
Comparison of Web Services, Java-RMI, and CORBA service
implementations

N.A.B. Gray
School of Information Technology & Computer Science,

University of Wollongong
nabg@uow.edu.au

Abstract

This paper reports on comparisons of Web

Service, Java RMI, and CORBA solutions for
example applications. Performance problems,
identified in earlier studies of Web Services, have
been significantly reduced in the current
implementations. The newer Web Service APIs
realize a model that has significant overlaps with
distributed object technologies, allowing in some
cases for the use of a common code base in either a
readily deployed Web Service or in a higher-
performance distributed object style implementation.

1. Introduction

 Web Services [1] present another alternative
distributed computing infrastructure; an alternative
that is being strongly promoted as preferable to the
use of distributed object middleware such as Java
RMI [2] or CORBA [3].
 Web Services differ from the distributed object
technologies in that they have reverted to an earlier
“remote service” model similar to that in DCE.
There is no concept of an object reference; instead a
service is defined simply by an end-point that
supports various operations. In terms of Java-RMI or
CORBA, a Web Service is like a singleton server
object. The singleton server character of a Web
Service means that a stateless-server architecture is
preferred; though there are mechanisms permitting
the implementation of stateful-servers.
 Web Service implementations support different
client-side application programmer interfaces; client
code may work by constructing “call” objects that are
dispatched to the server, or may use a higher level
interface that hides the communications level entirely
through the use of client-side stub objects with an
operational interface that mimics that of the server.

The client-stub approach results in code that is very
similar to Java-RMI or CORBA clients.
 The analogous mechanisms for generating client
and server components for Web-Services, Java-RMI,
and CORBA are illustrated in Figure 1. When auto-
generated client-side stubs are used for Web
Services, the development processes and the code
complexity for both client- and server-side are
virtually identical for Web Service, Java-RMI, and
CORBA solutions. Typically one starts with an
interface definition for the service. A client-side stub
is auto-generated from this interface. On the server-
side, the interface is processed to yield a base class
for the implementation class that must be written by
the developer. With the mechanisms and costs of
development being very similar, other factors will
determine the choice of a technical solution. Systems
developers will have to choose between
interoperability where Web Services have
advantages, and performance that will favor Java
RMI or CORBA.
 Java RMI and CORBA use optimized connection-
oriented communications protocols that are either
language specific, or have detailed rules defining
how data-structures and interfaces should be realized.
In contrast, Web Services (application-to-application)
are based on the ubiquitous technologies that have
grown up to support WWW-services (human-via
browser-to-application). Communications use
HTTP. HTTP is universally supported, and HTTP-
traffic can normally pass through firewalls. Tiresome
practical details like common data representations are
avoided through the use of textual representations.
All numeric and other data are converted to text.
Meta-data, defining structure, are provided in situ as
XML mark-up tags. XML parsers allow client and
server implementations to construct their distinct but
equivalent representations of any data structures

Figure 1 Generation of client and server components from interface for Web Services, CORBA,
and Java-RMI.

 The use of HTTP, and XML text documents,
supports increased interoperability but also represents
a significant increase in run-time cost for Web
Service solutions as compared with Java-RMI or
CORBA solutions. The stateless hypertext transfer
protocol was devised originally for downloading
individual files and is not ideally suited to
applications where multiple requests and responses
may be need to be exchanged. The XML formatted
documents are inherently more voluminous than the
binary data traffic of the other approaches. More
data have to be exchanged across the network, and
more control packets are required. Conversion to
text format and parsing of XML documents is
inherently more costly than the alternative
mechanisms used to convert data to a common data
representation for the network. The additional
communications and processing costs are frequently
perceived as a potential barrier to the use of Web
Services technologies.
 The work reported in this paper extends that in
earlier studies on the costs associated with Web
Service SOAP communications. Elfwing et al.
compared Web Services to CORBA both as Java

implementations, finding a degradation factor of up
to 400 in performance; performance was improved
by modifications of drivers and parsers [4]. Davis
and Parashar compared several Web Service
implementations (Java, Perl, .Net) with Java-RMI
and CORBA [5]; they were qualified in their
conclusions but tended to prefer Java-RMI until
SOAP-based Web Service technology had further
improved. Both groups identified specific issues
with XML parsers and the HTTP transport protocol.
 This work uses more recent implementations of
the Java Web Service components. These offer a
higher-level client-side API, and achieve better use of
HTTP. Earlier studies have mainly looked at
examples where the defined service returned either
single data elements or data arrays of primitive types
such as integers, reals, or strings. The examples here
include those more representative of intranet
applications that involve multiple queries and queries
that yield large amounts of data. If Web Services are
to replace CORBA and Java RMI, they must handle
such queries effectively.
 The Middleware Technology Evaluation project,
hosted by the CSIRO division of Mathematical and
Information Sciences, has demonstrated the

Web Service CORBA Java-RMI

WSDL

IDL

Java
 remote

Server (base)-
class
or interface

client
stub

Implementation

client
stub

POA
skeleton

Implementation

Implementation

client
stub

rmic

idl compiler
wsdl processing

practicality and value of comparative performance
studies on commercial implementations of
middleware [6]. Limits on resources restricted this
study to the use of the Sun reference implementations
of Java-RMI, CORBA, and WebServices. The
coding of these reference implementations is
expected to be of similar quality, so that the results
should fairly represent the intrinsic merits of the
different technologies.

2. Scope of study

2.1. Technologies and measures

 The technologies used in this study were:
• JAXRPC from Sun's Java Web Services

Development kit (JWSDP) [7];
• Tomcat 5 (as incorporated in JWSDP) [8];
• Java RMI from Java 1.4 SDK [2];
• Java CORBA from Java 1.4 SDK [9];
• Ethereal network traffic analysis program [10].

Tests were performed on a network system with a
100Mb/sec Ethernet backbone. Performance tests
utilized a Sun v480 (1030MHz) server and a group of
SunBlade 150s (650MHz) running client
applications. Network traffic analysis was conducted
using the Ethereal tool to capture packets transferred
over the 100Mb/sec Ethernet between a SunBlade
100 server and a client 2GHz Dell Optiplex GX260
machine running Win2000.

The machine groups were workstations in a
teaching laboratory and a new server. The study was
conducted out of academic session when these
machines had no other users, so timing measurements
were not distorted by process switching etc. The
network carried some other light traffic, but was not
approaching saturation so network latencies should
not be distorted.

Measures include:
• memory usage in the client,
• CPU-times for both client and server,
• overall latency time for a single request and for

sequences of requests,
• total byte transfers,
• packet counts.

Memory usage was estimated using differences
in “total memory” and “free memory” as measured
using calls to java.lang.Runtime in the client
code.

Preliminary tests had involved running the server
with increasing number of concurrent clients to
determine the loads at which the server became fully
utilized and service times increased. The results

presented here are for situations where the server was
lightly loaded by small numbers of concurrent clients
and still had idle CPU time. Each client machine ran
only a single copy of a client process so that
contention was not an issue on the clients.

A small part of the study focused on the cost of a
single request from client to server. These single
request tests provide comparative costs for the
establishment of a connection. Most of the reported
results are from tests where several thousand requests
are handled in the course of a client-server session.
In these tests, set-up costs are amortized over many
requests giving a better measure of the actual request
handling costs. Typically tests involved 5000
requests; where the processing time was still short,
runs of as many as 50,000 requests were used. The
results presented are averages from ten or more test
runs. With the tightly controlled conditions,
variations in execution and run-times were small.

Some of the tests involve pseudo-randomly
generated data sets that vary in size. For these tests,
identical sequences of seeds were used for the
random number generators when running the same
test with different technologies. Naturally, time
variations of successive runs were greater, up to
10%, reflecting the varying sizes of datasets
generated and transmitted across the network.

The Ethereal tool provided the data on packet
and byte counts. It also permits detailed analysis of
the packet sequences generated by the different
technologies. The technologies do vary in the
efficiency of their use of the underlying TCP/IP
communications.

2.2. Example services

 Three example services were implemented. They
differ mainly in the type and amount of response
data; one of the efficiency issues being how well the
technologies handle significant data volumes.
 The first service, “calculator”, actually involves a
stateful server (issues of state maintenance in Web
Service applications are discussed in section 3.5
below). The service defined a simple four-function
calculator with operations that each required an
integer input argument and generated an integer
response. Clearly, such limited data should involve
minimal overheads.
 The second service, “data”, involved a string
input argument and a returned structure with integer,
string array, and double array fields. Here, the XML
encoding has to include some more significant
structural meta-data.

 The final service, “large data”, models a real-
world data retrieval application. Intranet use of Java-
RMI and CORBA frequently has a client running in
one departmental system that uses a middle-layer
server to access a database in some other
departmental system. It is this kind of application
that Web Services will have to take on if they are to
establish themselves as a preferred technology for
intranet systems. The demonstration service was a
reduced version of an application used to retrieve
data on books from a database. The demonstration
implementation has only a single function that
effectively simulated the application query “get
books that include keywords ...”. Database
performance issues were avoided by having the
service pseudo-randomly generate and populate
anything from a few dozen to several hundred
records in response to each request.
 The IDL interfaces for these services are:

“Calculator” (minimal complexity data transfers of
integers):
 interface Demo {
 long long clear();
 long long add(in long long val);
 ...
// quit - in JAXRPC version will release
// session storage; in JAVARMI version
// will do nothing (rely on garbage
// collector); in CORBA version will do
// a deactivate object
 void quit();
 };
// Factory component only relevant in
// RMI and CORBA implementations
 interface DemoFactory {
 Demo createDemo();
 };

“data” (transfer of simple record structure):
 typedef sequence<string> strings;
 typedef sequence<double> doubles;
 struct Data {
 long long _d1;
 strings _d2;
 doubles _d3;
 };
 interface Demo {
 Data f1(in string key);
 };

“large data” (transfer of potentially large data
structure):
 typedef sequence<string> strings;
 typedef double priceType;
 // Record defining a book
 struct Data2 {
 string title;
 strings authors;

 priceType price;
 priceType listPrice;
 string publisher;
 long publicationYear;
 long publicationMonth;
 strings keyWords;
 string isbn;
 long starRating;
 string url;
 };
 typedef sequence<Data2> Data2Seq;
 interface Demo {
// Simulated method corresponding to
// find books with keyword like ...
 Data2Seq search(
 in string request);
 };

 The java.rmi.Remote interfaces are closely
similar, mainly involving substitution of arrays for
IDL sequences.
 The developer of a Web Service can start by
composing the Web Service Description Language
(WSDL) description of the service. However, both
the JAXRPC and the .Net development environments
permit a developer to start by defining a service
interface in terms of a programming language class
(C#, VB etc) or interface (Java) and using a helper
tool to generate the WSDL document. This bottom-
up approach is easier for most developers. This
study used the same java.rmi.Remote interfaces as
the starting points for both Java RMI and JAXRPC
Web Service implementations. Client-side stubs are
auto-generated from the WSDL service definition.
 A WSDL document (an XML file), either
composed manually or generated from a
programming language class or interface, will define
“messages” (input messages are essentially function
signatures, output messages are responses), “port-
types” (a service interface or class) with “operations”
that are defined in terms of their input and output
messages, “binding(s)” - specifications of a transfer
protocol, typically HTTP, an encoding scheme
(choice among SOAP encoding styles), and finally
the service definition(s) with end-point URI(s). The
inclusion of the service end point's URI is really the
only major semantic difference from an IDL or
java.rmi.Remote interface declaration.

2.3. Service implementations and deployment

 A JAXRPC servant can be instantiated inside a
servlet-container such as Tomcat, or can be
implemented as a stateless EJB session bean. If the
servlet model is used, the developer defines a class
that implements the java.rmi.Remote interface

declaration; an EJB session bean defines an interface
with equivalent operations. This study used the
Tomcat-hosted servlet style. The developer must
provide effective implementations for all defined
operations, together with any life-cycle methods that
are required by the servlet- or EJB- container.
 In a servlet-based implementation, system
supplied servlets take configuration data that define
the Web Service classes that they manage. The
servlet code deals with the HTTP data traffic, and
invokes XML parsing to prepare arguments, and then
invokes the service operations. The actual JAXRPC
servant can be given access to its servlet-container by
having its class implement the optional javx.xml.
rpc.server.ServiceLifecycle interface. The
context can include resources shared with other
servlets such as in-memory data structures or
database connections. The context can also manage
session state for a stateful service.
 XML deployment files for the servlets and their
configuration data are all generated automatically.
WWW-servers like Tomcat are designed for easy
administration; services can be added or existing
services replaced in a running server. The control
data for the hosted services are persistent. A system
restart will require minimal or no action by an
administrator. The server for WWW and Web
Service applications should simply re-initialize itself.
 A CORBA developer has the choice of extending
the auto-generated “POA” class, or of using an
instance of a generated POATie class that works with
a servant that is an instance of a class implementing
the operational interface but which is otherwise
independent of the CORBA class system.
 The complexity of CORBA implementations is
often overrated. In these demonstration applications,
the server-side consisted of single server process.
This initializes its ORB, instantiates the
implementation class, activates this instantiated
servant via the default POA, and publishes an IOR in
a file. A more typical server system would involve a
CORBA name service (or trader) and a CORBA
daemon process. The server process would utilize a
POA that supports persistent references; the servant
identifier would be published in the name service.
The CORBA daemon process would deal with issues
like restarting a server process as needed. The name-
service and CORBA daemon should both use
persistent data stores and be capable of surviving
system restarts. In the Sun Java 1.4 implementation,
the “orbd” process takes on both the role of a
persistent naming service and of the CORBA daemon
that can launch server processes.

 A Java-RMI servant class normally extends the
class java.rmi.server.UnicastRemoteObject
and implements the defined remote service
definition; e.g. public class DemoImpl
extends UnicastRemoteObject implements
Demo { ... }.
 The Java-RMI deployment is the most elaborate,
and most fragile. A server system will comprise at
least the actual server process, the rmiregistry
(equivalent to a CORBA name-service), and a HTTP-
server from which a would-be client can download
the “.class” files of client-side stubs. An rmiregistry
does not maintain persistent data so all records of
registered servers are lost on system restart. Further,
the registry must be restarted if there are changes in
the implementation of any one of the services
registered with it. The developer of a Java-RMI
system has to take careful account of rules regarding
access to .class files by server process, HTTP-server,
and rmiregistry, and must also compose security
policy constraint files. The rmid daemon process can
be employed to support on-demand services; but
rmid again does not use persistent data storage
making the system fragile in regard to system
restarts. The use of rmid also necessitates the use of
extra setup programs. There are mechanisms for
integrating Java-RMI with Jini technology that
provide for more stable deployments; but these
require skill sets and knowledge that are uncommon.

2.4 Client-side stub and client coding

 The WSDL for a Web Service must be made
available to the developer of the client-side code. If a
UDDI registry were being used, the client developer
might be able to download the WSDL from the
registry. The Tomcat server configuration for a
JAXRPC implementation can act as an alternative
source of the WSDL. Both .Net and JAXRPC
development systems include helper applications that
can generate a client-side stub class, and other helper
classes, from a downloaded WSDL definition.
 A CORBA developer has to obtain a copy of the
IDL interface definition (this too could come from a
UDDI registry for these are not restricted to handling
only WSDL defined services). The developer then
generates a client stub in the required implementation
language via an IDL compiler.
 The developer of a Java-RMI client works solely
with the remote interface. The client-side stub class
has to be downloaded at run-time from a HTTP
server co-located with the actual RMI server and the
rmiregistry name-server process.

 Each test client had code that established a
connection and then in a loop repeatedly invoked
service operations. Such tightly coded loops result in
client behavior that is much more demanding than a
typical real-world application.
 Client application code is essentially identical for
all technologies. All implementations will work with
an object reference of the interface type; most of the
code will simply invoke operations via this reference.
The codes differ in the half dozen lines needed to
create the stub object associated with this reference.
 The JAXRPC code utilizes an instance of an auto-
generated helper-class to create a stub object (an
instance of an application-specific subclass of a
generic Stub class). The end-point URL should be
encoded in the generated stub, but can be
overwritten. There is no further requirement to
invoke a naming service or other helper.
 A Java-RMI implementation will require a
principal server-side object whose identity is
published via the rmiregistry naming service. This
could be the singleton object in a singleton stateless
server, or a factory object for a stateful service. The
client obtains a reference via a lookup operation on
the naming service. The underlying Java-RMI
runtime arranges to download the stub class code
from an HTTP server as part of the lookup process.
 A CORBA client might obtain a reference to the
service for its stub from a CosNaming name service,
or from a trader, or from a stringified IOR in a file in
a shared file space.

3. Results

3.1. Costs associated directly with
communications protocols

 The typical illustrative Web Service application
has a client connect to a service, submit a single
request for data, and terminate. Such applications are
unlikely to put any great demands on either a server
host's CPU, or a communications network;
consequently, performance issues are not that
important. In any case, for such applications, Web
Services technologies perform well in comparison
with the distributed object systems.
 The data shown in Table 1 show relative
performances for four implementations of the “data”
application with a request for a single data structure
retrieved according to an argument key. (Here, times
are measured from first to last packet of TCP/IP
communications. The services were all fully
initialized having handled previous clients.)

Technology Total

Latency
Total
Packets

Total data
transferred
in bytes

WS 0.11s 16 3338
CORBA 0.48s 8 1111
CORBA &
name server

0.86s 24 3340

Java RMI 0.32s 48 7670
Table 1. Costs of single shot request using
various technologies.

 Any remote-connection incurs the establishment
costs of a TCP/IP connection. A Web Service
implementation, using a static stub previously
generated from WSDL, incurs the cost of only one
connection. Subsequent exchanges using HTTP may
be non-optimal. A request is sent in two parts (HTTP
headers in the first message, SOAP “envelope” with
request in second part), and these parts are
acknowledged. A response is again multipart, a first
part with the HTTP response header and subsequent
continuation parts containing the XML response
document. Despite the relative inefficiency of
HTTP, the JAXRPC solution performs best.
 A simple CORBA solution, using an endpoint
address read as a stringified IOR taken from a file, is
comparable in complexity with the JAXRPC
solution. It represents the most efficient solution in
terms of network traffic (in this case, half of the
packet traffic being that needed to establish and
terminate a TCP-IP connection) but is relatively
slow. There are significant delays between the
establishment of the connection and the issue of the
first request by the client, and between the
acknowledgment of the request and generation of the
response on the servers.
 A more realistic CORBA solution has the client
contact a name service to obtain a reference to its
server. This entails an extra TCP/IP connection and
several exchanges resulting in a significant further
decrease in performance.
 The Java-RMI solution has the most complex
mechanism; establishment of a connection to the
rmiregistry and submission of lookup request,
establishment of a connection to an HTTP server and
posting of a request to download a class file, and
finally exchanges with the actual server. The RMI
protocol entails a certain amount of additional data
traffic even in this short example with RMI “ping”
operations etc that are used to keep open leases on
server-side structures. Despite the overheads of the

extra connections and additional traffic, the Java-
RMI solution appears better than CORBA.
 Intranet style applications will more typically
involve a client that submits numerous requests to a
server. Here, the additional set-up overheads of the
object technologies (contacts with name services,
download of stubs) are amortized over many requests
and so count for less.
 The earlier studies of Elfwing et al. and Davis et
al. looked at applications involving multiple requests,
comparing average times for requests as obtained
from a series of requests (and excluding
establishment costs for the object technologies) [4,
5]. In both those studies, the Web Service (SOAP-
communication) solutions performed poorly relative
to alternatives. A significant factor was the use of
HTTP 1.0 in the implementations studied. There
were really two problems. Firstly, the HTTP 1.0
connections were not persistent; secondly, there were
specific issues relating to delays in the pattern of
requests and acknowledgements for the various parts
of messages.
 The original version of HTTP was intended for
the download of individual documents; a client
connects, the server returns a document and closes
the connection. When documents ceased to be purely
textual and started to require supplementary data
such a style-sheets or image data, the protocol was
seen to be inefficient as each supplementary file
transfer required re-establishment of a TCP/IP
connection. A “keep-alive” feature was introduced
on the connections. The server would keep the
connection open for a short (configurable) time after
returning an initial document; a client could submit
supplementary requests over this open connection.
This feature was not formally part of the HTTP 1.0
protocol and was only implemented on an ad hoc and
frequently inconsistent manner. The HTTP 1.0 used
with earlier implementations of SOAP
communications did not exploit the “keep-alive”
feature. Consequently, each request in a sequence
involves establishment and shut down of a TCP-IP
link.
 Elfwing et al. studied delays associated with the
closure of the TCP/IP connection after each HTTP
1.0 request. The protocol used a “graceful”
closedown with a TCP/FIN message from server to
client, a client TCP/ACK and then TCP/FIN, and
final TCP/ACK from the server. The problem was
not in the exchange of TCP/IP handshake messages
but in an initial delay of ~0.4 seconds prior to the
server initiating the closedown. One of the changes
made by Elfwing et al. was to modify the java.net
code to allow the client to initiate the graceful

closedown sequence. Both Davis et al. and Elfwing
et al. identified other problems with delayed
acknowledgements of the request header.
 These problems are significantly reduced in the
current HTTP 1.1 implementations. Firstly, HTTP
1.1 incorporates the “keep alive” feature as standard.
The time-out on the server-side defaults to about 60
seconds in the JAXRPC configured Tomcat; so if a
client process submits a subsequent request within
this time there is no need to close the original and
establish a new TCP/IP connection. The closedown
sequence has in any case been changed; the client
issues a TCP/RST and shuts down communications;
there is no longer any need to modify low level
java.net socket code.
 Another significant change that comes with
HTTP 1.1 is the use of a “chunked” response format.
A HTTP 1.0 response should contain a
Content_Length header; this necessitates buffering
of an entire response in the server, which could be
problematic for applications such as the “large data”
application (the book records in that example exceed
1000 bytes and a response can have as many as 600
records). With “chunked” encoding, the server can
send chunks with length component, data, and a
separator. The chunked XML data can be processed
on the receiving side because SAX style parsers are
used rather than DOM parsers.
 Earlier studies looked mainly at simple operations
where the responses were single integers or strings.
Such small responses can often be fitted into single
packets. More realistic applications will have large
responses that must be split into separate packets.
The HTTP 1.1 implementation tries to use relatively
large sizes (1460 bytes data, this is about the largest
data packet that can be transmitted as a single unit
over typical Ethernet connections). If a CORBA
response is too large to be sent as a single unit, it is
also fragmented (IIOP fragments); the Sun Java 1.4
implementation of CORBA uses a fragment size of
1024 bytes. A Java-RMI implementation returns
large structures with RMI-continuation messages that
are of apparently arbitrary size (with the “large data”
demo, successive RMI-continuation messages in a
response had sizes such as 338, 242, 497, 409, ...).
 The results from this examination of protocol
imply that the concerns raised by Elfwing et al. and
Davis et al. have been largely addressed with the
adoption of HTTP 1.1. The actual data traffic
between client and server is reasonably efficient; it is
simply that there is a lot more data to be transferred
for Web Service implementations as compared with
the object technologies.

3.2. Costs of document transfer

 Table 2 shows results of traffic analysis for each
of the technologies. These data show the total byte
transfers and total number of packets and are
averages of repeated tests. (The “iterator” variants
are discussed in section 3.5.2.)
 The image of large XML documents replete with
textual data, mark-up tags, and data type specifiers
had lead to an expectation of even poorer
performance from the JAXRPC solutions. The
relative performance is poor with the simpler data
transfers, as in the calculator example, but the
difference is less marked where the data volume is
greater (the “large data” example includes numerous
string elements, some quite lengthy; here mark-up
and related overheads count for less). The JAXRPC
solutions require from three to five times as many
data packets as the alternatives, and from three to ten
times as many bytes. (There are proposals relating to
the use of text compression for SOAP data transfers,
but nothing is yet standardized.)
 The CORBA implementation performed best with
the large data transfer example. Generally, Java-RMI
has a superior performance [11, 12]. Here CORBA
has an advantage over Java-RMI primarily because
of its use of an 8-bit character encoding for data
transfers as opposed to Java-RMI's 16-bit coding. A
secondary factor is Java-RMI's inclusion of some
class meta-data in responses that include class
instances such as strings. The Java-RMI solution
performed relatively poorly in terms of total number
of packets in the large data case; this relates to its
selection of a small size for continuation messages.
 The five-fold or so increase in data transfer costs
for Web Service style implementations may be
tolerable for an intranet application. Local

bandwidths should be high, and local switched
Ethernet systems should reduce contention. If the
application requires encryption of data traffic (not yet
standardized for Web Services) then the larger
amounts of data will incur additional processing costs
for encryption; however, with intranet usage,
encryption may not be vital.

3.3. Costs of XML generation and parsing

 There are time and space costs associated with the
use of XML encoding. Table 3 shows the measured
CPU times for applications on both client (SunBlade,
650MHz) and server (Sun v480 1030MHz) as
measured by Unix “time” command. The server
required ~115s to generate 5000 large data records
without any output of these records (same for all
technologies). In this case, the data in the table
include overall time and estimated time for
technology-specific communications.
 In terms of CPU usage, Java-RMI is generally the
best. However, the test with large data example
shows poor performance on the client-side (the Java-
RMI solution requires something like 2.8 times as
many packets as the CORBA solution and this seems
to be impacting client-side performance more than
server-side performance). The JAXRPC solutions
require up to six times as much CPU power on the
server; the client-side parsing of the large data
documents has an even higher cost. The Java-RMI
solution was consistently the best in terms of overall
runtimes (actual elapsed time for the client to
complete its sequence of requests); the CORBA
solutions take about 10% longer. This is despite the
fact that RMI exchanges many more messages than
CORBA does in the “large data” case.

Example Technology Packets Total data

transferred
WebServices 48,931 10,360,814
CORBA 10,007 1,400,851

"Calculator"

Java-RMI 10,098 1,017,477
WebServices 55,617 16,053,312
CORBA 10,007 2,236,661

"data"

Java-RMI 10,050 2,451,790
WebServices 1,143,608 1,134,974,047
CORBA 475,235 344,363,683

"large data"

Java-RMI 1,354,377 449,330,931
CORBA 501,266 348,321,700 "iterator"
WebServices 1,257,678 1,157,156,203

Table 2: Traffic analysis for illustrative applications with different technologies

Application “calculator” “data” “large data”
Technology Client CPU Server

CPU
Client CPU Server

CPU
Client CPU Server CPU

WS 15.0s 6s 22.8s 8.4s 1087s 551s (436s)
Java-RMI 2.3s 0.8s 4s 1.1s 148s 212s (97s)
CORBA 3.2s 1.9s 3.6s 2.1s 54.2s 250s (136s)
Table 3: Measured CPU times for client and server with varying technologies and applications.

 The other resource used is memory space in client
and server. The current use of chunked responses
with HTTP 1.1 eliminates one major space
requirement on the server-side - the buffering of a
complete response prior to its transmission.
Significant memory may still be used for XML
parsing on both client and server. (All parsers are
SAX-style, so there is never any need to build a
complete parse tree as for a DOM parser; such a tree-
structure would incur much larger memory costs.) In
this study, approximate memory measures were
recorded and only on the client-side.
 Memory usage was averaged over a series of tests
runs on the “large data demo. Average memory
usage for the systems were: JAXRPC 4.75Mbyte,
Java-RMI 2.6Mbyte, CORBA 2.0Mbyte. “Iterator”
based models (where large collections a returned in
blocks whose size is client-selected) reduce memory
usage. The mechanisms are discussed below in
section 3.5.2. The difference in memory usage is
small in the CORBA implementation; the JAXRPC
memory usage was reduced to ~2.1Mbyte.

3.4. Common implementation for Web
Service and Java RMI

 If a service has heavy internal use on an intranet,
and also some external Internet users, then one
possible approach is to use a common
implementation for both JAXRPC and Java RMI
services.
 The typical Java-RMI server extends
java.rmi.server.UnicastRemoteOject; a
JAXRPC implementation class does not. However, a
Java-RMI server can use the implementation created
for the JAXRPC system; it simply has to connect the
server object to the Java-RMI runtime system and
register it with the rmigrestry naming service.
 A dual technology solution might be expedient in
some situations where the lower performance of a
JAXRPC server was perceived as problematic.
However, it is unlikely to prove a long-term solution.
There would be pressures for divergent
implementations to evolve. State has to be hacked in
Web Service models, while being handled naturally

in Java-RMI. Developers of a JAXRPC style servlet
based service will naturally tend to want to take
advantage of services offered by the servlet
container.

3.5. State

 The traditional design for a stateful service, as in
CORBA and RMI, involves two classes; there is a
factory class, and a stateful server class. The factory
class is a singleton class, an instance of the factory is
created when the server process starts and it is the
identity of this factory object that is published in
naming services. Clients establish initial contact with
the factory object and use a “create” method to
instantiate a session-server object; the create method
returns an object-reference that the client builds into
a stub. It is this object that is subsequently used via
the client's stub and, hopefully, is neatly disposed of
when the client's session is completed. The typical
tutorial example has a “calculator-factory” and
“calculators” for the individual clients. The state
data for a calculator will be the contents of its
register(s).
 It is not possible to build a stateful server of this
type within the Web Services model because this
model does not support the concept of a returnable
object reference. Archetypical Web Services are
stateless; and developers are encouraged to think
only in terms of stateless services [13]. However, if
really required, stateful services can be implemented
using mechanisms similar to those employed for
WWW-services that maintain things such as
“shopping carts”.
 When WWW services grew beyond the simple
download of static pages, state became an issue and
“hacks” had to be developed to permit state
maintenance. Solutions involving the server sending
existing state data back to the client as part of an
intermediate response have limited application. The
typical solution has state data maintained in the
server (in memory, file, or database) with simply a
client identifier key sent back to the client. This key
can be held in a “cookie” that will be returned to the
server or may be embedded in the path of all URLs.

Either way, the key gets returned as part of
subsequent invocations. These WWW-hacks can be
adapted to Web Services that use HTTP.
 Details vary but the major implementations of
SOAP/HTTP servers and clients all support state via
cookies (or if necessary via URL-rewriting, though
this appears poorly supported in the .Net
implementation [14]). With JAXRPC, the server-
side defaults to having session support; with .NET
and Apache-SOAP, server-side support can be
enabled via configuration variables. The client-side
must also enable session handling, and may need to
allocate and register structures to hold cookie data.

3.5.1. Implementing a stateful service. Service
containers, such as Tomcat or the .Net system,
typically support in-memory session state via some
form of hash-map. The container hides all the detail
of dealing with the cookie or re-written URL,
supplying instead an operation that the service object
can use to retrieve the hash map with the session data
appropriate to the current client.
 Direct use of data in the hash map results in
somewhat unnatural code. For example, a stateful
JAXRPC calculator service would have to store its
register value in a java.lang.Integer variable in
this session hash map. The code would be something
like the following:
public long add(long val) {
 int result = 0;
// First get session for client
 HttpSession session = null;
 try{
 session = endPointContext.
 getHttpSession();
 }
 if(session!=null) {
// If existing Session, get state data
// variable with current value
 if(!session.isNew()) {
 Integer cVal =
 (Integer) session.
 getAttribute("myRegister");
 result = cVal.intValue();
 }
 }
 result += val;
 if(session!=null) session.
 setAttribute("myRegister",
 new Integer(result));
 return result;
}
 CORBA's POATie mechanism offers a model for
a more natural implementation of a stateful service.
The POATie mechanism has two classes that
implement the same operations interface as defined
for the service; the POATie class deals with issues of
integration with the ORB and delegates all actual

work to an independent implementation class. If this
model is used for something like a JAXRPC
calculator service, one would have a Calculator
class and a java.rmi.Remote class (“Demo”) that
ties in with the servlet container. The Calculator
class would use data members to store state in a
natural way. The tie-class, Demo, would create an
instance of this Calculator class as its state data
saved in the system provided session hash map.
Code for the tie-class would be something like the
following:
public class DemoImplementation
 implements Demo,
 javax.xml.rpc.server.ServiceLifecycle
{
 private final String
 myKey = "DemosCalculator";
 private ServletEndpointContext
 endPointContext;

 public void init(Object cntxt) {
 endPointContext =
 (ServletEndpointContext) cntxt;
 }

 public void destroy() { }

 public long add(long val) {
 return getCalculator().add(val);
 }

 ...

 private Calculator getCalculator() {
// Retrieve real object from session
// (or create it if necessary)
// code, as above, to get session
 ...
 if(session!=null) {
 if(session.isNew()) {
 Calculator c =
 new Calculator();
 session.setAttribute(
 myKey, c);
 return c;
 }
 else return (Calculator)
 session.getAttribute(myKey);
 }
 // problem - no session
 ...
 }
}

3.5.2. A stateful iterator. Although often
discouraged [13], a stateful Web Service may be of
advantage in cases where large quantities of data
must be returned. In CORBA, it has been traditional
to define search operations that may result in large
amounts of response data as yielding references to
stateful iterators rather than sequences of records.

On the server-side, the stateful iterator is created with
ownership of a collection of those records that are to
be returned, and a counter that identifies the subset of
records that will be returned in the next request. The
client gets a stub that allows it to use such an iterator
to retrieve data segments of specified size. The
server-side iterator and its data collection are
discarded when all data have been returned.
 This model can be adapted to Web Services. Of
course, a search operation cannot return a reference
to an iterator object. It can instead create the iterator,
and make this an element in the client's session-data
record. An additional method can then be provided
that retrieves records from this iterator. The “large
data” example was adapted to use a very simple
stateful iterator. The revised service definition is:

public interface Demo extends Remote {
 public Data2[]
 getMoreRecords(int blksize)
 throws RemoteException;
 public int search(String request)
 throws RemoteException;
}
The implementation of the search function finds the
required records and stores them in an in-memory
collection. When the search is complete, the search
function creates an instance of an Iterator, giving
it the collection and storing it as a state variable in
the client's session. The getMoreRecords method
retrieves this state variable and invokes a method that
returns the next block of records.
 A naive implementation of an Iterator class
requires less than twenty lines of Java.
 The client application was modified to use this
iterator-based service, requesting result records to be
returned in blocks of at most fifty. Test results of this
version of the application showed a 10% increase in
the total number of packets transmitted, and only
about 2% increase in byte transfers. It does however
lead to considerably less memory usage in the client;
this version of the client having an apparent
maximum memory footprint of 2.1Mbyte instead of
the 4.6Mbyte for the standard implementation.

4. Conclusions

 Improvements in implementations of SOAP
communications have significantly reduced the
performance failings noted in earlier studies. While a
Web Service solution will still be slower, consume
more memory, more network bandwidth, and more
CPU cycles than an alternative solution, the
differences are less marked in realistic applications

such as the "large data" application than in toys like
the "calculator" application.
 The substantial commonality of code base for the
various technologies makes dual deployments
possible - a Web Service implementation for external
users and an alternative higher performance variant
of internal use. Some problems associated with very
large responses from a Web Service can be alleviated
through the use of a stateful iterator approach.
 The example applications did not involve any
sophisticated features such as encryption and
transactions. Currently, there are competing
proposals for Web Service transaction management,
and there is an elaborate network of related
investigations into security frameworks. However,
these features are still at prototype stage. If such
features are required, developers will have to look to
commercial CORBA implementations. (There are
transaction managers and security systems for
freeware CORBA but a lot of work is needed to
develop an application that uses these in a reliable
manner.)

References

[1] W3C Organizations Web Services definitions, http://
www.w3.org/2002/ws/

[2] Java: Remote Method Invocation; http://java.sun.com/
j2se/1.4.2/docs/guide/rmi/index.html

[3] CORBA: Common Object Request Broker
Architecture, http://www.omg.org.

 [4] Elfwing, R., Paulsson, U., and Lundberg, L,
Performance of SOAP in Web Service Environment
Compared to CORBA, In Proceedings of the Ninth Asia-
Pacific Software Engineering Conference, IEEE, 2002

[5] Davis, D., and Parashar, M., Latency Performance of
SOAP Implementations, In Proceedings of 2nd IEEE/ACM
International Symposium on Cluster Computing and the
Grid, IEEE, 2002.

[6] Gorton, I., Liu, A., and Brebner, P., “Rigorous
evaluation of COTS middleware technology”, Computer,
IEEE, March 2003, pp. 50-55.

[7] JWSDP Java Web Services Developer Pack http://
java.sun.com/webservices/jwsdp/index.jsp

[8] Tomcat server: http://jakarta.apache.org/tomcat/
index.html

[9] Java 1.4 CORBA implementation; http://java.sun.com/
j2se/1.4.2/docs/guide/corba/index.html

[10] “Ethereal: a free network protocol analyzer”, http://
www.ethereal.com

[11] Juric, M.B., Rozman, I., and Hericko, M.,
Performance Comparison of CORBA and RMI, Information
and Software Technology 42, pp 915-933, 2000.

[12] Juric, M.B, Rozman, I., Stevens, A.P., Hericko, M.
and Nash, S., Java 2 Distributed Object Models
Performance, Analysis, Comparison, and Optimization, In
Proceedings of 7th International Conference on Parallel
and Distributed System, IEEE, 2000.

[13] Zimmermann, O., Tomlinson, M., and Peuser, S.,
Perspectives on Web Services, Springer-Verlag, Berlin,
2003.

[14] Powell, M., Using ASP.NET Session State in a Web
Service, as http://msdn.microsoft.com/library/
default.asp?url=/library/enus/dnservice/html/
service08062002.asp

