	3GPP TSG S5 (Telecom Management)
Meeting #27, Cork, Ireland

April 2 - 5, 2002
	Tdoc S5 026033

	Title:
	

	
	

	Source:
	Edwin Tse, Edwin.Tse@ericsson.ca
Dave Raymer, David.Raymer@motorola.com
Olaf Pollakowski, olaf.pollakowski@icn.siemens.de

	
	

	Agenda item:
	SWG-C / WT 15

	
	

	Document for:
	Discussion / Decision

	
	

	
	

	Category:
	B

	
	

	Work Item ID:
	OAM-NIM

	
	

	Doc Summary:
	UML Repertoire for IRP IS

	
	

	Specs involved:
	To be determined

Intent

This document identifies the set of UML notations for use by all IRP IS specifications. The set is termed UML Repertoire for IRP IS.

31
Introduction

2
References
3
3
Requirements
3
4
Notation
3
4.1
UML basic model elements
3
4.2
Stereotype
3
4.2.1
Class <<Information Object Class>>
4
4.2.2
Class <<Interface>>
4
4.2.3
Class <<Type>>
5
4.2.4
Class <<ProxyClass>>
6
4.2.5
Association <<uses>> and <<may use>>
7
4.2.6
Association <<obtainMOCMOI>>
8
4.2.7
Association <<may realize>> and Relation realize
8
4.2.8
Aggregation <<names>>
9
4.3
Visibility
9
4.3.1
Attribute
10
4.3.2
Operation
10
4.3.3
Notification
11
4.4
Cardinality as optional or mandatory qualifier
11
4.4.1
Sample
11

Annex ? (normative):

3GPP IRP-IS UML Modeling Repertoire

1 Introduction

3GPP SA5 have chosen UML to capture systems behavior in the IRP IS context.

UML provides a rich set of concepts and notations to model distributive systems. Usage of all UML notations is not necessary for IRP IS specifications. This annex documents the necessary and sufficient set of UML notations, including the ones built by the UML extension mechanism <<stereotype>>, for use by 3GPP IRP IS authors. Collectively, this set of notations is called the 3GPP IRP IS modeling repertoire.

The selection of the UML notations in this repertoire is based on the needs of the existing 3GPP IRP IS specifications. Future IRP IS releases may require the use of additional UML notations or model elements. If and when such need occurs, the selected notations and model elements will be added into the repertoire.

All quotes are from [1].

Capitalized words are defined by various 3GPP IRP IS specifications or the reference [1].

2 References

[1] OMG Unified Modeling Language Specification, Version 1.4, September 2001

3 Requirements

IRPAgent can be characterized by several different but related models. The models can be exterior or interior to the IRPAgent. Exterior models are use case models and interior models are object models.

Current version of this Annex focuses on the interior model aspects of IRPAgents.

The notation elements captured in this repertoire shall be used to model all aspects of NRM IRP IS (such as GERAN NRM IRP: IS) and (protocol) IRP (such as Alarm IRP: IS).

4 Notation

4.1 UML basic model elements

This section lists the selected UML basic model elements for the repertoire. Readers should read refer to [1] for the semantics of these elements.

The chosen elements are:

Attribute, operation, association, realization (relation realize), generalization, dependency, note, qualifier and Actor.

4.2 Stereotype

This sub-clause defines all allowable stereotypes that are summarized in the following table. Except <<Interface>> and <<Type>>, all other stereotypes are extension specifically designed for use in IRP IS specifications.

	Stereotype
	Base Class

	Interface
	Class

	Type
	Class

	InformationObjectClass
	Class

	ProxyClass
	Class

	maySupport
	Association

	uses
	Association

	mayUse
	Association

	mayRealize
	Association

	names
	Aggregation

	obtainMOCMOI
	Association

4.2.1 Class <<Information Object Class>>

It is the descriptor for a set of network resources (I would be more general here, for example, AlarmList is an IOC but not a network resource …OK how about “network management capabilities such as network resource) with similar structure, behavior and relationships.

This class and other information such as <<interface>> are mapped into technology specific model elements such as GDMO Managed Object Class for CMIP technology. The mapping of IS modeling constructs to technology specific modeling constructs are captured in the corresponding IRP Solution Set specifications.

The name of a class has scope within the 3GPP IRP IS document in which it is specified and the name must be unique among all <<InformationObjectClass>> names within that 3GPP IRP IS document. The IRP IS document name is considered in the similar way as the UML Package-name.

4.2.1.1 Sample

This sample shows an AlarmList <<InformationObjectClass>>.

[image: image1.emf]AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

4.2.2 Class <<Interface>>
“An interface is a named set of operations that characterize the behavior of an element. In the metamodel, an Interface contains a set of Operations that together define a service offered by a Classifier realizing the Interface. A Classifier may offer several services, which means that it may realize several Interfaces, and several Classifiers may realize the same Interface.

Interfaces are GeneralizableElements. Interfaces may not have Attributes, Associations, or Methods. An Interface may participate in an Association provided the Interface cannot see the Association; that is, a Classifier (other than an Interface) may have an Association to an Interface that is navigable from the Classifier but not from the Interface.”

4.2.2.1 Sample

This sample shows an AlarmIRPOperations_1 <<Interface>>.

[image: image2.emf]AlarmIRPOperations_1

+ getAlarmList()

+ acknowledgeAlarms()

<<Interface>>

The <<interface>> has two operations both of which are exposed (the ‘+’ visibility sign) to be called by IRPManagers. This semantics (as in the previous sentence) can also be captured by the following diagram where the IRPManager is modeled as <<Actor>>. Note that the IRPManager <<Actor>> and the Association <<uses>> of the diagram below are redundant. The ‘+’ visibility signs that qualify the two operations convey identical meaning.

[image: image3.emf]AlarmIRPOperations_1

+ getAlarmList()

+ acknowledgeAlarms()

<<Interface>>

<<uses>>

IRPManager

4.2.3 Class <<Type>>

“[A Type is] a domain of objects together with the operations applicable to the objects, without defining the physical implementation of those objects. A Type may not contain any methods, maintain its own thread of control, or be nested. However, it may have Attributes and Associations. The Associations of a Type are defined solely for the purpose of specifying the behavior of the Type's operations and do not represent the implementation of state data.”

4.2.3.1 Sample

This sample shows the NotificationIRPNotification <<Type>> that specifies the five parameters (the notification header of Notification IRP). These attributes have public visibility (‘+’). The AlarmIRPNotification_2 <<Interface>>, for example, depends (see the dependency relation, a dotted open arrow line) on this <<Type>> for the construction of the notification emitted via the operations defined by the <<interface>>.

[image: image4.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

NotificationIRPNotification

+ objectClass

+ objectInstance

+ notificationId

+ eventTime

+ systemDN

+ notificationType

<<Type>>

4.2.4 Class <<ProxyClass>>

This is a class of various kinds of <<InformationObjectClass>>. In other words, the instance of this class also has a class definition <<InformationObjectClass>>. There may be zero, one or more <<ProxyClass>> for each class of <<InformationObjectClass>>. For example, the ManagedElement <<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>>, ManagedEntity <<ProxyClass>> and StateManagement <<ProxyClass>>.

This class does not have attributes or operations.

This class instance is a representation of certain information of certain class of <<InformationObjectClass>>. The represented information is accessible by the instance that has an association with this <<ProxyClass>>.

The represented information accessible depends on the Role played by the instance that has an Association with this <<ProxyClass>>. The represented information accessible must have been defined already as part of the information modeled by the related <<InformationObjectClass
>>.

4.2.4.1 Sample

This sample shows a <<ProxyClass>> representing all network resources that are being monitored by IRPAgent for alarm conditions. These network resources must have their own <<InformationObjectClass>> representation. This <<ProxyClass>> have an uni-directional Association relation‑1 with AlarmInformation <<Type>>. The AlarmInformation <<Type>> plays the role of identifyAlarmedObject when engaged in relation‑1. The capability of this role, e.g., to obtain the identification, in terms of objectClass and objectInstance, of the alarmed network resource represented by the <<ProxyClass>>, is captured in the definition of Role in text form.

Note that objectClass and objectInstance, the “represented information accessible”, are not modeled by MonitoredEntity. The class of <<InformationObjectClass>>, such as ManagedElement, model them.

[image: image5.emf]MonitoredEntity

<<ProxyClass>>

4.2.5 Association <<uses>> and <<may use>>

The <<uses>> states that the source class shall use the target <<interface>> in that it invokes the operations defined by the <<interface>>. The <<may use>> states that the source class may use the target <<interface>> in that it may invoke the operations defined by the <<interface>>.

Both are uni-directional and the target is always <<interface>>.

4.2.5.1 Sample

This sample illustrates the use of <<uses>> and <<may use>>.

[image: image6.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

<<may use>>

AlarmIRPNotification_1

+ notifyNewAlarm()

+ otherOperations()

<<Interface>>

<<uses>>

AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

One may have design a <<sends>> instead of <<uses>>. We select <<uses>> because its usage allow us to specify the target, if we choose to do so, in this way without the need to specify another stereotype for Actor, such as <<receives>>. This is not clear to me.

Also, in the figure below I don’t understand why there is a “Realization” between IRPManager and AlarmIRPNotification_1

.

[image: image7.emf]AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

<<uses>>

AlarmIRPNotification_1

+ notifyNewAlarm()

+ otherOperations()

<<Interface>>

IRPManager

4.2.6 Association <<obtainMOCMOI>>

It states the source class has the MOC and MOI information of the target class. The target class must be either <<ProxyClass>> or <<InformationObjectClass>>.

The <<getMOCMOI>> implies somehow that the AlarmInformation invokes an operation to retrieve the MOC/MOI of MonitoredEntity. But what about the case that AlarmInformation has knowledge about the MOC/MOI of the MonitoredEntity due to some other means. In test management we have the case, that the object controlling a test (TesterObject) has to know the object to be tested (TestedObject), but here the TesterObject has knowledge about the TestedObject because the operation invoking the test contains this information in its input parameter list
.

4.2.6.1 Sample

[image: image8.emf]MonitoredEntity

<<ProxyClass>>

AlarmInformation

- probableCause

- otherAttributes

<<Type>>

11

+identifyAlarmedObject

<<getMOCMOI>>

4.2.7 Association <<may realize>> and Relation realize

An association <<may realize>> between <<InformationObjectClass>> and <<interface>> and between components and <<interface>> shows that the class may realize the operations offered by the <<interface>>.

A relation ‘realize’ between <<InformationObjectClass>> and <<interface>> and between components and <<interface>> shows that the class shall realize the operations offered by the <<interface>>.

4.2.7.1 Sample

[image: image9.emf]AlarmIRPOperations_2

+ getAlarmCount()

<<Interface>>

<<may realize>>

AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

AlarmIRPOperations_1

+ getAlarmList()

+ acknowledgeAlarms()

<<Interface>>

4.2.8 Aggregation <<names>>

It specifies that the target model elements are uniquely identifiable among themselves and among other model elements that are targets of the same source using a <<name>> aggregation.

A source can have multiple <<names>> with multiple targets. The set of <<names>> used between the source and its targets forms the source namespace.

A target can have multiple <<names>> with multiple sources, i.e., a target can participate/belong to multiple namespaces.

By convention, the name of the attribute in the target model element to hold the unique identify shall be formed by the name of the target class concatenated with “Id”.

4.2.8.1 Sample

This illustrates that all instances of GgsnFunction are uniquely identifiable within the ManagedElement namespace.

[image: image10.emf]ManagedElement

<<InformationObjectClass>>

GgsnFunction

+ ggsnFunctionId

+ otherAttributes

<<InformationObjectClass>>

<<names>>

4.3 Visibility

It specifies the model element is directly visible or accessible by the IRPManager.

4.3.1 Attribute

It specifies if the attribute is directly accessible by the IRPManager via. I think, we should be more general here and restrict it not to certain IRPs. (edwin: OK with Olaf comments.) Possible values are:

· Private (-) - IRPManager shall not have direct access to this attribute. I have another issue here: I think we should have a qualifier specifying that there is no need to map an IOC attribute to a MOC attribute in the IS, i. e the IOC attribute is only required for the description of the information and for proper referencing in the IS. The UML definition of private is that no other classification may use the private attribute than the classification itself. Lets discuss, if this definition covers the above requirement, or if further explanative test is necessary.

>>[edwin] yes we need Dave guru advice here. Olaf is right that Private things are kept private within the IOC and not available for other IOC. That can be a problem. It is because what I wanted here is that “these attributes are not directly accessible by IRPManager but they are accessible by other model elements within various Agts so that these other Agts can “massage” them into some other “Public attributes” for direct access by IRPManager”.

· Public (+) - IRPManager shall have direct access to this attribute.

The default is Public.

4.3.1.1 Sample

This sample shows that the two attributes are not directly accessible by Basic or Bulk CM IRPManager.

[image: image11.emf]AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

4.3.2 Operation

It specifies if the operation is callable by the IRPManager. Possible values are:

· Private (-) – It indicates that the call is not supported via the itf-N, i.e., the IRPManager cannot invoke this operation.

· Public (+) – It indicates that the call is supported via the itf-N, i.e., the IRPManager can invoke this operation.

The default is Public.

4.3.2.1 Sample

This public visibility symbols specify that the two operations are directly callable by the IRPManager.

[image: image12.emf]AlarmIRPOperations_1

+ getAlarmList()

+ acknowledgeAlarms()

<<Interface>>

4.3.3 Notification

It specifies if the notification is receivable by the IRPManager directly. Possible values are:

· Private (-) – It indicates that the notification is not receivable by the IRPManager, i.e., the notification shall not crosses the itf-N. The receiver is probably one of the components of the IRPAgent.

· Public (+) – It indicates that the notification is receivable directly by the IRPManager, i.e., the notification shall cross the itf-N.

The default is Public.
4.3.3.1 Sample

The visibility notation specifies that the notification is receivable by the IRPManager.

[image: image13.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

4.4 Cardinality as optional or mandatory qualifier

4.4.1 Sample

Not applicable.

�PAGE \# "'Page: '#'�'" ��I would use a “Classes” and a “Association” chapter here instead of “StereoType”. [Olaf Pollakowski]

>>OK you mean 3 chapters then, class stereotypes, association stereotypes and aggregation stereotypes. [Edwin Tse]

�PAGE \# "'Page: '#'�'" �� Lets consider Test Management here: The MORT is a ProxyClass, but what about the TestActivity ? I think it is not a ProxyClass, because it is not representing a certain set of IOCs, but the real test process, that has no IOC representing it in the MIB. Maybe we should think about introducing another stereotype for this. [Edwin Tse]

>> TestActivity is definitely not <<ProxyClass>>. I think it should be <<IOC>>. [Olaf Pollakowski]

�PAGE \# "'Page: '#'�'" ��>> I am not suggesting that in 3GPP spec, the following diagram should exist. I just want to illustrate the difference between using <<uses>> and <<send>> (which is also a valid way to document the thing). If we use <<uses>>, we can (if we want and illustrate in the diagram below) tied in the target/receiver of the notification. If we use <<send>>, then in the following figure, the IRPManager-AlarmIRPNotification_1 must use a new <<receive>> (for example) and cannot reuse the already basic model element “realise” [Edwin Tse]

�PAGE \# "'Page: '#'�'" ��>> Is it the name “obtain…” that you have problem or is it the definition itself? The defn states that somehow the source has the MOC/MOI info of target. The way the source obtain that info is not stated.

As for the role “identifyAlarmedObject” I don’t know if this a proper use of role. If I look at the definition of role, I think it is not, but you have certainly more experience in UML than myself.

>> If we define a <<obtainMOCMOI>> (using a more appropriate name but keeping the proposed definition), then we can remove the “role” thing. This is because the <<obtainMOCMOI>> has already defined those semantics.

Coming back to the qualifier concept: As for the namespace I cannot deduct what you say in your mail from the definition in the OMG document, but maybe I didn’t find the appropriate places. I also think that even if we should adopt something like proposed here, it does not cover all our requirements, since it focuses exclusively on MOC and MOI for identification. For example, the identification of a test is carried out by a test invocation id, that must not necessarily be a MOC or MOI, but can be an id of any structure. So maybe we cannot avoid introducing a qualifier. [Edwin Tse]

>>I think in this case, the use of UML qualifier is appropriate and the use of <<xxxMOCMOI>> is not appropriate. [Olaf Pollakowski]

�PAGE \# "'Page: '#'�'" ��We do not use cardinality for optional or mandatory qualification. This is not clear to me, do you mean the multiplicity, e. g. attributeName [0..5] [Olaf Pollakowski]

>> yes info missing here… I mean we do not need cardinality to indicate optional or mandatory operations or notifications. This is because we use <<may use>>, <<use>>, realize and <<may realize”. [Edwin Tse]

