	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 4

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2005-2008
	TD 216 (PLEN/4)

	
	English only

Original: English

	Question(s):
	9/4
	Beijing, 24 May-2 June 2006

	TEMPORARY DOCUMENT

	Source:
	Rapporteur Q9/4

	Title:
	Draft revised Recommendation M.3020

	Draft revised ITU-T Recommendation M.3020

Management interface specification methodology

Summary

This ITU-T Recommendation describes the Management Interface Specification Methodology (MISM). It describes the process to derive interface specifications based on user requirements, analysis and design (RAD). Guidelines are given to describe RAD using Unified Modelling Language (UML) notation; however, other interface specification techniques are not precluded. The guidelines for using UML are described at a high level in this ITU-T Recommendation.

CONTENTS

51
Scope

52
References

63
Definitions

84
Abbreviations

85
Conventions

96
Requirements for methodology and notational support

117
Methodology

117.1
General considerations

117.2
Application and structure of the methodology

117.3
Detailed methodology

117.3.1
Requirements

147.3.2
Analysis

157.3.3
Design

168
Management interface specifications

169
Traceability in MISM Process

1710
Documentation structure

18A.1
GDMI Requirements Template

18A.1.1
Scope

18A.1.2
Requirements

23B.1
Scope

23B.2
Use cases

23B.3
Interface Definition

23B.3.1
Class diagram representing interfaces

24B.3.2
Generic rules

24B.3.b
InterfaceName Interface

24B.3.b.a
Operation OperationName (supportQualifier)

27B.3.b.c
Notification NotificationName (supportQualifier)

28B.4
Information object classes

28B.4.1
Imported information entities and local labels

29B.4.2
Class diagram

29B.4.2.1
Classes and relationships

29B.4.2.2
Inheritance

29B.4.3
Information object classdefinitions

29B.4.3.a
IOC InformationObjectClassName

33B.4.4
Information relationship definitions

33B.4.4.a
InformationRelationshipName (supportQualifier)

34B.4.5
Information attribute definitions

34B.4.5.1
Definition and legal values

34B.4.5.2
Constraints

34B.4.6
Particular information configurations

36D.1 Introduction

36D.2
Basic model elements

36D.2.1
Attribute (subclause 3.25 of [12]).

36D.2.2
Aggregation (subclause 3.43.2.5 of [12]).

37D.2.3 Operation (subclause 3.26 of [12]).

37D.2.4
Association, association name (subclause 3.41 of [12]).

37D.2.5
Realization relationship (subclause 2.5.2.1 of [12]).

38D.2.6
Generalization relationship (subclause 3.50 of [12]).

38D.2.7
Dependency relationship (subclause 3.51 of [12]).

38D.2.8
Note (subclause 3.11 of [12]).

38D.2.9
Multiplicity, a.k.a. cardinality (subclause 3.44 of [12]).

39D.3
Stereotype

39D.3.1
<<Interface>>

40D.3.2
<<Type>>

41D.3.3
<<ProxyClass>>

42D.3.4
<<Archetype>>

42D.3.5
<<InformationObjectClass>>

43D.3.6
<<use>> and <<may use>>

45D.3.7
Relationship realize and <<may realize>>

45D.3.8
<<emits>>

46D.3.9
<<names>>

47D.3.10
<<opt>>

48D.4
Visibility

48D.4.1
Samples

49D.5
Association classes

50D.6
Abstract Class

50D.6.1
Sample

1
Scope

This ITU-T Recommendation describes the Management Interface Specification Methodology (MISM). It describes the process to derive interface specifications based on user requirements, analysis and design (RAD). Guidelines are given to describe RAD using Unified Modelling Language (UML) notation; however, other interface specification techniques are not precluded. The guidelines for using UML are described in this ITU-T Recommendation.
An interface specification addresses management service(s) defined in ITU-T Recommendation M.3200 and/or supporting the management processes defined in ITU-T Recommendation M.3050 (series). Such a specification may support part of or one or more management services. The management services comprise of management functions. These functions may reference those defined in ITU-T Recommendation M.3400 or the processes defined in ITU-T Recommendation M.3050, specialized to suit a specific managed area or new functions may be identified as appropriate.
2
References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.
The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation
[1] ITU-T Recommendation M.3010 (2000), Principles for a telecommunications management network.
[2] ITU-T Recommendation M.3060 (2006), “Principles for the Management of Next Generation Networks”.

[3] ITU-T Recommendation M.3200 (1997), TMN management services and telecommunications managed areas: Overview.
[4] ITU-T Recommendation M.3400 (2000), TMN management functions.
[5] ITU-T Recommendation M.3208.1 (1997), TMN management services for dedicated and reconfigurable circuits network: Leased circuit services.
[6] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, Information technology – Abstract syntax Notation Om (ASN.1): Specification of basic notation.
ITU-T Recommendation Z.100 (1999), Specification and Description Language.
[7] 3GPP TS 32.150

[8]
 V7.0.0 (2006-03) “Integration Reference Point (IRP) Concept and definition”

[9] 3GPP TS 32.151
 V6.2.0 (2006-03) “Integration Reference Point (IRP) Service Template”

[10] 3GPP TS 32.152 V6.3.0 (2005-06) “IRP IS Unified Modelling Language (UML) repertoire”

[11] 3GPP TS 32.803 V6.0.0 (2004-09) “Process Guide; Use Cases in Unified Modelling Language (UML)”

[12] OMG: “Unified Modelling Language Specification, Version 1.5”.
[13] ITU-T Recommendation M.3050.0-4 (07/04), Enhanced Telecommunications Operations Map
[14] ITU-T Recommendation Q.812
3
Definitions

This Recommendation uses the following terms from Recommendation M.3010 ‎[1]:
· User

· Management service
· Management function set
This Recommendation uses the following terms from OMG UML ‎[9]:
· Activity Diagram
· Actor
· Association

· Class
· Class Diagram
· Classifier

·
· Collaboration Diagram
· Composition

· ModelElement

· Sequence Diagram
· State Diagram
· Stereotype
· Use Case

This Recommendation uses the following terms from M.3060 ‎[2]:

reference point

This Recommendation defines the following terms:
· Agent:: Encapsulates a well-defined subset of management functionality. It interacts with Managers using a management interface. From the Manager's perspective, the Agent behaviour is only visible via the management interface.
· Information Object Class: Describes the information that can be passed/used in management interfaces and is modelled using the stereotype "Class" in the UML meta-model. For a formal definition of Information Object Class and its structure of specification, see Annex B | 3GPP TS 32.151[??].
· Information type: TBD

· Manager: Models a user of Agent(s) and it interacts directly with the Agent(s) using management interfaces.
Since the Manager represents an Agent user, it gives a clear picture of what the Agent is supposed to do. From the Agent perspective, the Manager behaviour is only visible via the management interface.
· Management goals: High-level objectives of a user in performing management activities.
·
· Management interface: The realisation of management capabilities between a Manager and an Agent, allowing a single Manager to use multiple Agents and a single Agent to support multiple Managers.
·
NOTE: Itf-N, Q, X are examples of management interfaces.
Management role: Defines the activities that are expected of the operational staff or systems that perform telecommunications management. Management roles are defined independent of other components, i.e. telecommunications resources and management functions.
Matching information: TBD

Protocol-neutral specification: Defines the management interfaces and information passed across them in support of management capabilities without concern for the protocol and information representation implied or required by e.g. CORBA and XML.
Protocol-specific specification: TBD
· Telecommunications resources: Telecommunications resources are physical or logical entities requiring management, using management services.
· Management scenario: A management scenario is an example of management interactions from a management service.
This Recommendation uses the following terms from Recommendation 3GPP TS 32.150 ‎0:
· IRP

· IRPAgent (considered equivalent to Agent as defined in this section)
· IRPManager (considered equivalent to Manager as defined in this section)
· IS (considered equivalent to Protocol-neutral specification as defined in this section)
· SS (considered equivalent to Protocol-specific specification as defined in this section)
4
Abbreviations

This Recommendation uses the following abbreviations:
ASN.1
Abstract Syntax Notation One

CORBA
Common Object Request Broker Architecture

GDMO
Guidelines for the Definition of Managed Objects

IDL
Interface Definition Language

MISM
Management Interface Specification Methodology
NE
Network Element

OAM&P
Operations, Administration, Maintenance and Provisioning

OMG
Object Management Group

OO
Object Oriented

OSI
Open Systems Interconnection

SDL
Specification and Description Language

SLA
Service level Agreement

UML
Unified Modelling Language

XML
Extensible Markup Language

5
Conventions

Table 1 identifies the correspondence between management concepts and UML notation. This ITU‑T Recommendation specifies the high-level concepts and notations to be used in the different phases.
Stereotypes are used to extend UML notation. The approved stereotypes for use within the management environment are included in this ITU-T Recommendation (see Annex D).
Table 1/M.3020 – Requirements concepts

	Management concept
	UML notation
	Comment

	user
	Actor
	A user is modelled as an actor.

	management role
	Actor
	An actor plays a role. It is normally advisable to only model a single role for each actor.

	management function
	use case
	A management function is modelled by one or more use cases.

	management function set
	use case
	A management function set is a composite use case with each management function (potentially) modelled as a separate use case.

	management service
	use case
	A management service is modelled as a high-level use case.

	management scenario
	sequence diagram
	Sequence diagrams are preferred over collaboration diagrams.

	telecommunication resource type
	Class
	The class diagrams depict the property details of the telecommunications resource type, at the level of detail appropriate to the phase of the methodology.

	management goals
	–
	Management goals are captured as textual descriptions as there is no applicable UML notation.

The following generic rules are relevant for all interface definitions:
	Rule 1
	Each operation with at least one input parameter supports a pre-condition valid_input_parameter which indicates that all input parameters shall be valid with regards to their information type. Additionally, each such operation supports an exception operation_failed_invalid_input_parameter which is raised when pre-condition valid_input_parameter is false. The exception has the same entry and exit state.

	Rule 2
	Each operation with at least one optional input parameter supports a set of pre-conditions supported_optional_input_parameter_xxx where “xxx” is the name of the optional input parameter and the pre-condition indicates that the operation supports the named optional input parameter. Additionally, each such operation supports an exception operation_failed_unsupported_optional_input_parameter_xxx which is raised when

(a) the pre-condition supported_optional_input_parameter_xxx is false and

(b) the named optional input parameter is carrying information. The exception has the same entry and exit state.

	Rule 3
	Each operation shall support a generic exception operation_failed_internal_problem which is raised when an internal problem occurs and that the operation cannot be completed. The exception has the same entry and exit state.

ED NOTE: The Generic Rules should be extended with security, e.g. the relevant M.3016 services. Further study is needed on this issue.

The manageable properties of the attributes are specified by qualifiers:
The visibilityQualifier indicates whether the attribute is public, private or Agent Internal ("+","—", and "%" respectively). The semantics of public and private are as per the UML specification.

Note: Agent Internal is not recommended used by ITU-T specifications.
The supportQualifier indicates whether the attribute is Mandatory, Optional, Conditional or not supported ("M","O","C", or "—", respectively).

The supportQualifier indicates whether the attribute is Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), SS-Conditional (C) or not supported (—).

The writeQualifier indicates whether the attribute shall be writeable by the IRPManager. The semantics for writeQualifier is identical to supportQualifier, for "M", "O", and "—".
There is a dependency relationship between the supportQualifier and visibilityQualifier, readQualifier, and writeQualifier. The supportQualifier indicates the requirements for the support of the attribute. For any given attribute, regardless of the value of the supportQualifier, at least one of the readQualifier or writeQualifier must be "M". The implication of the "O" supportQualifier is that the attribute is optional, however the read and write qualifiers indicate how the optional attribute shall be supported, should the optional attribute be supported. Regardless of the supportQualifier, if an attribute is supported then it shall be supported in accordance with the specified visibilityQualifier.

6
Requirements for methodology and notational support

In developing the methodology and choosing a notation, the following requirements apply:
1)
The methodology, including the choice of notation, shall support the capture of all the relevant requirements of the problem space, namely telecommunications management.
2)
The methodology facilitates the production of Requirements, its corresponding Analysis|Information Services [IS] and their corresponding Design Specifications|Solution Sets
3)
The notation shall facilitate unambiguous generation of the specification in the target management protocol profiles specified in ITU-T Recommendation Q.812 ‎[1] |3GPP 32.101 [??]. The methodology does not address possible choices of protocol services (e.g. CORBA Security Service).
4)
The methodology shall allow specification of mandatory and optional items in all three phases. It also specifies the relation of mandatory|optional items between the three phases.

5)
It shall be possible to generate, from the protocol-neutral specification (Analysis|IS), interoperable language specific definitions, i.e. Design|SS (for example UML to IDL, UML to GDMO/ASN.1).

7
Methodology

7.1
General considerations

The purpose of this methodology is to provide a description of the processes leading towards the definition of management interfaces.
7.2
Application and structure of the methodology

The Management Interface Specification Methodology (MISM)specifies an iterative three-phase process with features that allow traceability across the three phases. The three phases apply industry-accepted techniques using object oriented analysis and design principles. The three phases are requirements, analysis and design. The techniques should allow the use or development of commercially available support tools. Different techniques may be used for the phases depending on the nature of the problem.
7.3
Detailed methodology

The requirements and analysis phases produce UML specifications. The Design phase uses Network Management Paradigm specific notation. The outputs of the 3 phases are:
· Requirements phase – Requirements.

· Analysis phase – Implementation independent specification.

· Design phase – Technology specific specification.

Initially, the design phase will be developed using a manual or customized approach. When interoperable protocol specific definition can be generated by tools, then UML notation can be applied to the design phase. However some protocol specific definitions, such as class hierarchy, can be depicted using UML notation.
The subclauses below describe the three phases.
7.3.1
Requirements

The requirements for the problem being solved fall into two classes. The first class of requirements is referenced here as business requirements. A subject matter expert on the topic shall be able to determine that the requirements adequately represent the needs of the management problem being solved. The second class is referred to as specification requirements. These requirements shall provide sufficient details so that the interface definition in the analysis and design phases can be developed. As final interface definitions must be traceable to the requirements, it may be necessary to have an iterative process among the three phases. Any ambiguity in the requirements will have to be resolved by this iterative process to assure that an implementable specification can be developed.
Different techniques may be used to specify the two classes of requirement. Irrespective of the technique, the readability of the requirements is critical. The requirements themselves are not required to be in a machine-readable notation as long as readability and traceability are possible. Enumerating requirements is the recommended solution to delineate the different requirements for traceability.
The requirements phase includes identifying aspects such as security policy, scope of the problem domain in terms of the applications, resources, and roles assumed by the resources.. The requirements specify roles, responsibilities, and the relationships between the constituent entities for the problem space. Different techniques including textual representation may be used to specify the business level requirements. In order to facilitate traceability of these requirements to the design and implementation phases, enumerating requirements is recommended.
The problem must be bounded with a specific scope. One way to determine the scope is by using the management services identified in ITU-T Recommendation M.3200 and function sets identified in M.3400. Requirements are specified using the resources being managed and management functions. Augmenting ITU-T Recommendation M.3400 may be required in order to meet the business requirements of the problem.
UML use cases and scenarios should be used to interact with subject matter experts in capturing the business level requirements. The requirements should also identify the failure conditions visible to the business process.
The requirements produced must be complete and detailed. The recursive nature of the methodology is used to achieve this completeness. The completeness of the requirements (clear and well-documented) drives the analysis and design phases.
Guidelines and template for requirement structure and identification are described in Annex A.1.2

	
	

	
	

Use cases are goals that are fulfilled through a sequence of steps. Each step can be considered as a sub goal of the use case. As such each step represents either another use case (subordinate use case) or an autonomous action that is at the lowest level of the case decomposition.
Guidelines and template for use cases are described in Annex A.1.2.1.3.
An example requirements definition is available in Appendix I

	
	
	

	
	

·
·
·
	

	
	
	

	
	
	

	
	

	

	
	
	

	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

·
·
·
·
·
·

7.3.2
Analysis

In the analysis phase, the requirements are used to identify the interacting entities, their properties and the relationships among them. This allows the interfaces offered by the entities to be defined. In the UML notation, these entities become classes. The class descriptions along with the interfaces exposed should be traceable to the requirements. The relationship among the classes, defined in the analysis specification, and the classes in the design specification is not necessarily one to one.
This ITU-T Recommendation gives high-level guidance on the use of UML notation to support management interface specification; however SDL ‎0 might be used to augment the UML definitions.
The analysis phase should be independent of design constraints. For example the analysis may be documented using OO principles even though the design may use a non-object oriented technology. The information specified in the analysis phase includes class descriptions, data definitions, class relationships, interaction diagrams (sequence diagrams and/or collaboration diagrams), state transition diagrams and activity diagrams. The class definitions include specification of operations, notifications, attributes and behaviour captured as notes or textual description.

Protocol-neutral Common Management Services (XX series) – or other existing serives – should be re-used during the analysis phase in order to support management interface harmonization.

7.3.3
Design

In the design phase an implementable interoperable interface specification is produced. This will involve the selection of a target specification language. The design phase specifications are dependent on the specific management paradigm (e.g. IDL for CORBA interfaces).
The selection of a specific management paradigm is addressed in other ITU-T Recommendations. An overview is provided in the following subsections.
In the design phase, it is recommended that the UML descriptions from the requirements and analysis phases be referenced to augment behavioural specification. For example, behaviour definition of GDMO can reference state charts, sequence diagrams and class definition in the analysis phase. If required, additional UML diagrams describing interactions between entities, corresponding to specific protocol paradigms, may be included.
As additional paradigms are adopted for use by management, the notations/languages defined by these paradigms will be used.
7.3.3.1 CORBA

In the context of CORBA based management, the information model is defined using IDL.
7.3.3.2 GDMO

In the context of the paradigm based on OSI Systems Management, the design specification is the information model specification using GDMO templates for managed object classes, attributes, behaviour, notifications, actions, naming instances of the class, and error/exception specifications. The syntax of the information is specified using ASN.1 notation.
In GDMO, the object class hierarchy specifies the properties of the object classes that are needed for management. Extensive use of inheritance (super and subclasses) is needed to benefit the most from the reuse of specifications. The object classes are specified using the templates from ITU-T Recommendation X.722, structure of management information – Guidelines for the definition of managed objects. The templates defining the information model should be registered (according to the rules of ITU-T Recommendation X.722) with a value for the ASN.1 object identifier. Annex C describes the procedure for assigning the registration values. For those object classes that are already specified in other ITU-T Recommendations and ISO standards, only a reference to the particular Recommendation and object class is needed. Naming is not a part, nor the purpose, of the object class hierarchy.
7.3.3.3 XML

For further study.

8
Management interface specifications

A management interface specification includes the Requirements, Analysis and Design specifications discussed in chapter 7. A structure for specifying these specifications is provided in Annex A-C.
These techniques and supporting notations are also applicable when designing a system to the management interface specifications, even though system design is not considered as part of SG4 Recommendations. They assist in describing how the interface specifications are applied in managing the resources within a system such as an NE.
9
Traceability in MISM Process

In order to achieve traceability between requirements, analysis and design, it is necessary that appropriate identification are assigned. Traceability is supported through references between entities specified within each phase and between phases. Requirements should be identified as described in section 7.3.1. The analysis phase output specifies for the various use cases further detailed information requirements. The design phase should point to the various diagrams and text in the analysis phase output. The pointer may be in terms of a reference to the appropriate sections.
An iterative process may be required to trace up to the subject matter level requirements in the first phase from the design phase. This is required because the output of the phases is defined to different level of details.
Guidelines for tracability between the requirements phase and the analysis phase are described in Annex B.

The following mechanism for traceability with requirements (etc) specified in other documents (possibly not following the advocated identification schema) is recommended:

forum/body “::” document ID “::” id
where “id” could be one of
1. requirement ID
2. use case ID
3. requirement title/text
4. use case title
5. subsection of the document which uniquely identifies a requirement or use case
Examples:

3GPP::32.111-1::getAlarmList

ITU-T::M.3016::1.5.1.2

10
Documentation structure

Even though there are three phases, the documentation of the interface may combine their outputs into one or more documents. It is recommended that the requirements and analysis be combined and separate design documents are developed for each specific network management protocol paradigm.
Annex A
ED NOTE: Add table of contents for clarity.
Requirements

The following are guidelines for specification of requirements. An example of the use of this template can be found in Appendix I.
A.1
Requirements Template

A.1.1
Concepts and background
Define major goals and objectives and the applicable management interfaces (and Reference Points) for this specification. Use ITU-T Recommendation M.3200 ‎[3] categorization as a source for identifying the management service(s) supported by this interface.
This subclause should give a clear description of the users’ benefit, i.e. the reason for performing this management service. Background and context should be added as necessary, but the explanatory and descriptive part should be separated. Supporting background information, where required, should be placed in an appendix.
A.1.2
Requirements

A.1.2.1
Business level requirements

List major requirements in text, and identify use cases with actor/role and resources. The use case should bring out high-level requirements and is distinguished from the specification requirements by not refining to lower levels. Policy related information (e.g. security, persistence) are candidates for inclusion at this level. Numbering the requirements is required for traceability.
Requirements specifications should use the following conventions and template
It is useful to classify requirements in different categories. The following categories are considered relevant for MISM:
· Conceptual (CON) – Identifies a concept, data type, relationship, format, or structure
· Functional (FUN) – Identifies a functional capability, dynamic situation, a sequence, timing parameters, or an interaction.
· Non-functional (NON) – Non-functional requirements, including abnormal conditions, error conditions and bounds of performance

· Administrative (ADM) – System administration and operational requirements not related to the use cases normal operations.
Within a requirements specification, it is suggested that requirements are written in the above sequence (either for the entire specification or for each chapter/section).
Use of requirements categories is optional, and – when used – a subset of the categories can be applied

Requirements should be written based on the following template
REQ-Label-Category-Number {Category, number} Details {Source Citation}

Where “Label” is an abbreviation for the Recommendation (or part thereof). The set of labels is not finite and not subject for standardization.
As an example, conceptual requirement number 23 in Recommendation tagged ‘SM’ would be specified as follows:
	Identifier
	Definition

	REQ-SM-CON-23
	A Service Order consists of a name, address, phone number, service description and an optional FAX number for contacts {T1M1.5 Document 246 11/96}

A.1.2.1.1
Actor roles

A textual description of the actor (see section 3) is included here.
A.1.2.1.2
Telecommunications resources

Textual description of the relevant resources (see section 3) required to support the use cases are presented here.
A.1.2.1.3
High-level use case

A high-level use case diagram is presented. In order to understand the use case by subject matter experts, they should be augmented with a textual description for each use case. The description should serve two purposes: to capture the domain experts’ knowledge and to validate the models in analysis and design phases with respect to the requirements. An example of a high-level use case is given in Appendix I.
Note: This section is repeated for each high-level use case defined for the interface specification requirements.
The high-level use cases may identify the various function sets defined in ITU-T Recommendation M.3400 ‎[4] or the management processes defined in ITU-T Recommendation M.3050 [13]. These use cases may be further refined as described in the specification requirement subclause below by using stereotypes such as “include” and “extend”.
If appropriate, sequence diagrams may be used. However, at the high-level requirements these diagrams are not expected to be used. When the use cases at this level are further decomposed in the next level of requirements, these diagrams may be more suitable.
The traceability of the next level of requirements from this level may be identified by how each function set is further refined with new use cases.
When use cases are provided, the following conventions and templates should be followed.
Table 1 provides a template with some notes to aid the documentation of use cases in more detail.
Table 1 – Use case template
	Use Case Stage
	Evolution / Specification
	<<Uses>>

Related use

	Goal (*)
	This is the objective/end result the use case strives to achieve and should be a concise statement of what the use case should achieve in a successful scenario.

There may be a statement about priority relative to other use cases and required performance of the use case e.g.

· Real Time.

· Near real time.

· Not real time.
	

	Actor and Roles (*)
	The names of actors/roles involved in the use case including role characteristic for each actor.
	

	Assumptions
	A description of the environment providing a context for the use case.
Assumptions are mutually exclusive to pre conditions.
Assumptions are concerned with static properties.
	

	Pre conditions
	A list of all system and environment conditions that must be true before the use case can be triggered.

Pre conditions are mutually exclusive to assumptions.
Preconditions are related to dynamic properties and can result in an exception. This is never the case with assumptions.
	

	Begins when
	The name of the single event that triggers the start of the use case.
Optional and normally not used to specify triggers such as “when the manager must retrieve information”
	

	Step 1 (*)
	A use case describes a list of steps (manual and automated) that are necessary to accomplish the goal of the use case.

Steps may invoke other use cases.

Steps are numbered for traceability.

	Reference to a used use case.

	Step n
	Steps added as necessary and in a logical sequence.
	

	Ends when (*)
	The list of event(s) that indicates the use case completion.
	

	Exceptions
	A summary list of exception conditions and faults detected by the use case during its operation
	

	Post Conditions
	A list of all system and environmental conditions that must be true when the use case has completed.
Post-conditions may also indicate optional behaviour following the use case. As an example, following a create operation, an agent may issue a notification.
	

	Traceability (*)
	Requirements exposed by the use case
	

Note: Fields marked with “*” are mandatory for all use case specifications. Other fields are only mandatory when relevant for the specific use case.
A set of use case tables, using the template defined in Table 1, may be used to represent the significant capabilities studied at a level of abstraction appropriate to the problem being analysed.
The level of detail, and extent of coverage provided in the use cases is dependant upon the authoring team’s familiarity with the subject matter and is therefore subjective.
The lower levels of details are most likely an indication of analysis rather than requirements capture. Use cases are also useful in the analysis phase (see Annex B.2).
It is permitted to develop successively more detailed analysis of each step of a higher abstraction level use case by referring to the more detailed use case in the table cell reserved for this purpose.
It is emphasized this does not have to be done, and is subjective depending upon the need of the author/group.
The following list is provided to aid the initial identification of suitable use cases:
· What is the main purpose of the system?.
· What types of people /system need to interact with the system?
· How can these people/systems be grouped or abstracted to roles?
· What are the start up, normal running, failure and recovery aspects of the system?
· What types of reports or data may be needed from the system?
· Which special activities are required (e.g. based on times of day and network loads)?
It is useful to document use cases in a common manner. The following structure is suggested:
UC-#
Use case title

<use case table>

<optional sequence diagram(s)>

<optional state chart(s)>
A.1.2.2
Specification level requirements

The high-level use cases are further refined using management functions from ITU-T Recommendation M.3400. Since M.3400 is not exhaustive enough to address all management services for all managed areas, it is expected that new functions will be required. The new functions should be included in the requirements as described below.
Specification level requirements should follow the conventions and templates defined in A.1.2.1.
A.1.2.2.1
Actor roles

A list of all actors and textual description of actors not already defined in high-level requirements is included here.
A.1.2.2.2
Telecommunications resources

A list of all passive resources and textual description of resources not already defined in high-level requirements are presented here.

A.1.2.2.3
Use cases

An example of the refinement of the high-level use case diagrams above is presented in Appendix I. The refinement is achieved by using “extend” and “include” stereotypes.
If appropriate sequence and state chart diagrams may be used.
ED NOTE: Guidelines and criteria for use of sequence diagrams and state chart diagrams should be added.
Use case specifications should follow the conventions and templates defined in Section A.1.2.1.3.
Note: This section is repeated for each specification level use case defined for the interface specification.
Annex B
ED NOTE: Add table of contents for clarity.
Analysis

The following are guidelines for specification of the results of the analysis phase.
The analysis template is based on the 3GPP Information Service [8] and augmented to meet additional requirements on the methodology (e.g. traceability).
An example of the use of this template can be found in Appendix II
B.1
Scope

This section should define the scope of the management interface specification.
B.2
Use cases

Use cases may be used for both requirements capture and analysis. During analysis, use cases can be used to describe detailed requirements that are input to further analysis and design. Use case specifications should follow the conventions and templates defined in Annex A.1.2.2.3.
ED NOTE: include the use case template
ED NOTE: references either to requirements or use cases in the requirements section, OR (AND?)
ED NOTE: references to definitions within the analysis section (e.g. operations and notifications) when use cases are used as illustrations
B.3
Interface Definition

B.3.1
Class diagram representing interfaces

Each interface is defined in the diagram. This shall be a UML compliant class diagram (see also Annex D).
Interfaces are defined using the stereotype <<Interface>>. Each interface contains a set of either operations or notifications. The interface is either mandatory or optional. The support of an interface by an information object classis represented by a relationship between the two entities. Stereotypes (see Annex D) are used to specify optional or mandatory interfaces. On the class diagram, each operation and notification in an interface shall be qualified as “public” by the addition of a symbol “+” before each operation and notification.

.
	
	

	
	
(b)

	
	

B.3.b
InterfaceName Interface (supportQualifier)
InterfaceName is the name of the interface.
“b” represents a number, starting at 3 and increasing by 1 with each new definition of an interface.
Each interface is defined by its name and by a sequence of operations or notifications as defined here below.
	Operation name
	Qualifier
	Requirement IDs

	
	
	

OperationName is the name of the operation followed by a qualifier indicating whether the operation is Mandatory, Optional or Conditional (M, O, C). Conditions must be defined in the text below this table.
Each operation is defined using the following structure.
Note: Grouping of operations/partitioning of interface contents and naming of interfaces is for further study
B.3.b.a
Operation OperationName (supportQualifier)

“a” represents a number, starting at 1 and increasing by 1 with each new definition of an operation.
B.3.b.a.1
Definition

The <definition> subclause is written in natural language.
B.3.b.a.1.1
Sequence diagrams

All relevant operation sequences will be described in diagrams here. These shall be UML compliant sequence diagrams.
This section is not necessary for operations with trivial sequence diagrams.
B.3.b.a.2
Input parameters

List of input parameters of the operation. Each element is a tuple (ParameterName, supportQualifier, InformationType, Comment). Legal values for input parameters should be documented as pre-conditions.
This information is provided in a table.
	Parameter Name
	Qualifier
	Information type
	Comment

	
	
	
	

B.3.b.a.3
Output parameters

List of output parameters of the operation. Each element is a tuple (ParameterName, supportQualifier, MatchingInformation
, Comment). Legal values for output parameters should be documented as post-conditions.
This information is provided in a table.
	Parameter Name
	Qualifier
	Matching Information
	Comment

	
	
	
	

This table should also include a special parameter return if the operation is intended to return information indirectly.
ED NOTE: Clarification is required on “return information indirectly”. Should it actually be “return information directly”? (3GPP input required)
B.3.b.a.4
Pre-condition

The contents of this sub-clause can be replaced with the following table if the pre-conditions are defined in a use case(s) in the requirements specification:
	Use Case
	Reference ID

	
	

A pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-condition must be held to be true before the operation is invoked. Combinations of logical operations can be grouped using standard paranthese, e.g. (X OR Y) AND Z.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the pre-condition are provided in a table.
	Assertion Name
	Definition

	
	

B.3.b.a.5
Post-condition

The contents of this sub-clause can be replaced with the following table if the post-conditions are defined in a use case(s) in the requirements specification:
	Use Case
	Reference ID

	
	

A post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The post-condition must be held to be true after the completion of the operation. When nothing is said in a post-condition regarding an information entity, the assumption is that this information entity has not changed compared to what is stated in the pre-condition. Combinations of logical operations can be grouped using standard paranthese, e.g. (X OR Y) AND Z.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the post-condition are provided in a table.
	Assertion Name
	Definition

	
	

B.3.b.a.6
Exceptions

List of exceptions that can be raised by the operation. Each element is a tuple (exceptionName, condition, ReturnedInformation, exitState).
B.3.b.a.6.c
exceptionName

ExceptionName is the name of an exception.
“c” represents a number, starting at 1 and increasing by 1 with each new definition of an exception.
This information is provided in a table.
	Exception Name
	Definition

	
	Condition
	

	
	Return info
	

	
	Exit state
	

Each notification is defined using the following structure.
B.3.b.c
Notification NotificationName (supportQualifier)

NotificationName is the name of the notification followed by a qualifier indicating whether the notification is Mandatory, Optional or Conditional (M, O, C). Conditions must be defined in the text below this table.
“c” represents a number, starting at a+1 and increasing by 1 with each new definition of a notification.
	Notification name
	Qualifier
	Requirement IDs

	
	
	

To be moved.
B.3.b.c.1
Definition

The <definition> subclause is written in natural language.

B.3.b.c.2
Input parameters

List of input parameters of the notification. Each element is a tuple (inputParameterName, supportQualifier and filteringQualifier, matchingInformation, inputParameterComment).
The column “Qualifiers” contains the two qualifiers, supportQualifier and filteringQualifier, separated by a comma. The supportQualifier indicates whether the attribute is Mandatory, Optional or Conditional (“M”,”O”, or “C”, respectively). The filteringQualifier indicates whether the parameter of the notification can be filtered or not. Values are Yes (Y) or No (N). The matchingInformation refers to information in the state “toState”.
This information is provided in a table.
	Parameter Name
	Qualifiers
	Matching Information
	Comment

	
	
	
	

B.3.b.c.3
Pre-condition

To be aligned with 32.151.

A pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-condition must be held to be true before the notification is emitted. Combinations of logical operations can be grouped using standard paranthese, e.g. (X OR Y) AND Z.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state “from state” are provided in a table.
	Assertion Name
	Definition

	
	

B.3.b.c.4
Post-condition

To be aligned with 32.151

A post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The post-condition must be held to be true after the completion of the notification. When nothing is said in a post-condition regarding an information entity, the assumption is that this information entity has not changed compared to what is stated in the pre-condition. Combinations of logical operations can be grouped using standard paranthese, e.g. (X OR Y) AND Z.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state “to state” are provided in a table.
	Assertion Name
	Definition

	
	
“”

The trigger condition clause is missing.
B.4
Information object classes

B.4.1
Imported information entities and local labels

This clause identifies a list of information entities (e.g. information object class, information relationship, information attribute) that have been defined in other specifications and that are imported in the present document. This includes information entities from other specifications imported for inheritance purpose. Each element of this list is a pair (label reference, local label). The label reference contains the name of the specification where it is defined, the type of the information entity and its name. The local label of imported information entities can then be used throughout the specification instead of the label reference.
This information is provided in a table.
	Label reference
	Local label

	
	

The following text is proposed to be added by ITU-T: Imported elements should be from protocol neutral definitions based on this methodology but may import elements from other specifications if necessary in the interest of migration of protocol specific specifications over time.
B.4.2
Class diagram

B.4.2.1
Classes and relationships

This first diagram represents all information object classes defined in this specification with all their relationships, including relationships with imported IOCs (if any). This diagram shall contain relationship names, role name and role information object class cardinality. This shall be a UML compliant class diagram (see also Annex D).
Characteristics (relationships) of imported information object classes need not to be repeated in the diagram. Information object classes should be defined using the stereotype <<InformationObjectClass>>.
B.4.2.2
Inheritance

This second diagram represents the inheritance hierarchy of all information object classes defined in this specification. This diagram does not need to contain the complete inheritance hierarchy but shall at least contain the superclass information object classes of all information object classes defined in the present document. By default, an information object class inherits from the information object class ”top”. This shall be a UML compliant class diagram.
Characteristics (attributes, relationships) of imported information object classes need not to be repeated in the diagram. Information object classes should be defined using the stereotype <<InformationObjectClass>>.
NOTE:
some inheritance relationships presented in clause B.4.2.2 can be repeated in clause B.4.2.1 to enhance readability.

B.4.3
Information object class definitions

	Class name
	Qualifier
	Requirement IDs

	
	
	

Each information object class is defined using the following structure.
B.4.3.a
IOC InformationObjectClassName

InformationObjectClassName is the name of the information object class.
“a” represents a number, starting at 1 and increasing by 1 with each new definition of an information object class.
B.4.3.a.1
Definition

The <definition> subclause is written in natural language. The <definition> subclause refers to the information object class itself. This clause does not specify the detailed characteristics of relationships that the object class may be involved in. The relationship definition contains this information. Information related to inheritance is defined in this clause.

B.4.3.a.2
Attributes

The <attributes> subclause presents the list of attributes, which are the manageable properties of the object class. Each element is a tuple (attributeName, visibilityQualifier, supportQualifier, readQualifier, writeQualifier)

Private or Agent Internal attributes are per definition not readable by the Manager. Their readQualifier is hence always “—“.
Private or Agent Internal attributes are per definition not writable by the Manager. Their writeQualifier is hence always “—“.
The readQualifier and writeQualifier of a supported attribute, that is public, may not be both “—“.
The use of “—“ in supportQualifier is reserved for documenting support of attributes defined by an «Archetype» IOC. Attributes with a supportQualifier of “—“ are not implemented by the IOC that is realizing a subset of the attributes defined by the «Archetype». The readQualifier and writeQualifier are of no relevance in this case. However, a not supported attribute is neither readable nor writable. For this reason the readQualifier and writeQualifier shall be “—“ for unsupported attributes.
For any IOC that uses one or more attributes from an «Archetype», a separate table shall be used to indicate the supported attributes. This table is absent if no «Archetype» attributes are supported. For example, if a particular IOC has defined attributes (i.e. attributes not defined by an «Archetype») and encapsulates attributes from two «Archetype»s, then the totality of the attributes of said IOC will be contained in three separate tables. In this case the tables should be titled “Attributes” for non-archetype attributes and “Attributes from <<stereotypename>” for each stereotype.
This information is provided, whether from an <<Archetype>> or not, in a table as follows:
	Attribute name
	Visibility
	Support Qualifier
	Access Qualifier
	Requirement IDs

	
	
	
	
	

“”
	
	
	
	
	

	
	
	
	
	

The part below is not relevant any more, seeing the latest version of 32.151.

This section should also include a more detailed description of attributes not defined in the Recommendation, using the following text and table. Attributes defined within the Recommendation are documented in section B.4.5 of this template.
A detailed description of attributes not defined in this Recommendation follows.

	Attribute name
	Type
	Description

	
	
	

B.4.3.a.3
Attribute constraints

The <attribute constraints> subclause presents constraints between attributes that are always held to be true. Those properties are always held to be true during the lifetime of the attributes and in particular don’t need to be repeated in pre or post conditions of operations or notifications The attribute constraints should define legal values for each attribute.
NOTE:
This subclause does not need to be present when there are no attribute constraints to define, for instance when available attributes are unconstrained beyond their type.
B.4.3.a.4
Relationships

The <relationship> subclause presents the list of relationships in which this class is involved. Each element is a relationshipName. The relationships will be listed in a table as follows:
	Relationship
	Requirement IDs

	
	

And each relationship name should be a reference (and preferably also a hyperlink) to the appropriate section of B.4.4.
B.4.3.a.5
State diagram
The <state diagram> subclause contains state diagrams. A state diagram of an information object class defines permitted states of this information object class and the transitions between those states. A state is expressed in terms of individual attribute values or a combination of attribute values or involvement in relationships of the information object class being defined. This shall be a UML compliant state diagram.
NOTE:
This subclause does not need to be present when there is no state diagram to define.

B.4.3.a.6
Notifications

The <notifications> subclause presents the list of notifications that can be emitted across the management interface, with “object class” and “object instance” parameters of the notification header of these notifications identifying an instance of the IOC defined by the encapsulating subclause (i.e. clause B.4.3.a). The presence of notifications in the present subclause (i.e. clause B.4.3.a.6) does not imply nor identify those notifications as being originated from an instance of the IOC defined by the encapsulating subclause (i.e. clause B.4.3.a).
All types of notifications should be listed here and this list should not be restricted to state and alarm events. It is integral for the full notification feature set of an information element to be defined with its protocol neutral definition. Although the solution sets may implement these notifications in different interface components it benefits understanding to have the complete behaviour of the entity defined here.
This information is provided in a table.
	Name
	Qualifier
	Requirement IDs
	Notes

	
	
	
	

NOTE:
This subclause does not need to be present when there are no notifications related to this IOC.

	
	
	
	

	
	
	
	

B.4.4
Information relationship definitions

This section first lists all the relationships supported by this Recommendation| Specification in the following table. Support qualifier is defined as for attributes in B.4.3.a.2.
	Relationship
	Support Qualifier
	Requirement Ids

	
	
	

Each information relationship is then defined using the following structure.
B.4.4.a
InformationRelationshipName (supportQualifier)

InformationRelationshipName is the name of the information relationship followed by a qualifier indicating whether the relationship is Mandatory, Optional or Conditional (M, O, C).
“a” represents a number, starting at 1 and increasing by 1 with each new definition of an information relationship.
B.4.4.a.1
Definition

The <definition> subclause is written in natural language.
B.4.4.a.2
Roles

The <roles> subclause identifies the roles played in the relationship by object classes. Each element is a pair (roleName, roleDefinition). Role definitions must be specified in a protocol neutral manner. Implementation considerations of the role such as the relationship of implementation attributes to a role reference should be omitted.
This information is provided in a table.
	Name
	Definition

	
	

B.4.4.a.3
Constraints

The <constraints> subclause contains the list of properties specifying the semantic invariants that must be preserved on the relationship. Each element is a pair (propertyName, propertyDefinition). Those properties are always held to be true during the lifetime of the relationship and don’t need to be repeated in pre or post conditions of operations or notifications.
This information is provided in a table.
	Name
	Definition

	
	

B.4.5
Information attribute definitions

Each information attribute is defined using the following structure:

B.4.5.1
Definition and legal values

This subclause contains for each attribute being defined its name, its definition written in natural language and a list of legal values supported by the attribute.

In the case where the legal values can be enumerated, each element is a pair (legalValueName, legalValueDefinition), unless a legalValueDefinition applies to several values in which case the definition is provided only once. When the legal values cannot be enumerated, the list of legal values is defined by a single definition.

This information is provided in a table.

	Attribute Name
	Definition
	Legal Values

	
	
	

B.4.5.2
Constraints

The <constraints> subclause indicates whether there are any constraints affecting attributes. Each constraint is defined by a tuple (propertyName, affected attribute, propertyDefinition). PropertyDefinitions are expressed in natural language.

This information is provided in a table.
	Name
	Affected attribute(s)
	Definition

	
	
	

B.4.6
System State Model
Some configurations of information are special or complex enough to justify the usage of a state diagram to clarify them. A state diagram in this clause defines permitted states of the system and the transitions between those states. A state is expressed in terms of a combination of attribute values constraints or involvement in relationships of one or more information object classes.
Annex C

Design

This Annex provides guidelines for specification of protocol specific designs.
For further study.
Annex D

MISM UML Repertoire
The following are guidelines for specification of the results of the analysis phase as based on 3GPP Unified Modelling Language (UML) repertoire ‎[7].
D.1 Introduction

UML provides a rich set of concepts, notations and model elements to model distributive systems. Usage of all UML notations and model elements is not necessary for the purpose of analysis specifications. This Annex documents the necessary and sufficient set of UML notations and model elements, including the ones built by the UML extension mechanism <<stereotype>>, for use by development of protocol-neutral specifications. Collectively, this set of notations and model elements is called the UML modelling repertoire.
Recommendations following the methodology shall employ the UML notation and model elements of this repertoire and may also employ other UML notation and model elements considered necessary.

D.2
Basic model elements

UML defined a number of basic model elements. This subclause lists the selected subset for use in the repertoire. The semantics of the selected ones are defined in ‎[9].
D.2.1
Attribute (subclause 3.25 of ‎[9]).

This sample shows two attributes, listed as strings in the attribute compartment of the class AClass.
[image: image1.emf]AClass

attributeA

attributeB

<<InformationObjectClass>>

D.2.2
Aggregation (subclause 3.43.2.5 of ‎[9]).

This sample shows a hollow diamond attached to the end of a path to indicate aggregation. The diamond is attached to the class that is the aggregate.
[image: image2.emf]MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

D.2.3 Operation (subclause 3.26 of ‎[9]).

This sample shows two operations, shown as strings in the operation compartment of class AClass, that the instance of AClass may be requested to perform. The operation has a name, e.g. operationA and a list of arguments (not shown).
[image: image3.emf]AClass

operationA()

operationB()

<<InformationObjectClass>>

D.2.4
Association (subclause 3.41 of ‎[9]).

This sample shows a binary association between exactly two model elements. An association can relate a model element to itself. This sample shows a bi-directional association in that one model element is aware of the other. Association can be unidirectional (shown with an open arrow at one association end) in that only the source model element is aware of the target model element and not vice-versa.
[image: image4.emf]BClass

<<InformationObjectClass>>

AClass

<<InformationObjectClass>>

ED NOTE: Agreement to combine D.2.4 and D.2.9 with the following structure:

· association name

(#4)

· association cardinality
(#3)

· association navigability

· bidir

(#1)

· unidir

(#2)
· unspec

(never part of the final analysis)
The rationale is to more clearly describe use of naming, cardinality and navigability.

The (#n) above identifies proposed examples.

D.2.5
Realization relationship (subclause 2.5.2.1 of ‎[9]).

This sample shows the realization relationship between a AlarmIRPNotification_1 (the supplier) and a model element, IRPManager, that implements it.
[image: image5.emf]IRPManager

<<InformationObjectClass>>

AlarmIRPNotification_1

<<Interface>>

D.2.6
Generalization relationship (subclause 3.50 of ‎[9]).

This sample shows a generalization relationship between a more general element (the IRPAgent) and a more specific element (the IRPAgent_vendor_A) that is fully consistent with the first element and that adds additional information.
[image: image6.emf]IRPAgent

<<InformationObjectClass>>

IRPAgent_vendor_A

<<InformationObjectClass>>

D.2.7
Dependency relationship (subclause 3.51 of ‎[9]).

This sample shows that BClass instances have a semantic relationship with AClass instances. It indicates a situation in which a change to the target element will require a change to the source element in the dependency.
[image: image7.emf]AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>

D.2.8
Note (subclause 3.11 of ‎[9]).

This sample shows a note, as a rectangle with a “bent corner” in the upper right corner. The note contains arbitrary text. It appears on a particular diagram and may be attached to zero or more modelling elements by dashed lines.
[image: image8.emf]SubNetwork

<<InformationObjectClass>>

This is a sample of

a note.

D.2.9
Multiplicity, a.k.a. cardinality (subclause 3.44 of ‎[9]). Now included in D.2.4.
This sample shows a multiplicity attached to the end of an association path. The meaning of this multiplicity is that one Network instance is associated with zero, one or more SubNetwork instances.
[image: image9.emf]Network

<<InformationObjectClass>>

SubNetwork

<<InformationObjectClass>>

0..* 0..*

ED NOTE: Agreement to combine D.2.4 and D.2.9 (further details in D.2.4)

D.3
Entity stereotypes
This subclause defines all allowable entity stereotypes that are summarized in the following table. Except <<Interface>>, <<Type>> (which are defined in ‎[9]), all other stereotypes are extensions specifically designed for use in Recommendations based on the methodology.
Table: Entity Stereotypes

	Stereotype
	Base Class
	Affected Metamodel Elements

	Interface
	Class
	

	Type
	Class
	

	ProxyClass
	Class
	

	Notification
	Class
	

	Archtetype
	Classifier (subclause 2.5.2.10 of ‎[9])
	

	InformationObjectClass
	Classifier
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	opt (alternatively «optional»)
	ModelElement
	Attribute, Parameter, and Operation

	%
	3GPPVisibilityKind
	--

ED NOTE: Additional guidelines are needed on the “difficult concepts” and a new section is to be added with examples of multiple stereotypes used together.

ED NOTE: Agreement to remove the IRP specific examples and capture examples in the Appendices. The main objective is to reduce the amount of management specific examples in the normative part of the methodology. An Appendix can capture 3GPP specific examples of analysis/information service.

D.3.1
<<Interface>>
Subclause 2.5.2.25 of ‎[9]:
“An interface is a named set of operations that characterize the behaviour of an element. In the metamodel, an Interface contains a set of Operations that together define a service offered by a Classifier realizing the Interface. A Classifier may offer several services, which means that it may realize several Interfaces, and several Classifiers may realize the same Interface.
…

Interfaces [may or] may not have Attributes, Associations, or Methods. An Interface may participate in an Association provided the Interface cannot see the Association; that is, a Classifier (other than an Interface) may have an Association to an Interface that is navigable from the Classifier but not from the Interface.”
From subclause 2.5.4.6 of ‎[9]: “The purpose of an interface is to collect a set of operations that constitute a coherent service offered by classifiers. Interfaces provided a way to partition and characterize groups of operations. An interface is only a collection of operations with a name. It cannot be directly instantiated.".
From subclause 2.5.4.6 of ‎[9]: "Several classifiers may realize the same interface. All of them must contain at least the operations matching those contained in the interface. The specification of an operation contains the signature of the operation (i.e. its name, the types of the parameters and the return type). An interface does not imply any internal structure of the realizing classifier. For example, it does not include which algorithm to use for realizing an operation. An operation may, however, include a specification of the effects [e.g. with pre and post-conditions] of its invocation.”

D.3.1.1
Sample

This sample shows an AlarmIRPOperations_1 <<Interface>> that has two operations. The operation visibility is public (see definition of public visibility applicable to operation in subclause “visibility”). The input and output parameters of the operations are hidden (i.e. not shown). The AlarmIRP has a unidirectional mandatory realization relationship with the <<Interface>>.
[image: image11.emf]AlarmIRP

<<InformationObjectClass>>

AlarmIRPOperations_1

getAlarmList()

acknowledgeAlarms()

<<Interface>>

<<Interface>> Notation

D.3.2
<<Type>>

Subclause 3.28 of ‎[9]: “[A Type is] a domain of objects together with the operations applicable to the objects, without defining the physical implementation of those objects. A Type may not contain any methods, maintain its own thread of control, or be nested. However, it may have Attributes and Associations. The Associations of a Type are defined solely for the purpose of specifying the behaviour of the Type’s operations and do not represent the implementation of state data”.
D.3.2.1
Sample

This sample shows the NotificationIRPNotification <<Type>> that specifies the five parameters (the notification header of Notification IRP). The AlarmIRPNotification_2 <<Interface>> depends (see the dependency relationship, a dashed open arrow line) on this <<Type>> for the construction of the notification emitted via the operation notifyChangedAlarm(). The visibility of attributes and operation in the example is public.
[image: image12.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

NotificationIRPNotification

+ objectClass

+ objectInstance

+ notificationId

+ eventTime

+ systemDN

+ notificationType

<<Type>>

<<Type>> Notation

D.3.3
<<ProxyClass>>

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods (or operations), and interactions that are present in the represented <<InformationObjectClass>>.
The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> are present in the represented <<InformationObjectClass>>. Since this class is simply a representation of other classes, this class cannot define its own behaviour other than those already defined by the represented <<InformationObjectClass>>.
A particular <<InformationObjectClass>> can be represented by zero, one or more <<ProxyClass>> or <<Archetype>>. For example, the ManagedElement <<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity <<ProxyClass>>.
The attributes of the <<ProxyClass>> are accessible by the source entity that has an association with the <<ProxyClass>>.
D.3.3.1
Sample

This shows a <<ProxyClass>> named MonitoredEntity. It represents all NRM <<InformationObjectClass>> (e.g. GgsnFunction <<InformationObjectClass>>) whose instances are being monitored for alarm conditions.
Note that <<MonitoredEntity>> does not define attributeA. The attributeA is already defined by all <<InformationObjectClass>> represented by the <<MonitoredEntity>>, i.e. ClassA and ClassB.

[image: image13.wmf]

MonitoredEntity

+ attributeA

<<ProxyClass>>

ClassB

+ attributeA

+ attributeB

+ attributeC

<<InformationObjectClass>>

ClassA

<<InformationObjectClass>>

+ attributeA

+ attributeB

+ attributeX

+ attributeY

<<ProxyClass>>

D.3.4
<<Archetype>>

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, operations, and interactions that are typical of the represented <<InformationObjectClass>>.
The semantics of an <<Archetype>> is that all attributes, links operations and interactions encapsulated by the <<Archetype>> may or may not be present in the represented <<InformationObjectClass>>. The <<Archetype>> represents a placeholder class that is most useful in technology neutral analysis models that will require further specification and/or mapping within a more complete construction model.
D.3.4.1
Sample

This shows a <<Archetype>> named StateManagement. It also shows a <<InformationObjectClass>> IRPAgent that depends on this StateManagement. Note that the StateManagement has defined a number of attributes, the classes that depend on this StateManagement may or may not use all of the StateManagement attributes. In other words, at least one of the attributes of StateManagement is present in the IRPAgent. The precise set of StateManagement attributes used by the IRPAgent is specified in the IRPAgent specification.
[image: image14.emf]IRPAgent

<<InformationObjectClass>>

StateManagement

+ administrativeState

+ otherStates

<<Archetype>>

<<Archetype>>> Notation

D.3.5
<<InformationObjectClass>>

This represents an IOC, which is defined in TS 32.150 [??]. Each <<InformationObjectClass>> represents a set of instances with similar structure, behaviour and relationships.
This <<InformationObjectClass>> and other information classes such as <<Interface>> are mapped into technology specific model elements such as GDMO Managed Object Class for CMIP technology. The mapping of the protocol-neutral modelling constructs to technology specific modelling constructs are captured in the corresponding protocol-specific specifications.
The name of a <<InformationObjectClass>> has scope within the Recommendation in which it is specified and the name must be unique among all <<InformationObjectClass>> names within that Recommendation. The Recommendation name is considered in the similar way as the UML Package-name.
The <<InformationObjectClass>> is identical to UML class except that it does not include/define methods or operations.
Subclause 3.22.1 of ‎[9]: “A class represents a concept within the system being modelled. Classes have data structure and behaviour and relationships to other elements.”
D.3.5.1
Sample

This sample shows an AlarmList <<InformationObjectClass>>.
[image: image15.emf]AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

<<InformationObjectClass>>> Notation

D.3.6
<<opt>>

The <<opt>> (alternatively <<optional>>) enables the indication of optionality of attributes, parameters and operations (respectively) within the UML diagrams. The semantics of optionality are clearly defined in Annex A.

In the absence of the stereotype, the attribute, parameter, or operation in question is mandatory.

[image: image16.wmf]

BulkCMActive

+ download()

<<opt>> + validate()

<<opt>> + preactivate()

+ activate()

+ fallback()

<< Interface>>

Example of the use of optionality indicator for operations

D.3.7
<<Notification>>

<<Notification>> is a named set of notifications. In the metamodel, a <<Notification>> contains a set of Notifications that together define a service offered by a Classifier realizing the <<Notification>>.

D.3.7.1
Sample
This sample shows a <<Notification>> named “PMIRPNotifications_1” that has one notification and a <<Notification>> named “PMIRPNotifications_2” that has three notifications.

ED NOTE: Remove “agent-internal-usage” in the following diagram. (Needed in 3GPP. To be considered by ITU-T)

[image: image17.wmf]

PMIRPNotifications_2

+ notifyThresholdMonitorStatusCh

anged()

+ notifyThresholdMonitorObjectCreation()

+ notifyThresholdMonitorObjectDeletion()

<<Notification>>

NotificationIRP

(from TS 32.302)

<<InformationObjectClass>>

PMIRPNotifications_1

+ notifyMeasurementJobStatusChanged()

<<Notification>>

<<agent

-

internal

-

usage>>

<<agent

-

internal

-

usage>>

PMIRP

<<InformationObjectClass>>

<<use>>

<<may use>>

D.4
Association stereotypes

This subclause defines all allowable association stereotypes that are summarized in the following table. Except <<use>> (which are defined in ‎[9]), all other stereotypes are extensions specifically designed for use in Recommendations based on the methodology.

Table: Assocation Stereotypes

	Stereotype
	Base Class
	Affected Metamodel Elements

	Use
	Association
	

	may use
	Association
	

	may realize
	Association
	

	Emits
	Association
	

	
	
	

D.4.1
<<use>> and <<may use>>

The <<use>> and <<may use>> are unidirectional associations. The target must be an <<Interface>>. The <<use>> states that the source class must have the capability to use the target <<Interface>> in that it can invoke the operations defined by the <<Interface>>. Support of the capability by the source entity is mandatory. The <<may use>> states that the source class may have the capability to use the target <<Interface>> in that it may invoke the operations defined by the <<Interface>>. Support of the capability by the source entity is optional.
The operations defined by the <<Interface>> are visible across the interface/reference point.
D.4.1.1
Sample

This shows that the NotificationIRPAgent shall use the notifyNewAlarm and otherNotifications of AlarmIRPNotification_1 and may use the notifyChangedAlarm of AlarmIRPNotification_2.
[image: image18.emf]AlarmIRPNotification_1

+ notifyNewAlarm()

+ otherNotifications()

<<Interface>>

NotificationIRPAgent

<<InformationObjectClass>>

<<use>>

AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

<<may use>>

<<use>> and <<may use>> Notation

D.4.2
Relationship realize and <<may realize>>

The relationship realize and <<may realize>> are unidirectional associations. The target must be an <<Interface>>. The relationship <<realize>> shows that the source entity must realize the operations defined by the target <<Interface>>. Realization of operations by the source entity is mandatory. The <<may realize>> shows the source entity may realize the operations defined by the target <<Interface>>. Realization of the <<Interface>> by the source entity is optional.
The operations defined by <<Interface>> are visible across the interface/reference point.
D.4.2.1
Sample

This shows that the AlarmList shall realize (or support, implement) the two operations of AlarmIRPOperations_1 and may realize the operation of AlarmIRPOperations_2.
[image: image19.emf]AlarmIRPOperations_2

+ getAlarmCount()

<<Interface>>

<<may realize>>

AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

AlarmIRPOperations_1

+ getAlarmList()

+ acknowledgeAlarms()

<<Interface>>

Relationship realize and <<may realize>> Notations

D.4.3.
<<emits>>

This is a unidirectional association. The source sends information to the target.
D.4.3.1
Sample

This shows the MonitoredEntity emits notifications that are received by the Notification Agent. The emission is not visible across the interface.
[image: image20.emf]MonitoredEntity

<<ProxyClass>>

NotificationIRPAgent

<<InformationObjectClass>>

<<emits>>

<<emits>> Notation

[image: image21.emf]MonitoredEntity

objectclass

objectInstance

<<ProxyClass>>

AlarmIRPNotification_1

+ notifyNewAlarm()

+ otherOperations()

<<Interface>>

NotificationIRPAgent

<<InformationObjectClass>>

<<emits>>

<<use>>

IRPManager

<<InformationObjectClass>>

<<use>>, <<emits>> and realize relationship Notation

D.4.4
<<names>>

It specifies a unidirectional relationship. The target instance is uniquely identifiable, within the namespace of the source entity, among all other targeted instances of the same target classifier and among other targeted instances of other classifiers that have the same <<names>> composition with the source.

A target can not have multiple <<names>> with multiple sources, i.e. a target can not participate in or belong to multiple namespaces.
By convention, the name of the attribute in the target model element to hold part of the unique identification shall be formed by the name of the target class concatenated with “Id”. There are two presentation options for the unique identification attribute of the class being named.
1) The use of the role qualifier allow the unique identification attribute to be attached to the target end of the <<names>> association (see the following figure).

2) The unique identification attribute may also be indicated as a normal attribute within the class attribute compartment.

Note: The use of a single attribute for identification may be too restrictive. This issue is for further study.

D.4.4.1
Sample

This shows that all instances of ManagedFunction are uniquely identifiable within the ManagedElement namespace. Note the use of the label supports in specifications is optional.

[image: image22.wmf]

ManagedElement

ManagedFunction

managedFunctionId

0..*

1

supports

0..*

1

<<names>>

managedFunctionId

<<names>> Notation, Composition and explicit Qualifier

D.5
Visibility

It specifies the accessibility of the operation and attribute. There are three types of visibility, i.e. private, public and Agent Internal.
Private Visibility (notation “-“)

	Operation
	NA

	Attribute
	It indicates that the attribute is not accessible by other entities, e.g. the Manager, other entities not holding the subject attribute

Public Visibility (notation “+”)(default)

	Operation
	It indicates that the operation is visible across the management interface, e.g. the Manager can invoke the operation across the management interface interface.

	Attribute
	it indicates that the attribute is accessible across the management interface, i.e. the Manager can invoke an operation to read the attribute and to write to this attribute if the attribute is so qualified. The read or write operation must be directly invoked against the entity holding the subject attribute or against the Agent.

Agent Internal Visibility (notation “%”)

	Operation
	It indicates that the operation is not visible across the management interface, i.e. the Manager cannot invoke the operation. However, other entities can invoke the operation.

	Attribute
	It indicates that the attribute is not directly accessible across the management interface, i.e. the Manager cannot read/write this attribute. However, other entities can read/write this attribute.

D.5.1
Samples

This sample shows four attributes whose visibility are private, public (default notation), public and Agent Internal. It is recommended that within a Class symbol, the use of default notation or not for public visibility should be consistent, i.e. all “publicly visible” attributes shall be shown with the “+” sign or without the “+” sign (default notation).
[image: image25.wmf]�

ClassSample

�

- attributeA

�

attributeB

�

attributeC

�

<<%>> attributeD

�

<<InformationObjectClass>>

Visibility of attributes

This sample shows three operations. Two of these operations are accessible by the Manager via the management interface. It is recommended that within a Class symbol, the use of default notation or not for public visibility should be consistent, i.e. all “publicly visible” operation shall be shown with the “+” sign or without the “+” sign (default notation).
[image: image26.wmf]�

InterfaceSample

�

+ operationA()

�

+ operationB()

�

<<%>> operationC()

�

<<Interface>>

Visibility of operations

This sample shows one notification whose visibility is public using the non-default public visibility notation. These notifications are accessible by the Manager via the management interface.
[image: image27.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

Visibility of notification

D.6
Association classes

Subclause 3.46 ‎[9] defines an association class as
“An association class is an association that also has class properties (or a class that has association properties). Even though it is drawn as an association and a class, it is really just a single model element.”.
Association classes are appropriate for use when an «InformationObjectClass» needs to maintain associations to several other «InformationObjectClass»’s and there are relationships between the members of the associations within the scope of the “containing” «InformationObjectClass». For example, a namespace maintains a set of bindings, a binding ties a name to an object. A Binding «IOC» can be modeled as an Association Class that provides the binding semantics to the relationship between a name and some other «InformationObjectClass». This is depicted in the following figure (exemplary only, not taken from another Recommendation).
[image: image28.wmf]Namespace

<<InformationObjectClass>>

Binding

<<InformationObjectClass>>

0..*

0..*

Name

Object

<<InformationObjectClass>>

1

1

1

1

Example of an Association Class

D.7
Abstract Class
It specifies a <<InformationObjectClass>> as a base class to be inherited by subclasses. An abstract class can not be instantiated.
Abstract class notation is the use of italics in the class name of the corresponding <<InformationObjectClass>> in the diagram.
D.7.1
Sample

This shows that ManagedGenericIRP is an abstract <<InformationObjectClass>>.
[image: image29.emf]ManagedGenericIRP

(from 32.312)

<<InformationObjectClass>>

NotificationIRP

(from 32.302)

<<InformationObjectClass>>

Abstract Class Notation

Appendix I

Requirements example

For further study..
Appendix II

Analysis example

For further study..

�What is Matching Information?

�This definition is inconsistent with the UML specification and UML tools. What is actually intended by the 3GPP group with this qualifier. We recommend not using this qualifier in UML diagrams until this issue is resolved.

	Contact:
	Knut Johannessen

Telenor

Norway
	Tel: +47 90 10 18 10

Fax: +47 940 53 977

Email:

knut-hakon.johannessen@telenor.com

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

PAGE
 (53)
PAGE

 (50)

_1175682054.doc

MonitoredEntity

+ attributeA

<<ProxyClass>>

ClassA

+ attributeY

+ attributeX

+ attributeB

+ attributeA

<<InformationObjectClass>>

ClassB

+ attributeA

+ attributeB

+ attributeC

<<InformationObjectClass>>

_1175688750.doc

NotificationIRP

(from TS 32.302)

<<InformationObjectClass>>

PMIRPNotifications_1

+ notifyMeasurementJobStatusChanged()

<<Notification>>

<<agent-internal-usage>>

PMIRPNotifications_2

+ notifyThresholdMonitorStatusChanged()

+ notifyThresholdMonitorObjectCreation()

+ notifyThresholdMonitorObjectDeletion()

<<Notification>>

<<agent-internal-usage>>

PMIRP

<<InformationObjectClass>>

<<use>>

<<may use>>

_1175609086.doc

ManagedElement

ManagedFunction

managedFunctionId

0..*

1

supports

0..*

1

<<names>>

managedFunctionId

_1175511951.doc

BulkCMActive

+ download()

<<opt>> + validate()

<<opt>> + preactivate()

+ activate()

+ fallback()

<< Interface>>

