	3GPP TSG S5 (Telecom Management)
Meeting #33-bis, Berlin, Germany, 07 – 11 April 2003
	Tdoc S5-036461


	Title:
	Generic operation to abort Operations (Discussion paper)

	
	

	Source:
	Siemens (olaf.pollakowski@siemens.com)

	
	

	Agenda item:
	SWG-C WTC1-C2

	
	

	Document for:
	Discussion / Decision

	
	

	
	

	Category:
	

	
	

	Work Item ID:
	OAM-NIM

	
	

	Doc Summary:
	This document discusses the need of a general operation allwoing to abort operation invocations.

	
	

	Specs involved:
	


Introduction

The Interface IRPs specify numerous operations. Some of these operations can take a lot of time to accomplish. Except for two operations, it is not possible to abort these operations.

This document discusses whether it is beneficial to dispose of an general operation allowing to abort all operation types and possible implications of this functionality.

Problem Description

The IRPManager can invoke numerous operations. These operations are performed by the IRPAgent. Once invoked, the IRPManager is not capable of aborting these operations. There is hence no means to stop in a defined manner the processing of operation invocations in the IRPAgent.

In two special cases the SA5 standards define dedicated operations to cancel a certain operation type. These are terminateTests for aborting an invocation of initiateTests and cancelOperation for aborting an invocation of getMoAttributes.

However, also for other operations it might be beneficial to abort the processing. In the following some use cases are provided.

Abortion of the Operation getAlarmList
The retrieval of all alarm informations is a process that may take some time in the presence of a large number of alarms. The IRPManager might be informed in the middle of an alarm synchronisation that the alarm list actually being transferred over Itf-N does not reflect the actual alarm status any more. This is for example the case when the manager is notified of a failure of some EM-NE interfaces. In this case there is no use in proceeding with the alarm synchronisation. An operation allowing to abort it would reduce the traffic over Itf-N.

But also when the alarm alignment simply takes too long (e. g. due to an overload situation of the agent), it could be beneficial to abort it, because the alarm information transferred at the beginning of the synchronisation process might not be correct any more.

Abortion of all Operations invoked by an IRPManager

An IRPManager might wish to abort all operations previously invoked by him. This might for example be the case when the IRPManager is to be shut down.

Erroneous Invocation of an Operation for Uploading some kind of Information

The NM operator might have invoked erroneously an operation to upload some kind of information (getAlarmList, getAlarmCount, monitorTest,...) resulting in unnecessary traffic on the Itf-N and unnecessary agent load. Also in this cases it is beneficial to be able to simply abort the invocation. Of course, when information is changed in the agent as a result of the invocation (e. g. clearAlarms), an an abort operation is of no use.

Abortion of an Operation to free resources for urgent tasks

The NM operator might have invoked on purpose an operation to upload some kind of extensive information. But then suddenly a situation evolves, e.g. an alarm is received, which makes the operator consider it as beneficial to have as much free resources as possible, both on the Itf-N and manager (which would have to evaluate the operation result) and the agent (which would have to perform the resource consuming operation). In such a case a possibility to abort the invoked operation would be very helpful as well.

Possible Solution

In the situations described above it would be benecifial to have a flexible, generic operation (e. g. termed abortProcessing) allowing to abort operations. As for the functionality of this operation the following bullet points provide some first ideas as a basis for discussion in SA5.

· It should be possible to abort certain operation invocations, possibly also of different operation types. For this purpose operation invocations must have a unique identifier. The input paramters of abortProcessing would have to specify a list with the operation invocation identifiers to be aborted.

· It should be possible to abort all operations invoked by a certain IRPManager, irrespectively of the operation type. This might be refined further by allowing an IRPManager to abort all operations of a certain operation type.

· An IRPManager should probably be capable to abort only operations previously invoked by him and not operations invoked by other IRPManagers.

· The IRPManager should be informed in an operation response about the outcome of the abortProcessing invocation. The response should specify the operation invocations that could be aborted and those operation invocations that could not be aborted, possible along with an error reason (e. g. a wrong operation identifier, operation already finished).

· A generic abort operation makes the operations terminateTests and cancelOperation redundant. Possibly they could be removed, if covered by the new generic abort operation.

· The solution should be future proof in the sense that it should allow to abort all operations to be standardized in future. This would avoid the necessity to check for every future operation, whether a dedicated abort operation is required or not.

