2, 4.4.8

	Identification of the API consumer
	Partial
	OMA-ER-Autho4 covers much of this
	4.4.8

	Profile Management
	Partial
	OMA-ER-Autho4 covers much of this
	4.4.8

	ACL management
	Partial
	OMA-ER-Autho4 covers much of this
	4.4.8

	Policy Enforcement
	
	
	4.4.8

	Infrastructure policy / network protection
	Gap (not clearly defined functionality)
	
	4.4.8

	Business policy e.g number portability
	Gap (not clearly defined functionality)
	
	4.4.8

	Application Layer Policy e.g. throttling
	Gap (not clearly defined functionality)
	
	4.4.8

	Assurance
	
	
	4.4.8

	Integration with O&M Platforms
	Gap (not clearly defined functionality)
	
	4.4.8

	Usage of APIs
	Gap (not clearly defined functionality)
	
	4.4.8

	Accounting for inter-operator settlements
	Gap (not clearly defined functionality)
	
	4.4.8

Editor's note: It is FFS to determine which gaps in the table above are required for CAPIF.
5
Key issues
5.x
<key issue x>
Editor’s Note:
Add proper title for the key issue.

5.x.1
Description

Editor’s Note:
This clause will describe the key issue.

5.1
Discovery of service API information

5.1.1
Key issue description

There are several service APIs provided by the service provider. Applications require service API information to access these service APIs. Applications need to acquire the service API information from the service provider which includes information like IP address, port with details about interfaces, protocols, versions numbers, and/or environment details to enable access to the service API. Further study is required on the mechanism of providing service API information to the applications including registration of service API information by the service providers and discovery of the service API information by the applications.

5.2
Topology hiding of the service

5.2.1
Key issue description

The applications may access the service APIs in two scenarios:

a)
Inside the same trust domain as the service API; and

b)
Outside the trust domain of the service API.

Scenario (a) may not require any topology hiding of the service from the application. Scenario (b) requires that the service topology is hidden from the application accessing the service APIs outside the trust domain of the service API to avoid any network security issue. Further study is required on the mechanism to hide topology of the service from the applications access the service API outside the trust domain.
5.3
Application authentication to access service APIs

5.3.1
Key issue description

A service API may have its own mechanism to authenticate the applications. It is difficult to integrate applications to different service APIs if they follow their own authentication mechanisms. Further study is required to provide a common application authentication mechanism to access service APIs.
5.4
Application authorization to access service APIs

5.4.1
Key issue description

Applications require authorization to access the service APIs. Unauthorized access to service APIs is undesirable from the operator's view. During the service communication, the service verifies the authorization of the application accessing the service API. Further study is required to provide a common authorization mechanisms to access service APIs.
5.5
Charging on invocation of service APIs

5.5.1
Key issue description

Common API framework cannot be considered complete without having appropriate mechanisms to support charging related functions. This key issue will look into the aspects of collection of charging information during the invocation of service APIs, and architecture requirements to address them as part of CAPIF.
5.6
Lifecycle management of service APIs

5.6.1
Key issue description

The lifecycle management is a key functionality of the common API framework, which achieves the overall management of service level APIs. This key issue identifies aspects related to lifecycle management e.g. starting and stopping of service API, performance reporting parameters, etc.
5.7
Monitoring service API invocations

5.7.1
General

To monitor the health of service API, capture system load information and prevent potential attacks, service API invocation monitoring functionalities are to be provided by CAPIF.
5.8
Logging service API invocations

5.8.1
Description

The service APIs are typically invoked by various consumers. It is necessary that the service API provider is able to log the service API invocation events for the purposes of tracing back and for statistical analysis. Therefore the service API invocation logging and storage functionalities are to be included in CAPIF.
The stored service API invocation log may contain private and sensitive information, needs to be handled carefully to respect potential privacy rules.
5.9
Auditing service API invocations

5.9.1
Description
While the service API provider is able to authorize consumers with API invocation rights, it is necessary for the service providers to detect any abuse of service API invocations. To address this need, auditing capabilities (e.g. querying the service API invocations) will help the service API providers to identify illegal service API invocations.
6
Architectural requirements
6.1
General requirements
Editor’s Note:
This clause will investigate and describe general architectural requirements for CAPIF.

6.x
<Common aspect x> requirements
Editor’s Note:
Add proper title describing the common aspect.

6.x.1
Description

Editor’s Note:
This clause will describe the common aspect.

6.x.2
Requirements

Editor’s Note:
This clause will describe the architectural requirements.

6.2
Service API discovery requirements
6.2.1
General

This subclause specifies the service API discovery related requirements.

6.2.2
Requirements

[AR-6.2.2-a] The common API framework shall provide a mechanism to publish the service API information like IP address, port with details about interfaces, protocols, versions numbers, and/or environment details.
[AR-6.2.2-b] The common API framework shall provide a mechanism to discover the service API information which is already published as specified in [AR-6.2.2-a].

6.3
Security requirements
6.3.1
General

This subclause specifies the security related requirements for application accessing the service APIs.

6.3.2
Requirements

[AR-6.3.2-a] The common API framework shall provide mechanisms to hide the topology of the service from the applications accessing the service APIs from outside the trust domain.

[AR-6.3.2-b] The common API framework shall provide mechanisms to authenticate applications to access the service APIs.

[AR-6.3.2-c] The common API framework shall provide mechanisms to authorize applications to access the service APIs.

6.4
Charging requirements
6.4.1
General

Charging related information during the usage or invocation of service APIs.
6.4.2
Requirements

[AR-6.4.2-a] The common API framework shall support to record the invocation count of the service APIs related to charging.
[AR-6.4.2-b] The common API framework shall support to record identification of the application and the associated service API invocation related to charging.
[AR-6.4.2-c] The common API framework shall support to record timestamp of the service APIs invocation.

[AR-6.4.2-d] The common API framework shall support to record the service APIs related information e.g. API location.

6.5
Lifecycle management requirements
6.5.1
General

The lifecycle management aspects such as monitoring the running status of services API and related operations need to be supported.
6.5.2
Requirements

[AR-6.5.2-a] The common API framework shall support to monitor the lifecycle of service APIs, e.g. starting and stopping of the service API.

[AR-6.5.2-b] The common API framework shall support to monitor and report the performance status about the service APIs.

[AR-6.5.2-c] The common API framework shall support to monitor and report the fault information about the service APIs.

[AR-6.5.2-d] The common API framework shall support to record change events of service APIs, e.g. service APIs relocation.

6.6
Monitoring service API invocation requirements
6.6.1
General
The monitoring function shall be included into common API framework. It ennables API provider to monitor service API invocations in near real-time, to determine cirtical aspects such as system load, API usage information, uncover potential overload and attacks(e.g. DDOS) conditions.

6.6.2
Requirements
[AR-6.6.2-a] The common API framework shall support capture service API invocation events and make them available to service API provider in near real-time (second level).

[AR-6.6.2-b] The common API framework shall support analyse system load and resource usage information, detect overload conditions and existence of threat conditions.
[AR-6.6.2-c] The common API framework shall support allow service API provider to apply monitoring filters based on criteria such as invoker's ID and IP address, service API name and version, input parameters, and invocation result.

6.7
Logging service API invocation requirements
6.7.1
General

The ability to logging service API invocations and its storage shall be supported by CAPIF. This enables API providers to record service API invocation events for the purposes of tracing back and statistical anlaysis.
6.7.2
Requirements
[AR-6.7.2-a] The common API framework shall support service API invocation event logging and storage functionality. For each service API invocation, the service API invocation log shall at least include: invoker's ID and IP address, service API name and version, input parameters, invocation result, and time stamp information.
[AR-6.7.2-b] The service API invocation log shall be stored for a configurable time period, according to the service API provider's policy.
[AR-6.7.2-c] The service API invocation log shall be stored securely, and shall only be accessed by authorized administrators of the service API provider.
Editor's note: The relationship between logging and charging is FFS.
6.8
Auditing service API invocation requirements
6.8.1
General

Auditing capabilities shall be included in CAPIF. It enables the service API provider to identify illegal service API invocations e.g. by querying the service API invocation log.
6.8.2
Requirements
[AR-6.8.2-a] The common API framework shall provide service API invocation audition functionality, which enables the service API provider to trace back a specific API invocation e.g. by querying the service API invocation log.
7
Solutions

7.x
Solution #x: <title>
Editor’s Note:
Add proper titles for this solution.

7.x.1
Solution description

Editor’s Note:
This clause will describe the solution.

7.x.2
Solution evaluation

Editor’s Note:
This clause will evaluate the solution.

7.1
Solution 1 – High Level Architecture for common API framework for 3GPP northbound APIs
7.1.1
Solution description

7.1.1.1
General

The application makes use of the services and capabilities in the form of service APIs. The common API framework provides the access to the service APIs.

7.1.1.2
Architectural Model

Figure 7.1.1.2-1 shows the architectural model for the common API framework which allows 3rd party applications to access the service APIs.

[image: image3.emf]Application

Application

A1

A1 A2 A2

PLMN Trust Domain

Service APIs

A3

Framework control

functions

API provider

Common API

framework functions

Figure 7.1.1.2-1: High level architecture for CAPIF
Editor's Note:
How to depict the functions related to common API framework in the figure 7.1.1.2-1 is FFS.

The common API framework consists of a API provider and common API framework functions. The common API framework functions (e.g. application registration, service API discovery, authentication, authorization) support the applications to access the service APIs. The API provider is the provider of the service APIs towards the applications and supports framework control functions (e.g. monitoring, logging) for the service APIs.

The application connects to the common API framework via A1 and A2. The common API framework is hosted within the PLMN operator network. The application is typically provided by a 3rd party application provider who has some PLMN service agreement with PLMN operator. The application may reside within the same trust domain as the PLMN operator network.

The reference point A1 supports the functions for the application to register, discover service APIs and authorize the access to the service APIs. The reference point A2 supports the functions for the applications to access the service APIs along with framework control functions. The reference point A3 provides the interaction between common API framework functions and the API provider (e.g. service API publish).

NOTE:
The aspects related to the specific service API in reference point A2 is out of scope of the present document.

Editor's Note:
The relationship of 3GPP functionalities like SCEF with the common API framework is FFS.

7.1.2
Solution evaluation

Editor's Note:
This clause will evaluate the solution.

7.2
Solution 2 – Service API discovery

7.2.1
Solution description

The following solution corresponds to the key issue on service API discovery specified in subclause 5.1.

Figure 7.2.1-1 illustrates the solution for service API discovery.

[image: image4.emf]1. Publish service API

2. Discover service

APIs of interest

3. Communication with

service APIs

Application

API registry

Common API framework

functions

API registry

client

Framework

control

functions

API provider

Service APIs

Figure 7.2.1-1: Solution 2 – Service API discovery
Editor's Note:
How to depict framework control functions and common API framework functions within common API framework in the figure 7.1.1.2-1 and figure 7.2.1-1 are FFS.
The service API discovery mechansim is supported by the API registry. API registry provides the capabilities to publish and discover service APIs.

1)
The API registry client of the API provider publishes the service API information to the API registry.

2)
Application discovers the service APIs of interest from the API registry.

3)
Upon receiving the service API information, the application communicates with the service APIs of the API provider.

8
Overall evaluation

Editor’s Note:
This clause will provide evaluation of different solutions.

9
Conclusions

Editor's Note:
This clause is intended to list conclusions that have been agreed during the course of the study item activities.

Annex A:
OMA API Program

A.1
General

The OMA API program has inventory of APIs [6] which provides standardized interfaces to the service infrastructure residing within communication networks and on devices. Focused primarily between the service access layer and generic network capabilities, OMA API specifications allow operators and other service providers to expose device capabilities and network resources in an open and programmable way to any developer community independent of the development platform. By deploying OMA APIs, fundamental capabilities such as SMS, MMS, Location Services, Payment and other core network assets are now exposed in a standardized way.

[image: image5.emf]

OMA APIs provide an abstracted view of network capabilities

SCEF

e.g., 3GPP network

Figure A.1.1: OMA Service Exposure Framework

OMA API landscape spreads across various dimensions:

-
Abstract APIs: Focus on functional aspects and Protocol independent i.e., does not include a specific protocol binding for its operations

-
API Binding Technologies: SOAP/WSDL web services, HTTP protocol binding using REST architectural style

-
Network API: exposed by a resource residing in the Network

-
Device API: exposed by a resource residing/running on a Device
A.2
OMA API Architecture

OMA API architecture for Abstract APIs and HTTP/SOAP APIs.

A.2.1
OMA Next Generation Service Interfaces (NGSI) for Abstract APIs
The reference architecture of Abstract APIs or NGSI [7] is shown below:

[image: image6.emf]

OMA service e nablers, 3 GPP network capabilities via native interfaces

Figure A.2.1: NGSI Architectural Diagram

Although the scope of NGSI is standardization of functional interfaces and framework aspects, the excerpts below give more emphasis those related to framework aspects.

A.2.1.1 Service Registration and Discovery

The Service Registration and Discovery component supports NGSI interface messages for the following functions:

-
Registration of Services

-
Search for Services.

This component exposes the NGSI-11 and NGSI-12 interfaces. The NGSI-11 interface supports Registration of Services. The NGSI-12 interface supports Search for Services.

A.2.1.2 Identity Control

The Identity Control component supports NGSI interface messages for the following functions:

-
Management of the Identity including Identifiers

-
Control of the Federation of the Identity.

This component exposes the NGSI-13 and NGSI-14 interfaces.

A.2.1.3 Data Configuration and Management

The Data Configuration and Management component supports NGSI interface messages for the following functions:

-
Management (i.e. create, read, update, delete) of data stored in a document

-
Subscription management of notifications regarding data change in the content of a document

-
Notifications of data change in the content of a document.

The data supported can be of the type of XML or non-XML data. This component exposes the NGSI-1, NGSI-2 and NGSI-3 interfaces.

A.2.2
OMA RESTful APIs

A.2.2.1 Authorization Framework for Network APIs

The Authorization Framework for Network APIs enables a Resource Owner owning network resources exposed by Network APIs and RESTful APIs in particular, to authorize third-party Applications (desktop, mobile and web Applications) to access these resources via that API on the Resource Owner’s behalf.

OMA RESTful Network APIs may be complemented with a common delegated authorization framework based on IETF OAuth 2.0, for access of third party Applications via those APIs.

A.2.2.2 RESTful Network API for Capability Discovery

The RESTful Network API for Capability Discovery contains HTTP protocol bindings for Capability Discovery, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML and JSON).

A.3
API consistency within OMA APIs

OMA has developed following specifications in order to ensure consistency across all the APIs that are developed.

-
Common Definitions and Specifications for RESTful Network APIs: To ensure consistency for developers using the various RESTful Network APIs specified in OMA, this “Common” technical specification aims to contain all items that are common across all HTTP protocol bindings using REST architectural style for the various individual interface definitions, such as naming conventions, content type negotiation, representation formats and serialization, and fault definitions. It also provides a repository for common data types.

-
Common specifications for RESTful Network APIs include use of REST guidelines, handling of unsupported formats, API authoring style, resource creation, encoding in HTTP requests/responses

-
Data items include addressing, common data types,

-
Error handling

-
Whitepaper on Guidelines for RESTful Network APIs: This whitepaper is intended to provide the guidelines and best priorities for defining RESTful Network APIs in OMA.

-
Generic principles for defining RESTful Network APIs include:

-
Services should be defined in terms of resources that are addressable as URLs.

-
Use of nouns in URLs is recommended over the use of verbs

-
Mapping of HTTP i.e., verbs POST, GET, PUT, DELETE for CRUD (Create, Read, Update, Delete) operations

-
Use standard HTTP Status codes in responses for both successful and failed operations

-
It is recommended to specify API versioning by inserting the API version in the resource URL path

-
The API specifications should include examples

-
APIs should support ability to add extra data elements in the request/reply body and extra query parameters in the URL to enhance usability

-
If a message contains sensitive data, such as passwords, account numbers, and card numbers (as in account management and payment APIs), security consideration to protect these information is required.

-
API Documentation:

-
Each RESTful Network API should be specified in a resource-oriented manner and the resources used by the API should be defined and explained. Use cases and sequence diagrams should be provided.

-
RESTful Network API data types and enumeration types must be specified with an associated detailed description including optionality. This will enable a developer to understand how to use the parameter.

-
Error handling, examples, common data formats, backward and forward compatibility

Annex B:
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2017-04
	SA6#16
	
	
	
	
	TR skeleton
	0.0.0

	2017-04
	SA6#16
	
	
	
	
	Implementation of the following p-CRs approved by SA6:

S6-170439; S6-170400; S6-170440; S6-170453; S6-170454; S6-170455; S6-170482; S6-170481; S6-170458; S6-170460; S6-170483; S6-170462.
	0.1.0

	2017-04
	n/a
	
	
	
	
	Correction of styles of figure and figure titles, moving history annex as the last annex
	0.1.1

_1553439468.doc
[image: image1.emf]

OMA service enablers, 3GPP network capabilities via native interfaces

_1553441803.doc
[image: image1.png]Sy Advertise:
Integrator

Content
Provider

Developer
Provider Program
APIs

Exposure Layer

Native Network
Signaling Protocols

Network
p—,

OMA APIs provide an abstracted view of network capabilities

SCEF

e.g., 3GPP network

1. Publish service API
2. Discover service APIs of interest
3. Communication with service APIs
Application
API registry
Common API framework functions
API registry
client

Framework control functions
API provider
Service APIs

