Error! No text of specified style in document.
1
Error! No text of specified style in document.

3GPP TSG-SA5 (Telecom Management)
S5-056529

Meeting #43, Bordeaux, FRANCE, 29 Aug - 2 Sep 2005

Source:
Lucent Technologies

Title:
CORBA SS Backward Compatible Drafting Rules
Agenda Item:
e.g. Backward Compatibility

	Decision
	X

	Discussion
	X

	Information
	

Document for:

	Late submission
	

Work Item:
Rel-7 (OAM7- BC,)
WT addressed
Work Task BC not yet approved
Specs involved:
Potentially Any new enhancements to a CORBA Solution Set

1
Decision/action requested

Agree that release 7 trials BC rules for at least one CORBA SS .
2
References

[1]
TS 32.150
3
Rationale

Upgrading the OSS software for existing networks is a time consuming and awkward task. The difficulties are made worse through not being able to upgrade the Network management and OSS software in a piece meal fashion.

Due to there being no backward compatibility designed into the ITF-N IRPs Element and network managers have to be upgraded in lock-step.

This proposal attempts to start developing CORBA solution sets in a manner which permits a more flexible approach to rolling out Network Management and itf-N upgrades.

4
Detailed proposal

This tdoc has been produced in response to an action from SA5 38bis

The original contribution being in tdoc S5-046938 CORBA SS BC TR
This presented an initial draft set of rules for CORBA BC.

This tdoc re structures the rules to align with the format in the CORBA solution set style guide, which is documented in annex D of TS 32.150 [1].

The following section started as an exact copy of 32.150 annex D, the change marks show the amendments made to add the BC rules

Basic principle

It is only possible to guarantee assured backward compatibility with a previous release, if the interfaces of the previous release, including all it's operations and type definitions are available in the new release an un changed way.

The manager must be able to rely on a technique to access the interfaces and versions supported by an IRPAgent in order to work out how to communicate with the IRPAgent.

i.e. It would not be possible for an IRPManager to obtain version information from a release 5 IRPAgent, if the manager is using a release 7 or later interface, which is different to the version supported by the Agent.

We need to ensure the IRPManager is able to locate interfaces at a version that both the manager and Agent can support. This requires an agreed way of establishing initial dialogue to overcome potential restrictions regarding version inter working negotiation.

This proposal makes use of interface inheritance, and the use of release specific markers to distinguish between new definitions in the current release and definitions made in an earlier release.

In this way a manager is always able to operate to previous set of interface definition.

The advantages of doing this are that an IRP Manage may manage both the latest release, and earlier releases. With obvious cost savings as the IRPManager may be upgraded independently from the IRPAgents. This saves significant upgrade costs incurred by both a vendor and operator.

Up to this time, IRPAgents and IRPManagers had to be upgraded in lock-step.
TS 32.150 Annex D (informative):
Style Guide for CORBA SS IDL

This annex is the style guide for writing IDL statements for Interface IRP and NRM IRP. The guidelines are largely based on the OMG IDL Style Guide (OMG document: ab/98-06-03) [6] with extensions for 3GPP IRP use.

The guide sets out consistent naming, structural conventions and usage of SS interface for the IDL in 3GPP IRP CORBA SS specifications.
Summary of Backward Compatibility Rules
The backward compatibility rules are provided. It is a decision of the Rapporteur group whether the BC rules are applied to a particular work item.
Unchanged Items from previous Releases

Where a new release adds some extensions to some parts of an IRPs CORBA solution set , there will be no copying of the un changed parts of the previous release into the new IDL.

The previous parts will be embodies into the new IDL by use of the " # include" statement.
File Names

If the IDL files of an earlier release have not been functionally modified, the existing file names will be used, without change, in the new release.

If a new IDL file is created, or there is a functional modifications to an existing file, are made, as part of the new release development, then the new or modified IDL file name will indicate the release in its name by inclusion of an "....._rn.idl" in the file name.
File Content

After the //File:- <file name> comment line there will be a set of comments which define the Delta from the previous release(identifiers no longer supported, mew identifiers added to the current release. This is to allow an understanding of what functional changes have been made.
After the commented release specific changes, there will be a series of #include statements. These will be in an order of the oldest release nearest the top of the file, the more recent versions, in release order following.
Module Names

Backward compatibility does not require any change to module names existing in previous releases.
idl enhancements will be done within the existing module names.

There are no release specific annotations to new module names.
Interface Names

1. Interfaces that do not change from previous versions of the interface would not appear in the revised CORBA IDL file

2. The name of the new interface shall be the same as the existing interface with the letters "_r" and a numeral appended, depending on the 3GPP release. Subsequent extensions will similarly be updated. So, extending an interface for AlarmInformationIterator interface in R7 would result in an interface named AlarmInformationIterator_r7.
3. The new interface shall inherit from the existing interface

4. Capabilities inherited from the existing interface cannot be removed or modified in the new interface. If a method definition must be modified, a new operation must be defined. The name of the new method shall be the same as the existing operation with the letters "_r" and a numeral appended, depending on the 3GPP release. Subsequent extensions will similarly be updated.

For example, consider the following interface:
interface AlarmIRP
{

void existing operation (in int A);
};
// new parameter added to previous releases operation
// Define a new interface which Inherits form the old, add the new operation(s).

interface AlarmIRP_r7 : alarmIRP
{

void newRl7Operation (in int A, in intB);
};
Amending or adding New Operations
Operations are defined within an interface definition.

Modifying operations, for the latest3GPP release being developed requires that a new interface is defined for the release. The new interface shall inherit from the previous release, and will have rn as part of its name.
Only new operations , again named with thern will be defined.
Revision to other identifiers
Other identifiers may be of the following sorts

· 16, 32,64-bit signed and unsigned 2’s complement integers
· Single-precision (32-bit), double-precision (64-bit), and double-extended (mantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE floating point numbers
· Fixed-point decimal numbers of up to 31 significant digits
· Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte character sets
· Boolean type taking the values TRUE and FALSE.
· An 8-bit opaque detectable, guaranteed to not undergo any conversion during transfer between systems
· A string type, which consists of a variable-length array of characters; the length of the string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined
· A wide character string type, which consist of a variable-length array of (fixed width) wide characters; the length of the wide string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.
· A container type “any,” which can represent any possible basic or constructed type.
· Wide character strings, which consist of a length, available at runtime, and a variable-length array of (fixed width) wide characters.
· A record type (called struct), which consists of an ordered set of (name, value) pairs.

· A discriminated union type, which consists of a discriminator (whose exact value is always available) followed by an instance of a type appropriate to the discriminator value.
· A sequence type, which consists of a variable-length array of a single type; the length of the sequence is available at run-time.

· An array type, which consists of a fixed-shape multidimensional array of a single type
· An interface type, which specifies the set of operations that an instance of that type must support.
· A value type, which specifies state as well as a set of operations that an instance of that type must support
· Enumerated types
A similar approach is made that new identifiers have an _Rn, where n shows the release the new definition was introduced. Enumerated types will have "...._rn" added to the type definition. The enumerated type definition, as well as each enumeration will include the "...._rn" where n is a value appropriate to the current release.
CR (Change Request) processing
Changes made during an interim period will not typically change release numbers unless new enumeration, interface definitions, or type definitions are created. In this latter case the same backward compatibility rules will apply.
D.1
Modules and File

D.1.1
Use of Modules

All declarations of IDL shall be contained in modules. No declarations of interfaces and definitions shall appear in the global scope.

Nesting modules is a useful technique when dealing with large namespaces to avoid name clashes and clarify relationships. A module nested within another module shall not have the same name as a top-level module in any other IRP CORBA SS specification.

D.1.2
File Names

CORBA SS specifications contain IDL statements.

The rule defined below specifies:

a) How to partition/extract these IDL statements to be placed in a file; and

b) How to name the file.

Note that IDL uses "#include "X"" statement where X is a name of a file containing IDL statements.

Rule:

Backward compatibility does not require that any changes are made to IDL file names from previous releases.

In the annex where IDL statements are defined, use a special marker to indicate that a set of IDL statements shall be contained in one file. The name of the file shall be the name of the first IDL module, concatenated with four characters “.idl”. Within a CORBA SS, multiple markers (implying multiple files), can be used.
It is not allowed to have an IDL module split into multiple files.
To allow BC to become effective from a particular release, the new IDL, or the updates to the previous release IDL will have file names which embody a release identifier in the name.

e.g.
 "NewIdlFile_r7_.idl"
AlarmIRPConstDefs_r7_.idl
D.1.3
Include Conventions

All included IDL files shall be specified using the "…" form of #include.

 For example:
#include "ManagedGenericIRPConstDefs.idl"
#include "ManagedGenericIRPConstDefs_r7_.idl"
D.1.4
File Structure

D.1.4.1
File Internal Identification

The first line of the IDL file shall contain “//File:” followed by a single space followed by the name of the file. For example,

//File: ExampleIRPConstDefs.idl
IF the IDL has amendments (modification, additon or removal of IDL definitions) then the release is to be icluded in the file name
 //File: ExampleIRPConstDefs_r7_.idl
D.1.4.1a Commenting the compatibility

The file will include comment lines after the /File definition which will mark the identifiers from the previous release which are no longer supported.

This will be followed by comments marking the new identifiers for the new release
//File: ExampleIRPConstDefs.idl
/**
 /* The following indetifiers are no longer supported in release 7
 /* entityName, entityName
 /* The following are identifiers new to release 7
 /* newEntity_r7_
**/
D.1.4.2
File Guard

An IDL file shall use a guard (consisting of three preprocessor lines) to avoid multiple definition errors. An example of a guard for the file called TestManagementIRPConstDefs.idl is:

#ifndef _TestManagementIRPConstDefs_idl_

#define _TestManagementIRPConstDefs_idl_
...remainder of the IDL

#endif // _TestManagementIRPConstDefs_idl_
D.1.4.3
Required Contents

If any other files are to be included, the #include statements come after the guard.

After #include lines, if any, and immediately before the module statement, the following line shall appear:

#pragma prefix "3gppsa5.org"

D.1.4.4
Example illustrating a File Structure

//File: ExampleIRPConstDefs.idl

#ifndef _EXAMPLE_IRP_CONST_DEFS_IDL_

#define _EXAMPLE_IRP_CONST_DEFS_IDL_

// This module describes/is part of…
// Include files are listed in release order.
// If a new release file name has been cretaed, earlier releases are # inlcuded.
// The order of the includes is sucha that the earliest releases are at the top
// later release appear at the end of the included files.
#include "ExampleIncludeOne.idl"

#include "ExampleIncludeTwo.idl"
#include "ExampleIncludeTwo_r6.idl"
#inlcude "ExampleIncludedThree_r7.idl"
#pragma prefix "3gppsa5.org"

module ExampleIRPConstDefs {

// IDL Definitions here

};

#endif // _EXAMPLE_IRP_CONST_DEFS_IDL_

D.2
Identifiers

D.2.1
Mixed Case, Beginning Upper, No Underscores

The following categories of identifiers follow the Mixed Case, Beginning Upper, No Underscores rules:

· module

· interface

· typedef

· Constructed types (struct, union, enum)

· exception

The “No underscores” rule is also applicable to all words that begin with an upper case letter with the remaining letters being lower case.
As a further note on naming, it is not necessary to append the value “Type” to an identifier. The fact that it is a type is obvious from the consistent application of this naming convention.

Examples:

module PMIRPConstDefs(…);
interface AttributeNameValue(…);
For backward compatibility the release in which a new definition is created s marked using _rn.
// release N enumeration

enum EntityA
 {

definition 1,

definition 2,

definition 3
 }

// release N+1 enumeration all marked with the release
enum EntityA_r7

{ DEFINITION1_r7,

 DEFINITION2_r7,
 DEFINITION3_r7
 }
D.2.2
Lower Case with Underscores

The following categories of identifiers follow the Lower Case with Underscores rules. All letters are lower case and words (if more than one) are separated with underscores.

· Operation name and notification name

· Attribute name

· Parameter name

· Structure member name

Examples:

get_notification_categories(…);
get_notification_categories_r7(…);

string comment_text;

void get_alarm_count (…, out unsigned long critical_count,..);

 struct Comment {…; string user_id; string system_id;..};
D.2.3
Upper Case with Underscores

The following categories of identifiers follow Upper Case with Underscores rules. All letters are in upper case and words have an underscore separating them.

· Enum value

· Constant

Examples:

enum SubscriptionState {ACTIVE, SUSPENDED, INVALID};

const string JOB_ID = "JOB_ID";
D.2.4
Naming IDL Sequence Types
Typically a new type declared as an IDL sequence of another type will have the text “List” appended to the name of the base type. Another convention is to declare such types as unordered sequences or ordered sets for consistency with ASN.1 notation. In this case they should have the “Seq” or “Set” (instead of “List”) appended respectively.

Example of an “ordered set”:

typedef sequence <SubscriptionId> SubscriptionIdSet;

D.3
Interface IRP

Every Interface IRP should have 3 IDL modules (each specified in a separate IDL file):

module YyyIRPConstDefs {…}; // no change from Rel-5 practice.

module YyyIRPSystem {…}; // no change from Rel-5 practice.

module YyyIRPNotifications {…}; // new compared to Rel-5 practice
The first module defines all necessary IDL constructs, such as constant strings and type definitions, for the methods and notifications. The second module defines the methods. The third module defines the notifications.

D.3.1.
Constant String and Type Definitions

This first module defines all necessary IDL constructs used by the methods (defined in the second module) and notifications (defined in the third module). The name of this module is YyyIRPConstDefs where Xxx is the name of the subject Interface IRP. An example is “PMIRPConstDefs”.

Within this module, define data types used in the methods.

Also, define the data types of the attribute values used in the notifications.

CORBA SS authors should always check the generic types defined in “ManagedGenericIRPConstDefs” before creating a new type.

For the attribute names of the structured notifications, define an interface AttributeNameValue that captures the string definitions. Make sure these definitions do not clash with those defined for the notification header, i.e. notification id, event time, system DN, managed object class and managed object instance (see NotificationIRPNotification::Notify).

An example from PMIRPConstDefs:

 /**

 * This block identifies attributes which are included as part of the

 * PMIRP. These attribute values should not

 * clash with those defined for the attributes of notification

 * header (see IDL of Notification IRP).

 */
 interface AttributeNameValue

 {

 const string JOB_ID = "JOB_ID";

 const string JOB_STATUS = "JOB_STATUS";

 const string REASON = "REASON";

 const string MONITOR_ID = "MONITOR_ID";

 const string MONITOR_STATUS = "MONITOR_STATUS";

 };
D.3.2
Operations

The second module defines the methods. The name of the module is YyyIRPSystem where Yyy is the name of the subject Interface IRP. An example is AlarmIRPSystem.

At the beginning of this module, define all required exceptions. Naming conventions for exception are covered in D.2.1 above. CORBA SS authors should always check if the generic exceptions defined in the ManagedGenericIRPSystem can be reused before declaring new exception types.

Then define one interface called YyyIRP encapsulating all methods of the subject Yyy Interface IRP. If the subject Interface IRP IS specifies that its YyyIRP inherits from XxxIRP, then reflect the inheritance relation in the interface definition. The following is an example of AlarmIRP that inherits from ManagedGenericIRP.

module AlarmIRPSystem

{

…

…

interface AlarmIRP : ManagedGenericIRPSystem:: ManagedGenericIRP {…};

…

};

When a new operation or data type is needed, this is to be specified in a new interface specification. The new interface will inherit fom the earlier release.

e.g.

module AlarmIRPSystem_r7

{

…

…

interface AlarmIRP_r7 :interface AlarmIRP
 {
 void newMethod_r7(in int X, in int Y)
 };

Naming conventions for operations are covered in D.2.2 above.

D.3.3
Notifications

Use a separate module to define the notifications. The name the module is YyyIRPNotifications where Yyy is the name of the subject Interface IRP. Examples are KernelCMIRPNotifications and PMIRPNotifications.

For NotificationIRPNotifications, do:

· Define one IDL interface Notify. Capture the four constant strings that are the names of the four NV (name value) pairs of filterable_body_field of the CORBA structured event. These four CORBA NV pairs are mapped from the five notification header attributes (defined by the Notification IRP IS), i.e. the objectClass, objectInstance, notificationId, eventTime and systemDN.

For YyyIRPNotifications where Yyy is not Notification, do:

· At the beginning of this module, define the const strings for the notification types that correspond to the set of notifications specified by (and not inherited by and not imported by) the subject Interface IRP.

· Then define a number of IDL interfaces corresponding to notifications specified in the subject Interface IRP. These interfaces should inherit from NotificationIRPNotifications::Notify. Within each interface, the first IDL statement defines the notification type (that is used as the second field of the fixed header of the structured notification). The second and subsequent IDL statements define the attribute names of this notification type, excepting those already defined by NotificationIRPNotifications::Notify. The data type of the attribute value, which is defined in YyyIRPConstDefs, should be mentioned in the comment block of this IDL statement.

· Then define a number of IDL interfaces corresponding to notifications imported, if any. These interfaces should inherit from the imported interface. An example is interface NotifyObjectCreation : KernelCMIRPNotifications:: NotifyObjectCreation. Within this interface, define all necessary IDL constructs, if any, which are not defined in the imported interface. This interface may contain no IDL statement if the IDL constructs defined in the imported interface are sufficient. For each interface imported, insert a comment “The first field of this notification carries the IRPVersion of this CORBA SS.”

· There is no need to re-define interfaces for notifications that are already specified in other Interface IRP, and from which the subject IRP inherits.

The following is an extract from PMIRPNotifications.

 module PMIRPNotifications
 {

 const string ET_MEASUREMENT_JOB_STATUS_CHANGED = "notifyMeasurementJobStatusChanged";

 const string ET_THRESHOLD_MONITOR_STATUS_CHANGED = "notifyThresholdMonitorStatusChanged";

 interface NotifyMeasurementJobStatusChanged: NotificationIRPNotifications::Notify

 {

 const string EVENT_TYPE = ET_MEASUREMENT_JOB_STATUS_CHANGED;

 /**

 * This constant defines the name of the jobId property,

 * which is transported in the filterable_body fields.

 * The data type for the value of this property

 * is PMIRPConstDefs::JobIdType.

 */

 const string JOB_ID = PMIRPConstDefs::AttributeNameValue::JOB_ID;

 …

 …

 };

 interface NotifyXXX : NotificationIRPNotifications::Notify

 {

 …

 };

 …

 };
D.4
NRM IRP

Use one module to define the IDL constructs for the managed object classes. The name of this module is XxxNRIRPConstDefs where Xxx is the name of the subject NRM IRP.

An example is UtranNRIRPConstDefs.

Within the module, define a set of IDL interfaces each of which corresponds to a managed object class specified. The interface definition respects the inheritance relation specified. An example of managed object class RncFunction, which inherits from GenericNRIRPConstDefs::ManagedFunction, is shown below.

module UtranNRIRPConstDefs

{

…

/**

 * Definitions for MO class RncFunction

 */

 interface RncFunction : GenericNRIRPConstDefs::ManagedFunction

 {

 const string CLASS = "RncFunction";

 // Attribute Names

 //

 const string rncFunctionId = "rncFunctionId";

 const string mcc= "mcc";

 const string mnc= "mnc";

 const string rncId= "rncId";

 };

…

};

3GPP

