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Abstract 

 
This paper reports on comparisons of Web 

Service, Java RMI, and CORBA solutions for 
example applications.  Performance problems, 
identified in earlier studies of Web Services, have 
been significantly reduced in the current 
implementations.  The newer Web Service APIs 
realize a model that has significant overlaps with 
distributed object technologies, allowing in some 
cases for the use of a common code base in either a 
readily deployed Web Service or in a higher-
performance distributed object style implementation. 
 
1. Introduction 
 
 Web Services [1] present another alternative 
distributed computing infrastructure; an alternative 
that is being strongly promoted as preferable to the 
use of distributed object middleware such as Java 
RMI [2] or CORBA [3]. 
 Web Services differ from the distributed object 
technologies in that they have reverted to an earlier 
“remote service” model similar to that in DCE.  
There is no concept of an object reference; instead a 
service is defined simply by an end-point that 
supports various operations.  In terms of Java-RMI or 
CORBA, a Web Service is like a singleton server 
object.  The singleton server character of a Web 
Service means that a stateless-server architecture is 
preferred; though there are mechanisms permitting 
the implementation of stateful-servers. 
 Web Service implementations support different 
client-side application programmer interfaces; client 
code may work by constructing “call” objects that are 
dispatched to the server, or may use a higher level 
interface that hides the communications level entirely 
through the use of client-side stub objects with an 
operational interface that mimics that of the server.  

The client-stub approach results in code that is very 
similar to Java-RMI or CORBA clients. 
 The analogous mechanisms for generating client 
and server components for Web-Services, Java-RMI, 
and CORBA are illustrated in Figure 1.  When auto-
generated client-side stubs are used for Web 
Services, the development processes and the code 
complexity for both client- and server-side are 
virtually identical for Web Service, Java-RMI, and 
CORBA solutions.  Typically one starts with an 
interface definition for the service.  A client-side stub 
is auto-generated from this interface.  On the server-
side, the interface is processed to yield a base class 
for the implementation class that must be written by 
the developer.  With the mechanisms and costs of 
development being very similar, other factors will 
determine the choice of a technical solution.  Systems 
developers will have to choose between 
interoperability where Web Services have 
advantages, and performance that will favor Java 
RMI or CORBA. 
 Java RMI and CORBA use optimized connection-
oriented communications protocols that are either 
language specific, or have detailed rules defining 
how data-structures and interfaces should be realized.  
In contrast, Web Services (application-to-application) 
are based on the ubiquitous technologies that have 
grown up to support WWW-services (human-via 
browser-to-application).  Communications use 
HTTP.  HTTP is universally supported, and HTTP-
traffic can normally pass through firewalls.  Tiresome 
practical details like common data representations are 
avoided through the use of textual representations.  
All numeric and other data are converted to text.  
Meta-data, defining structure, are provided in situ as 
XML mark-up tags.  XML parsers allow client and 
server implementations to construct their distinct but 
equivalent representations of any data structures 
 



 
Figure 1 Generation of client and server components from interface for Web Services, CORBA, 
and Java-RMI. 
 
 
 The use of HTTP, and XML text documents, 
supports increased interoperability but also represents 
a significant increase in run-time cost for Web 
Service solutions as compared with Java-RMI or 
CORBA solutions.  The stateless hypertext transfer 
protocol was devised originally for downloading 
individual files and is not ideally suited to 
applications where multiple requests and responses 
may be need to be exchanged.  The XML formatted 
documents are inherently more voluminous than the 
binary data traffic of the other approaches.  More 
data have to be exchanged across the network, and 
more control packets are required.  Conversion to 
text format and parsing of XML documents is 
inherently more costly than the alternative 
mechanisms used to convert data to a common data 
representation for the network.  The additional 
communications and processing costs are frequently 
perceived as a potential barrier to the use of Web 
Services technologies. 
 The work reported in this paper extends that in 
earlier studies on the costs associated with Web 
Service SOAP communications.  Elfwing et al. 
compared Web Services to CORBA both as Java 

implementations, finding a degradation factor of up 
to 400 in performance; performance was improved 
by modifications of drivers and parsers [4].  Davis 
and Parashar compared several Web Service 
implementations (Java, Perl, .Net) with Java-RMI 
and CORBA [5]; they were qualified in their 
conclusions but tended to prefer Java-RMI until 
SOAP-based Web Service technology had further 
improved.  Both groups identified specific issues 
with XML parsers and the HTTP transport protocol. 
 This work uses more recent implementations of 
the Java Web Service components.  These offer a 
higher-level client-side API, and achieve better use of 
HTTP.  Earlier studies have mainly looked at 
examples where the defined service returned either 
single data elements or data arrays of primitive types 
such as integers, reals, or strings.  The examples here 
include those more representative of intranet 
applications that involve multiple queries and queries 
that yield large amounts of data.  If Web Services are 
to replace CORBA and Java RMI, they must handle 
such queries effectively. 
 The Middleware Technology Evaluation project, 
hosted by the CSIRO division of Mathematical and 
Information Sciences, has demonstrated the 
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practicality and value of comparative performance 
studies on commercial implementations of 
middleware [6].  Limits on resources restricted this 
study to the use of the Sun reference implementations 
of Java-RMI, CORBA, and WebServices.  The 
coding of these reference implementations is 
expected to be of similar quality, so that the results 
should fairly represent the intrinsic merits of the 
different technologies. 
 
2. Scope of study 
 
2.1. Technologies and measures 
 
 The technologies used in this study were: 
• JAXRPC from Sun's Java Web Services 

Development kit (JWSDP) [7]; 
• Tomcat 5 (as incorporated in JWSDP) [8]; 
• Java RMI from Java 1.4 SDK [2]; 
• Java CORBA from Java 1.4 SDK [9]; 
• Ethereal network traffic analysis program [10]. 

Tests were performed on a network system with a 
100Mb/sec Ethernet backbone.  Performance tests 
utilized a Sun v480 (1030MHz) server and a group of 
SunBlade 150s (650MHz) running client 
applications.  Network traffic analysis was conducted 
using the Ethereal tool to capture packets transferred 
over the 100Mb/sec Ethernet between a SunBlade 
100 server and a client 2GHz Dell Optiplex GX260 
machine running Win2000. 

The machine groups were workstations in a 
teaching laboratory and a new server.  The study was 
conducted out of academic session when these 
machines had no other users, so timing measurements 
were not distorted by process switching etc.  The 
network carried some other light traffic, but was not 
approaching saturation so network latencies should 
not be distorted. 

Measures include: 
• memory usage in the client,  
• CPU-times for both client and server,  
• overall latency time for a single request and for 

sequences of requests,  
• total byte transfers,  
• packet counts. 

Memory usage was estimated using differences 
in “total memory” and “free memory” as measured 
using calls to java.lang.Runtime in the client 
code. 

Preliminary tests had involved running the server 
with increasing number of concurrent clients to 
determine the loads at which the server became fully 
utilized and service times increased.  The results 

presented here are for situations where the server was 
lightly loaded by small numbers of concurrent clients 
and still had idle CPU time.  Each client machine ran 
only a single copy of a client process so that 
contention was not an issue on the clients. 

A small part of the study focused on the cost of a 
single request from client to server.  These single 
request tests provide comparative costs for the 
establishment of a connection.  Most of the reported 
results are from tests where several thousand requests 
are handled in the course of a client-server session.  
In these tests, set-up costs are amortized over many 
requests giving a better measure of the actual request 
handling costs.  Typically tests involved 5000 
requests; where the processing time was still short, 
runs of as many as 50,000 requests were used.  The 
results presented are averages from ten or more test 
runs.  With the tightly controlled conditions, 
variations in execution and run-times were small. 

Some of the tests involve pseudo-randomly 
generated data sets that vary in size.  For these tests, 
identical sequences of seeds were used for the 
random number generators when running the same 
test with different technologies.  Naturally, time 
variations of successive runs were greater, up to 
10%, reflecting the varying sizes of datasets 
generated and transmitted across the network. 

The Ethereal tool provided the data on packet 
and byte counts.  It also permits detailed analysis of 
the packet sequences generated by the different 
technologies.  The technologies do vary in the 
efficiency of their use of the underlying TCP/IP 
communications. 
 
2.2. Example services 
 
 Three example services were implemented.  They 
differ mainly in the type and amount of response 
data; one of the efficiency issues being how well the 
technologies handle significant data volumes. 
 The first service, “calculator”, actually involves a 
stateful server (issues of state maintenance in Web 
Service applications are discussed in section 3.5 
below).  The service defined a simple four-function 
calculator with operations that each required an 
integer input argument and generated an integer 
response.  Clearly, such limited data should involve 
minimal overheads. 
 The second service, “data”, involved a string 
input argument and a returned structure with integer, 
string array, and double array fields.  Here, the XML 
encoding has to include some more significant 
structural meta-data. 



 The final service, “large data”, models a real-
world data retrieval application.  Intranet use of Java-
RMI and CORBA frequently has a client running in 
one departmental system that uses a middle-layer 
server to access a database in some other 
departmental system.  It is this kind of application 
that Web Services will have to take on if they are to 
establish themselves as a preferred technology for 
intranet systems.  The demonstration service was a 
reduced version of an application used to retrieve 
data on books from a database.  The demonstration 
implementation has only a single function that 
effectively simulated the application query “get 
books that include keywords ...”.  Database 
performance issues were avoided by having the 
service pseudo-randomly generate and populate 
anything from a few dozen to several hundred 
records in response to each request. 
 The IDL interfaces for these services are: 
 
“Calculator” (minimal complexity data transfers of 
integers): 
 interface Demo { 
  long long clear(); 
  long long add(in long long  val); 
  ... 
// quit - in JAXRPC version will release  
// session storage; in JAVARMI version  
// will do nothing (rely on garbage 
// collector); in CORBA version will do 
// a deactivate object 
  void quit(); 
 }; 
// Factory component only relevant in 
// RMI and CORBA implementations 
 interface DemoFactory { 
  Demo createDemo(); 
 }; 
 
“data” (transfer of simple record structure): 
 typedef sequence<string> strings; 
 typedef sequence<double> doubles; 
 struct Data { 
  long long _d1; 
  strings  _d2; 
  doubles  _d3; 
 }; 
 interface Demo { 
  Data f1(in string key); 
 }; 
 
“large data” (transfer of potentially large data 
structure): 
 typedef sequence<string> strings; 
 typedef double priceType; 
 // Record defining a book 
 struct Data2 {   
  string  title; 
  strings  authors; 

  priceType  price; 
  priceType  listPrice; 
  string  publisher; 
  long   publicationYear; 
  long   publicationMonth; 
  strings  keyWords; 
  string  isbn; 
  long   starRating; 
  string  url; 
 }; 
 typedef sequence<Data2> Data2Seq; 
 interface Demo { 
// Simulated method corresponding to  
// find books with keyword like ... 
  Data2Seq search( 
   in string request); 
 }; 
 
 The java.rmi.Remote interfaces are closely 
similar, mainly involving substitution of arrays for 
IDL sequences. 
 The developer of a Web Service can start by 
composing the Web Service Description Language 
(WSDL) description of the service.  However, both 
the JAXRPC and the .Net development environments 
permit a developer to start by defining a service 
interface in terms of a programming language class 
(C#, VB etc) or interface (Java) and using a helper 
tool to generate the WSDL document.  This bottom-
up approach is easier for most developers.  This 
study used the same java.rmi.Remote interfaces as 
the starting points for both Java RMI and JAXRPC 
Web Service implementations.  Client-side stubs are 
auto-generated from the WSDL service definition. 
 A WSDL document (an XML file), either 
composed manually or generated from a 
programming language class or interface, will define 
“messages” (input messages are essentially function 
signatures, output messages are responses), “port-
types” (a service interface or class) with “operations” 
that are defined in terms of their input and output 
messages, “binding(s)” - specifications of a transfer 
protocol, typically HTTP, an encoding scheme 
(choice among SOAP encoding styles), and finally 
the service definition(s) with end-point URI(s).  The 
inclusion of the service end point's URI is really the 
only major semantic difference from an IDL or 
java.rmi.Remote interface declaration. 
 
2.3. Service implementations and deployment 
 
 A JAXRPC servant can be instantiated inside a 
servlet-container such as Tomcat, or can be 
implemented as a stateless EJB session bean.  If the 
servlet model is used, the developer defines a class 
that implements the java.rmi.Remote interface 



declaration; an EJB session bean defines an interface 
with equivalent operations.  This study used the 
Tomcat-hosted servlet style.  The developer must 
provide effective implementations for all defined 
operations, together with any life-cycle methods that 
are required by the servlet- or EJB- container. 
 In a servlet-based implementation, system 
supplied servlets take configuration data that define 
the Web Service classes that they manage.  The 
servlet code deals with the HTTP data traffic, and 
invokes XML parsing to prepare arguments, and then 
invokes the service operations.  The actual JAXRPC 
servant can be given access to its servlet-container by 
having its class implement the optional javx.xml. 
rpc.server.ServiceLifecycle interface.  The 
context can include resources shared with other 
servlets such as in-memory data structures or 
database connections.  The context can also manage 
session state for a stateful service. 
 XML deployment files for the servlets and their 
configuration data are all generated automatically.  
WWW-servers like Tomcat are designed for easy 
administration; services can be added or existing 
services replaced in a running server.  The control 
data for the hosted services are persistent.  A system 
restart will require minimal or no action by an 
administrator.  The server for WWW and Web 
Service applications should simply re-initialize itself. 
 A CORBA developer has the choice of extending 
the auto-generated “POA” class, or of using an 
instance of a generated POATie class that works with 
a servant that is an instance of a class implementing 
the operational interface but which is otherwise 
independent of the CORBA class system. 
 The complexity of CORBA implementations is 
often overrated.  In these demonstration applications, 
the server-side consisted of single server process.  
This initializes its ORB, instantiates the 
implementation class, activates this instantiated 
servant via the default POA, and publishes an IOR in 
a file.  A more typical server system would involve a 
CORBA name service (or trader) and a CORBA 
daemon process.  The server process would utilize a 
POA that supports persistent references; the servant 
identifier would be published in the name service.  
The CORBA daemon process would deal with issues 
like restarting a server process as needed.  The name-
service and CORBA daemon should both use 
persistent data stores and be capable of surviving 
system restarts.  In the Sun Java 1.4 implementation, 
the “orbd” process takes on both the role of a 
persistent naming service and of the CORBA daemon 
that can launch server processes. 

 A Java-RMI servant class normally extends the 
class java.rmi.server.UnicastRemoteObject 
and implements the defined remote service 
definition; e.g. public class DemoImpl 
extends UnicastRemoteObject implements 
Demo { ... }. 
 The Java-RMI deployment is the most elaborate, 
and most fragile.  A server system will comprise at 
least the actual server process, the rmiregistry 
(equivalent to a CORBA name-service), and a HTTP-
server from which a would-be client can download 
the “.class” files of client-side stubs.  An rmiregistry 
does not maintain persistent data so all records of 
registered servers are lost on system restart.  Further, 
the registry must be restarted if there are changes in 
the implementation of any one of the services 
registered with it.  The developer of a Java-RMI 
system has to take careful account of rules regarding 
access to .class files by server process, HTTP-server, 
and rmiregistry, and must also compose security 
policy constraint files.  The rmid daemon process can 
be employed to support on-demand services; but 
rmid again does not use persistent data storage 
making the system fragile in regard to system 
restarts.  The use of rmid also necessitates the use of 
extra setup programs.  There are mechanisms for 
integrating Java-RMI with Jini technology that 
provide for more stable deployments; but these 
require skill sets and knowledge that are uncommon. 
 
2.4 Client-side stub and client coding 
 
 The WSDL for a Web Service must be made 
available to the developer of the client-side code.  If a 
UDDI registry were being used, the client developer 
might be able to download the WSDL from the 
registry.  The Tomcat server configuration for a 
JAXRPC implementation can act as an alternative 
source of the WSDL.  Both .Net and JAXRPC 
development systems include helper applications that 
can generate a client-side stub class, and other helper 
classes, from a downloaded WSDL definition. 
 A CORBA developer has to obtain a copy of the 
IDL interface definition (this too could come from a 
UDDI registry for these are not restricted to handling 
only WSDL defined services).  The developer then 
generates a client stub in the required implementation 
language via an IDL compiler. 
 The developer of a Java-RMI client works solely 
with the remote interface.  The client-side stub class 
has to be downloaded at run-time from a HTTP 
server co-located with the actual RMI server and the 
rmiregistry name-server process. 



 Each test client had code that established a 
connection and then in a loop repeatedly invoked 
service operations.  Such tightly coded loops result in 
client behavior that is much more demanding than a 
typical real-world application. 
 Client application code is essentially identical for 
all technologies.  All implementations will work with 
an object reference of the interface type; most of the 
code will simply invoke operations via this reference.  
The codes differ in the half dozen lines needed to 
create the stub object associated with this reference. 
 The JAXRPC code utilizes an instance of an auto-
generated helper-class to create a stub object (an 
instance of an application-specific subclass of a 
generic Stub class).  The end-point URL should be 
encoded in the generated stub, but can be 
overwritten.  There is no further requirement to 
invoke a naming service or other helper. 
 A Java-RMI implementation will require a 
principal server-side object whose identity is 
published via the rmiregistry naming service.  This 
could be the singleton object in a singleton stateless 
server, or a factory object for a stateful service.  The 
client obtains a reference via a lookup operation on 
the naming service.  The underlying Java-RMI 
runtime arranges to download the stub class code 
from an HTTP server as part of the lookup process. 
 A CORBA client might obtain a reference to the 
service for its stub from a CosNaming name service, 
or from a trader, or from a stringified IOR in a file in 
a shared file space. 
 
3. Results 
 
3.1. Costs associated directly with 
communications protocols 
 
 The typical illustrative Web Service application 
has a client connect to a service, submit a single 
request for data, and terminate.  Such applications are 
unlikely to put any great demands on either a server 
host's CPU, or a communications network; 
consequently, performance issues are not that 
important.  In any case, for such applications, Web 
Services technologies perform well in comparison 
with the distributed object systems. 
 The data shown in Table 1 show relative 
performances for four implementations of the “data” 
application with a request for a single data structure 
retrieved according to an argument key. (Here, times 
are measured from first to last packet of TCP/IP 
communications.  The services were all fully 
initialized having handled previous clients.) 

 
Technology Total 

Latency 
Total 
Packets 

Total data 
transferred 
in bytes 

WS 0.11s 16 3338 
CORBA 0.48s 8 1111 
CORBA & 
name server 

0.86s 24 3340 

Java RMI 0.32s 48 7670 
Table 1. Costs of single shot request using 
various technologies. 
 
 Any remote-connection incurs the establishment 
costs of a TCP/IP connection.  A Web Service 
implementation, using a static stub previously 
generated from WSDL, incurs the cost of only one 
connection.  Subsequent exchanges using HTTP may 
be non-optimal.  A request is sent in two parts (HTTP 
headers in the first message, SOAP “envelope” with 
request in second part), and these parts are 
acknowledged.  A response is again multipart, a first 
part with the HTTP response header and subsequent 
continuation parts containing the XML response 
document.  Despite the relative inefficiency of 
HTTP, the JAXRPC solution performs best. 
 A simple CORBA solution, using an endpoint 
address read as a stringified IOR taken from a file, is 
comparable in complexity with the JAXRPC 
solution.  It represents the most efficient solution in 
terms of network traffic (in this case, half of the 
packet traffic being that needed to establish and 
terminate a TCP-IP connection) but is relatively 
slow.  There are significant delays between the 
establishment of the connection and the issue of the 
first request by the client, and between the 
acknowledgment of the request and generation of the 
response on the servers. 
 A more realistic CORBA solution has the client 
contact a name service to obtain a reference to its 
server.  This entails an extra TCP/IP connection and 
several exchanges resulting in a significant further 
decrease in performance. 
 The Java-RMI solution has the most complex 
mechanism; establishment of a connection to the 
rmiregistry and submission of lookup request, 
establishment of a connection to an HTTP server and 
posting of a request to download a class file, and 
finally exchanges with the actual server.  The RMI 
protocol entails a certain amount of additional data 
traffic even in this short example with RMI “ping” 
operations etc that are used to keep open leases on 
server-side structures.  Despite the overheads of the 



extra connections and additional traffic, the Java-
RMI solution appears better than CORBA. 
 Intranet style applications will more typically 
involve a client that submits numerous requests to a 
server.  Here, the additional set-up overheads of the 
object technologies (contacts with name services, 
download of stubs) are amortized over many requests 
and so count for less. 
 The earlier studies of Elfwing et al. and Davis et 
al. looked at applications involving multiple requests, 
comparing average times for requests as obtained 
from a series of requests (and excluding 
establishment costs for the object technologies) [4, 
5].  In both those studies, the Web Service (SOAP-
communication) solutions performed poorly relative 
to alternatives.  A significant factor was the use of 
HTTP 1.0 in the implementations studied.  There 
were really two problems.  Firstly, the HTTP 1.0 
connections were not persistent; secondly, there were 
specific issues relating to delays in the pattern of 
requests and acknowledgements for the various parts 
of messages. 
 The original version of HTTP was intended for 
the download of individual documents; a client 
connects, the server returns a document and closes 
the connection.  When documents ceased to be purely 
textual and started to require supplementary data 
such a style-sheets or image data, the protocol was 
seen to be inefficient as each supplementary file 
transfer required re-establishment of a TCP/IP 
connection.  A “keep-alive” feature was introduced 
on the connections.  The server would keep the 
connection open for a short (configurable) time after 
returning an initial document; a client could submit 
supplementary requests over this open connection.  
This feature was not formally part of the HTTP 1.0 
protocol and was only implemented on an ad hoc and 
frequently inconsistent manner.  The HTTP 1.0 used 
with earlier implementations of SOAP 
communications did not exploit the “keep-alive” 
feature.  Consequently, each request in a sequence 
involves establishment and shut down of a TCP-IP 
link. 
 Elfwing et al. studied delays associated with the 
closure of the TCP/IP connection after each HTTP 
1.0 request.  The protocol used a “graceful” 
closedown with a TCP/FIN message from server to 
client, a client TCP/ACK and then TCP/FIN, and 
final TCP/ACK from the server.  The problem was 
not in the exchange of TCP/IP handshake messages 
but in an initial delay of ~0.4 seconds prior to the 
server initiating the closedown.  One of the changes 
made by Elfwing et al. was to modify the java.net 
code to allow the client to initiate the graceful 

closedown sequence.  Both Davis et al. and Elfwing 
et al. identified other problems with delayed 
acknowledgements of the request header. 
 These problems are significantly reduced in the 
current HTTP 1.1 implementations.  Firstly, HTTP 
1.1 incorporates the “keep alive” feature as standard.  
The time-out on the server-side defaults to about 60 
seconds in the JAXRPC configured Tomcat; so if a 
client process submits a subsequent request within 
this time there is no need to close the original and 
establish a new TCP/IP connection.  The closedown 
sequence has in any case been changed; the client 
issues a TCP/RST and shuts down communications; 
there is no longer any need to modify low level 
java.net socket code. 
 Another significant change that comes with 
HTTP 1.1 is the use of a “chunked” response format.  
A HTTP 1.0 response should contain a 
Content_Length header; this necessitates buffering 
of an entire response in the server, which could be 
problematic for applications such as the “large data” 
application (the book records in that example exceed 
1000 bytes and a response can have as many as 600 
records).  With “chunked” encoding, the server can 
send chunks with length component, data, and a 
separator.  The chunked XML data can be processed 
on the receiving side because SAX style parsers are 
used rather than DOM parsers. 
 Earlier studies looked mainly at simple operations 
where the responses were single integers or strings.  
Such small responses can often be fitted into single 
packets.  More realistic applications will have large 
responses that must be split into separate packets.  
The HTTP 1.1 implementation tries to use relatively 
large sizes (1460 bytes data, this is about the largest 
data packet that can be transmitted as a single unit 
over typical Ethernet connections).  If a CORBA 
response is too large to be sent as a single unit, it is 
also fragmented (IIOP fragments); the Sun Java 1.4 
implementation of CORBA uses a fragment size of 
1024 bytes.  A Java-RMI implementation returns 
large structures with RMI-continuation messages that 
are of apparently arbitrary size (with the “large data” 
demo, successive RMI-continuation messages in a 
response had sizes such as 338, 242, 497, 409, ...). 
 The results from this examination of protocol 
imply that the concerns raised by Elfwing et al. and 
Davis et al. have been largely addressed with the 
adoption of HTTP 1.1.  The actual data traffic 
between client and server is reasonably efficient; it is 
simply that there is a lot more data to be transferred 
for Web Service implementations as compared with 
the object technologies. 
 



3.2. Costs of document transfer 
 
 Table 2 shows results of traffic analysis for each 
of the technologies.  These data show the total byte 
transfers and total number of packets and are 
averages of repeated tests.  (The “iterator” variants 
are discussed in section 3.5.2.) 
 The image of large XML documents replete with 
textual data, mark-up tags, and data type specifiers 
had lead to an expectation of even poorer 
performance from the JAXRPC solutions.  The 
relative performance is poor with the simpler data 
transfers, as in the calculator example, but the 
difference is less marked where the data volume is 
greater (the “large data” example includes numerous 
string elements, some quite lengthy; here mark-up 
and related overheads count for less).  The JAXRPC 
solutions require from three to five times as many 
data packets as the alternatives, and from three to ten 
times as many bytes.  (There are proposals relating to 
the use of text compression for SOAP data transfers, 
but nothing is yet standardized.) 
 The CORBA implementation performed best with 
the large data transfer example.  Generally, Java-RMI 
has a superior performance [11, 12].  Here CORBA 
has an advantage over Java-RMI primarily because 
of its use of an 8-bit character encoding for data 
transfers as opposed to Java-RMI's 16-bit coding.  A 
secondary factor is Java-RMI's inclusion of some 
class meta-data in responses that include class 
instances such as strings.  The Java-RMI solution 
performed relatively poorly in terms of total number 
of packets in the large data case; this relates to its 
selection of a small size for continuation messages. 
 The five-fold or so increase in data transfer costs 
for Web Service style implementations may be 
tolerable for an intranet application.  Local 

bandwidths should be high, and local switched 
Ethernet systems should reduce contention.  If the 
application requires encryption of data traffic (not yet 
standardized for Web Services) then the larger 
amounts of data will incur additional processing costs 
for encryption; however, with intranet usage, 
encryption may not be vital. 
 
3.3. Costs of XML generation and parsing 
 
 There are time and space costs associated with the 
use of XML encoding.  Table 3 shows the measured 
CPU times for applications on both client (SunBlade, 
650MHz) and server (Sun v480 1030MHz) as 
measured by Unix “time” command.  The server 
required ~115s to generate 5000 large data records 
without any output of these records (same for all 
technologies).  In this case, the data in the table 
include overall time and estimated time for 
technology-specific communications. 
 In terms of CPU usage, Java-RMI is generally the 
best.  However, the test with large data example 
shows poor performance on the client-side (the Java-
RMI solution requires something like 2.8 times as 
many packets as the CORBA solution and this seems 
to be impacting client-side performance more than 
server-side performance).  The JAXRPC solutions 
require up to six times as much CPU power on the 
server; the client-side parsing of the large data 
documents has an even higher cost.  The Java-RMI 
solution was consistently the best in terms of overall 
runtimes (actual elapsed time for the client to 
complete its sequence of requests); the CORBA 
solutions take about 10% longer.  This is despite the 
fact that RMI exchanges many more messages than 
CORBA does in the “large data” case. 

 
Example Technology Packets Total data 

transferred 
WebServices  48,931 10,360,814 
CORBA 10,007 1,400,851 

"Calculator" 

Java-RMI 10,098 1,017,477 
WebServices 55,617 16,053,312 
CORBA 10,007 2,236,661 

"data" 

Java-RMI 10,050 2,451,790 
WebServices 1,143,608 1,134,974,047 
CORBA 475,235 344,363,683 

"large data" 

Java-RMI 1,354,377 449,330,931 
CORBA 501,266 348,321,700 "iterator" 
WebServices 1,257,678 1,157,156,203 

Table 2: Traffic analysis for illustrative applications with different technologies 
 



Application “calculator” “data” “large data” 
Technology Client CPU Server 

CPU 
Client CPU Server 

CPU 
Client CPU Server CPU 

WS 15.0s 6s 22.8s 8.4s 1087s 551s (436s) 
Java-RMI 2.3s 0.8s 4s 1.1s 148s 212s (97s) 
CORBA 3.2s 1.9s 3.6s 2.1s 54.2s 250s (136s) 
Table 3: Measured CPU times for client and server with varying technologies and applications. 
 
 The other resource used is memory space in client 
and server.  The current use of chunked responses 
with HTTP 1.1 eliminates one major space 
requirement on the server-side - the buffering of a 
complete response prior to its transmission.  
Significant memory may still be used for XML 
parsing on both client and server.  (All parsers are 
SAX-style, so there is never any need to build a 
complete parse tree as for a DOM parser; such a tree-
structure would incur much larger memory costs.)  In 
this study, approximate memory measures were 
recorded and only on the client-side.   
 Memory usage was averaged over a series of tests 
runs on the “large data demo.  Average memory 
usage for the systems were: JAXRPC 4.75Mbyte, 
Java-RMI 2.6Mbyte, CORBA 2.0Mbyte.  “Iterator” 
based models (where large collections a returned in 
blocks whose size is client-selected) reduce memory 
usage.  The mechanisms are discussed below in 
section 3.5.2.  The difference in memory usage is 
small in the CORBA implementation; the JAXRPC 
memory usage was reduced to ~2.1Mbyte. 
 
3.4. Common implementation for Web 
Service and Java RMI 
 
 If a service has heavy internal use on an intranet, 
and also some external Internet users, then one 
possible approach is to use a common 
implementation for both JAXRPC and Java RMI 
services. 
 The typical Java-RMI server extends 
java.rmi.server.UnicastRemoteOject; a 
JAXRPC implementation class does not.  However, a 
Java-RMI server can use the implementation created 
for the JAXRPC system; it simply has to connect the 
server object to the Java-RMI runtime system and 
register it with the rmigrestry naming service. 
 A dual technology solution might be expedient in 
some situations where the lower performance of a 
JAXRPC server was perceived as problematic.  
However, it is unlikely to prove a long-term solution.  
There would be pressures for divergent 
implementations to evolve.  State has to be hacked in 
Web Service models, while being handled naturally 

in Java-RMI.  Developers of a JAXRPC style servlet 
based service will naturally tend to want to take 
advantage of services offered by the servlet 
container. 
 
3.5. State 
 
 The traditional design for a stateful service, as in 
CORBA and RMI, involves two classes; there is a 
factory class, and a stateful server class.  The factory 
class is a singleton class, an instance of the factory is 
created when the server process starts and it is the 
identity of this factory object that is published in 
naming services.  Clients establish initial contact with 
the factory object and use a “create” method to 
instantiate a session-server object; the create method 
returns an object-reference that the client builds into 
a stub.  It is this object that is subsequently used via 
the client's stub and, hopefully, is neatly disposed of 
when the client's session is completed.  The typical 
tutorial example has a “calculator-factory” and 
“calculators” for the individual clients.  The state 
data for a calculator will be the contents of its 
register(s). 
 It is not possible to build a stateful server of this 
type within the Web Services model because this 
model does not support the concept of a returnable 
object reference.  Archetypical Web Services are 
stateless; and developers are encouraged to think 
only in terms of stateless services [13].  However, if 
really required, stateful services can be implemented 
using mechanisms similar to those employed for 
WWW-services that maintain things such as 
“shopping carts”. 
 When WWW services grew beyond the simple 
download of static pages, state became an issue and 
“hacks” had to be developed to permit state 
maintenance.  Solutions involving the server sending 
existing state data back to the client as part of an 
intermediate response have limited application.  The 
typical solution has state data maintained in the 
server (in memory, file, or database) with simply a 
client identifier key sent back to the client.  This key 
can be held in a “cookie” that will be returned to the 
server or may be embedded in the path of all URLs.  



Either way, the key gets returned as part of 
subsequent invocations.  These WWW-hacks can be 
adapted to Web Services that use HTTP. 
 Details vary but the major implementations of 
SOAP/HTTP servers and clients all support state via 
cookies (or if necessary via URL-rewriting, though 
this appears poorly supported in the .Net 
implementation [14]).  With JAXRPC, the server-
side defaults to having session support; with .NET 
and Apache-SOAP, server-side support can be 
enabled via configuration variables.  The client-side 
must also enable session handling, and may need to 
allocate and register structures to hold cookie data. 
 
3.5.1. Implementing a stateful service. Service 
containers, such as Tomcat or the .Net system, 
typically support in-memory session state via some 
form of hash-map.  The container hides all the detail 
of dealing with the cookie or re-written URL, 
supplying instead an operation that the service object 
can use to retrieve the hash map with the session data 
appropriate to the current client. 
 Direct use of data in the hash map results in 
somewhat unnatural code.  For example, a stateful 
JAXRPC calculator service would have to store its 
register value in a java.lang.Integer variable in 
this session hash map.  The code would be something 
like the following: 
public long add(long val)  { 
 int result = 0; 
// First get session for client 
 HttpSession session = null; 
 try{ 
  session = endPointContext. 
   getHttpSession(); 
 } 
 if(session!=null) { 
// If existing Session, get state data 
// variable with current value 
      if(!session.isNew()) { 
    Integer cVal =  
     (Integer) session. 
   getAttribute("myRegister"); 
    result = cVal.intValue(); 
      } 
 } 
 result += val; 
 if(session!=null) session. 
  setAttribute("myRegister", 
      new Integer(result)); 
 return result; 
} 
 CORBA's POATie mechanism offers a model for 
a more natural implementation of a stateful service.  
The POATie mechanism has two classes that 
implement the same operations interface as defined 
for the service; the POATie class deals with issues of 
integration with the ORB and delegates all actual 

work to an independent implementation class.  If this 
model is used for something like a JAXRPC 
calculator service, one would have a Calculator 
class and a java.rmi.Remote class (“Demo”) that 
ties in with the servlet container.  The Calculator 
class would use data members to store state in a 
natural way.  The tie-class, Demo, would create an 
instance of this Calculator class as its state data 
saved in the system provided session hash map.  
Code for the tie-class would be something like the 
following: 
public class DemoImplementation  
 implements Demo,  
 javax.xml.rpc.server.ServiceLifecycle 
{ 
 private final String 
  myKey = "DemosCalculator"; 
 private ServletEndpointContext  
  endPointContext; 
 
 public void init(Object cntxt) { 
   endPointContext =  
  (ServletEndpointContext) cntxt; 
 } 
 
 public void destroy() {    } 
 
 public long add(long val) { 
  return getCalculator().add(val); 
 } 
 
 ... 
 
 private Calculator getCalculator() { 
// Retrieve real object from session  
// (or create it if necessary) 
// code, as above, to get session 
  ... 
  if(session!=null) { 
   if(session.isNew()) { 
     Calculator c = 
     new Calculator(); 
     session.setAttribute( 
     myKey, c); 
     return c; 
   } 
   else return (Calculator)  
    session.getAttribute(myKey); 
  } 
  // problem - no session 
  ... 
    } 
} 
 
3.5.2. A stateful iterator. Although often 
discouraged [13], a stateful Web Service may be of 
advantage in cases where large quantities of data 
must be returned.  In CORBA, it has been traditional 
to define search operations that may result in large 
amounts of response data as yielding references to 
stateful iterators rather than sequences of records.  



On the server-side, the stateful iterator is created with 
ownership of a collection of those records that are to 
be returned, and a counter that identifies the subset of 
records that will be returned in the next request.  The 
client gets a stub that allows it to use such an iterator 
to retrieve data segments of specified size.  The 
server-side iterator and its data collection are 
discarded when all data have been returned. 
 This model can be adapted to Web Services.  Of 
course, a search operation cannot return a reference 
to an iterator object.  It can instead create the iterator, 
and make this an element in the client's session-data 
record.  An additional method can then be provided 
that retrieves records from this iterator.  The “large 
data” example was adapted to use a very simple 
stateful iterator.  The revised service definition is: 
 
public interface Demo extends Remote { 
 public Data2[]  
  getMoreRecords(int blksize)  
   throws RemoteException; 
 public int search(String request)  
   throws RemoteException; 
} 
The implementation of the search function finds the 
required records and stores them in an in-memory 
collection.  When the search is complete, the search 
function creates an instance of an Iterator, giving 
it the collection and storing it as a state variable in 
the client's session.  The getMoreRecords method 
retrieves this state variable and invokes a method that 
returns the next block of records. 
 A naive implementation of an Iterator class 
requires less than twenty lines of Java. 
 The client application was modified to use this 
iterator-based service, requesting result records to be 
returned in blocks of at most fifty.  Test results of this 
version of the application showed a 10% increase in 
the total number of packets transmitted, and only 
about 2% increase in byte transfers.  It does however 
lead to considerably less memory usage in the client; 
this version of the client having an apparent 
maximum memory footprint of 2.1Mbyte instead of 
the 4.6Mbyte for the standard implementation. 
 
4. Conclusions 
 
 Improvements in implementations of SOAP 
communications have significantly reduced the 
performance failings noted in earlier studies.  While a 
Web Service solution will still be slower, consume 
more memory, more network bandwidth, and more 
CPU cycles than an alternative solution, the 
differences are less marked in realistic applications 

such as the "large data" application than in toys like 
the "calculator" application. 
 The substantial commonality of code base for the 
various technologies makes dual deployments 
possible - a Web Service implementation for external 
users and an alternative higher performance variant 
of internal use.  Some problems associated with very 
large responses from a Web Service can be alleviated 
through the use of a stateful iterator approach. 
 The example applications did not involve any 
sophisticated features such as encryption and 
transactions.  Currently, there are competing 
proposals for Web Service transaction management, 
and there is an elaborate network of related 
investigations into security frameworks.  However, 
these features are still at prototype stage.  If such 
features are required, developers will have to look to 
commercial CORBA implementations.  (There are 
transaction managers and security systems for 
freeware CORBA but a lot of work is needed to 
develop an application that uses these in a reliable 
manner.) 
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