| TU-Telecommunication Standardization Sector Contribution (WP4/4)

STUDY GROUP4

Geneva, Switzerland, ? —? January, 2001

Questions. 14/4, 15/4, 19/4

Title: Draft Rec. “* TMN Guidelines for Defining CORBA Managed Objects’
Sour ce: Editors
Contact: Keith Allen Lakshmi Raman

SBC Technology Resources Teraburst

USA USA

Tel: +1 512 372 5741 Tel: +1 408 541 1155 x322

Fax: +1 512 372 5791 Fax: +1 408 541 0439

E-mail: [kallen@tri.sbc.com| E-mail: Iraman@teraburst.com

ABSTRACT

This draft new recommendation specifies guidelines for defining CORBA-based
interfaces to software objects representing manageable resourcesina TMN. It covers
information modeling guidelines, rules for trandlating models from GDMO, and IDL
style conventions. It also provides an IDL module defining data types, superclasses, and
notifications to be used in CORBA-based information model specifications.

mailto:kallen@tri.sbc.com

INTERNATIONAL TEL ECOI\?I&GKITCATI ON UNION

TELECOMMUNICATION COM 4-xxx-E

STANDARDIZATION SECTOR August 2000

STUDY PERIOD 1997 - 2000 Original: English
Question: 14/4

STUDY GROUP 4-CONTRIBUTION

SOURCE*: EDITORs

TITLE: DRAFT NEW RECOMMENDATION X.780: TMN Guidelines for
Defining CORBA Managed Objects

Summary

This draft new Recommendation specifies guidelines for defining CORBA-based
interfaces to software objects representing manageable resourcesina TMN. It covers
information modeling guidelines, rules for trandlating models from GDMO, and IDL
style conventions. It aso provides an IDL module defining data types, superclasses, and
notifications to be used in CORBA -based information model specifications.

Source
ITU-T Recommendation X.780 was developed by ITU-T Study Group 4 (1997-2000) and
was approved under the WTSC Resolution 1 procedure on the xx of xx xx.

Keywords

Common Object Request Broker Architecture (CORBA), Interface Definition Language
(IDL), Guidelinesfor the Definition of Managed Objects (GDMO), Distributed
Processing, TMN Interfaces, Managed Objects, Abstract Syntax Notation One (ASN.1)

Attention: Thisisnot an ITU publication made available to the public, but an internal 1TU Document intended only
for use by the Member States of the ITU and by its Sector Members and their respective staff and collaboratorsin their
ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written
consent of the ITU.

Last Modification: 09/18/00 4:29 PM

Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency
in the field of telecommunications. The ITU Telecommunication Standardization Sector
(ITU-T) isapermanent organ of the ITU. The ITU-T isresponsible for studying
technical, operating and tariff questions and issuing Recommendations on them with a
view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every
four years, establishes the topics for study by the ITU-T Study Groups which, in their
turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the
procedure laid down in WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T's purview, the
necessary standards are prepared on a collaborative basis with ISO and 1EC.

NOTE

In this Recommendation, the expression "Administration” is used for conciseness to
indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS
The ITU draws attention to the possibility that the practice or implementation of this
Recommendation may involve the use of aclaimed Intellectual Property Right. The ITU
takes no position concerning the evidence, validity or applicability of claimed Intellectua
Property Rights, whether asserted by ITU members or others outside of the
Recommendation development process.
As of the date of approval of this Recommendation, the ITU had/had not received notice
of intellectual property, protected by patents, which may be required to implement this
Recommendation. However, implementers are cautioned that this may not represent the
latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 2000
All rights reserved. No part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm,
without permission in writing from the ITU.

Draft ITU-T Recommendation X.780

Table Of Contents

[e e I Vv
TADIE OF CONTENESeeeieiieeeiieceeee ettt e et e et e e eeteeeeeteeeebeeeereeeenreeeanreas Vi
TADIE OF FIQUIES.....c.ieee ettt ettt ettt ee e et ene s X
[TADIE OF TADIES..........o.oommsreseeeseeeseeeeseeeseeeseeeseeeseesseesseeeseeeseeeseenseeeseeeseeesseeseeesseeeseeesseeseeesree X
L SOOI D e eiiiee e ettt ettt e et e e e e et ——reeeeeeaaantbrrretteeeeeaannrbrrereeaeeeaannrrrereeeeeeeaannnrres 1
1.1 PURPOSE ...ttt e e e e e e ettt e e e e eaeeeaaannnrreeeeaeaeeeaanntrreeeeeaeeaaann 1
1.2 APPLICATION L.uutiviiiiieeieiiiiuttreeeeeeesseaiiusssseeeesssssaaasssssesessassssaasssssesesesssssassssrsneseessasann 2
1.3 DOCUMENT ROADMARP.......coiiiiitiiiee ittt e e eeteeeeeeitteeaeeetaeeeeeaareeeeeanneeaeeaaseeaesansreeaaans 4
1.4 DOCUMENT CONVENTIONS .ovoovoviossimsomsomoesemsessoroesemseeeeeessessesoeeenseeseeeeeensere 4
1.5 COMPILING THE IDL ..ooiiiiiiiiiciieceeeeeeeeeee et e e eaeeenreeeeans 5
REFEIEINCES ...ttt e e e et e e et e eeaeeeebeeesnseeeanseseasseesneeesnreeesnseessneeesns 6

2.1 NORMATIVE REFERENCES......cuuttiieeeuttieeeeeteeeeeetteeaeeenteeeeseanteeeeaaaneeeeseaneeeeeenseeeeans 6
.2 ADDITIONAL REFERENCES.....cccciiiiiiiiiittttetteeeeeieiiisssseeessessssaasssssesesesssssissssssesesssenans 6

3 DETTNITIONS . cvwovvovesoomo oo 7]
1 CORBA Modeling Goals and REQUITEIMENES.........c..eeoveeiieiieeiieeeiieeeee e eeveeeeveeeans 8
D GOALS .vteeteeeeeeeeeeeeeeesteeeeeeneeeensenseeaneeesessneansessessneansessneaneesnssneanenssneseeasensane 8
A.1.1 Application INteroperability..........c.ccveeeieeeieeieecee e 9
4.1.2 Common Usage of CORBA Common Object Services........ooooiii 9
4.1.3 Information Model TranSParEnCyoouoeieeeeeeieiiesieniesieseseesieseeeeneans 9
P E N 9
R S A A A 10
B.3 PRINCIPLES OF CONTAINMENT AND NAMINGcocoveeriereeeerierieeiseretreeensresesensenanns 10
.31 NBMING .ottt 11
.32 ENULY [OENTTICAION. ...oooooosoooomsomossssoonosmiossssesseosssessneoessmseseessnseesenseees 12

.4 MANAGED OBJECT CLASSES.....ccciiieiuuttreieeeessiaiiurrreeesesesesaainssseeeeesessemmnnsrrseeeeseeeanns 12
1.5 PACKAGES ...ttt ettt e ettt ee e e et e e eeenteeeeaanneeeaeeannreeeeennreeeeeanreeas 12
.6 A TTRIBUTES. ..uuuttriiiiieiiiiiiuttteeeeeeeeesaaiussreeeesssssaaasssseeesessssssassssssssesesssemmsssssssesesseesans 12
6.1 GET AN SET......oooiiiiiiiii et eraeeenreas 13
1.6.2 GENEIIC ALTIDULE GEL........cvvieceeie ettt eeeneeas 13
1.6.3 Sat-valued AUITDULES.........c..eeeeiiiecieeeeeeceeeeeeeeeee e 13

K7 CREATION AND DELETION OF MANAGED OBJECTS......cvoviuvreeceriesereesernserensessennas 13
17,1 CIEALION........eeeeeeeeeeeiee ettt eeetee et e e et e e eteeeenteeeeneeeeneeesneeesreeeenreeannrens 13
.72 DEEIONccuiiiiiiciic ettt raeeareereeenns 14

8 INHERITANCE ..oooooooooososooocosoeooeosooseeoseessosssssssesesseeseosnossssnosessessensseseesenes 15|
B The Object MOAE! IDL MOUUIE...........coveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeesenensesneaeane 15
5.1 THEBASE (TOP) MANAGED OBJECT INTERFACEcoveveveveeeeeeereereeeensnseeeneensnns 16
5.1.1 The nameGet() OPEratioNc..oueeveeueeeeeeeeeeeeeeeeeeeeieeieeeeseeeneeereeneeans 17
p.1.2 The objectClassGet() Operation. ... 17
B.1.3 The PackageSGEL() OPEIAHONoocoowreereeereeeseeeseeeseeesseeseeeeeeeseeeeeeeeenes 18
b.1.4 The creationSourceGEL() OPEr atiON..........ecevecueeeeiecieiieeeeiieeeeeieeeeeecireeaeennns 18
5.1.5 The deletePolicyGet() OPErationc..ccveecveeiiieeieeieeeieeceeeeeee e 18
5.1.6 The attributeSGet() OPEratiON...........cccuveeeeueeeeieeeeieeeeieeeeeeeeeteeeeeteeeeveeeeneees 18
p.1.7 Thedestroy() Operation ... 19

5.2 THE MANAGED OBJECT FACTORY ...cveveviitiierieteeteeereereseeseesesseneeseesesseeesessesseseanas 19

Vii

ITU-T Recommendation X.780 Draft

5.3 THE NOTIFICATIONS INTERFACEuuviiiiiiieiiiiiiirrieiieeesssisissseseeesesssesssssssessesssenans 20
5.4 THE DATA TYPE DEFINITIONS ...uvvuuutiuuiaieeiaaeieiaaansnsasasssasnsasnsnsnsssssssssssssssssnsnsssnnnsns 22
SRS I = o= = 0] N S TP 23
.L1.1 The ApplicationError EXCEPLIONcoiiiiiiiiiiiiiiiiiesie s 23
1.1.2 The CreateError EXCEPLIONc..cccuveiieiieeeiie ettt ca e seesteesnee e 24
1.1.3 The DEleteError EXCEPLIONccveeveeeieeieeeteeceee et e e 25
E.6 MACRO DEFINITIONS ..ttviiiiie e i i s ceittiettee e e e s seiatvaae e s e s e s s s ssabtaaeeeasssssssiabbsseeaeassssaasssens 25
7 THE CONSTANT DEFINITIONS.ovovomsosrsossssorsoossomsosomsomssomsosmssmssoms oo 26
B Information Modeling GUIJEIINESc..o.eeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereereeeerannne 26
N 1Y T T TUTIN =T 26
5.2 INTERFACESuutttiiiiiiiiieiitittiiieeeeeseeaatteeeeasssssasasbbsseesaassssaasssssesesassssessssrrsnnsesssssans 27
RTINS 21U = 28
6.3.1 Readable AUITDULES...........ccccuviiiiiiiiie et e e e e 28
5.3.2 SAttabl@ ALTIDULES ...ttt e e eeeee e e eeeereeasneeeassnnees 28
B.3.3 SEl-ValUE AT TOULES ..o oo e oo e sen oo een s 28
5.3.4 EXCEPUIONS ..ottt e e et e e eneeereesneeereeeneeennes 29
5.3.5 Sandard AtFTDULESoccuviiiiiciiiie it eeve e e e e e ennes 29
S X o 110 NS 30
5.5 INOT I CATIONS . 1 ttttiiiiiiiiitttteeiessssssssssseesessssssaasssssssessesssasssssssssssssssssssssssssnssssssssans 30
5.6 CONDITIONAL PACKAGESuuuuiuiiiiiiiiiiiiinisiissssssssssssssssssssssssssassssssasaaassasasaasssaaana 31
5.7 BEHAVIOR.uuutiiiiiiiiiiiiiititiiiiee e eeseeittteeeeasasssassbbreeesaasssssassssbesesassssssssssrrsnnsaassssans 32
5.8 NAME BINDING INFORMATION ... uuuuuuuuurnnnnnannnnasnsasnsasssssssnsssssssssssssssssnsssssssssssssssnsns 32
5.0 FACTORIES. ...uuttiiiiiii ettt e e e e e e ettt e e e e e s e et bbb e e e e e e s e s sa bbb baaeeaesesessasbbaaeeaaaeaesns 35
B.9.1 Create OPErationS.occiuceeuiescsisissessecsesessssssssesssssssssssessssssssensessssesesssssans 35
B.9.2 Factory FINGENcoooveeeeeeeeeeceeeeeeereseeeeeeceeeeeeereseereneeerensneneeneneeneneees 38
.10 MANAGED OBJECT CLASSVALUE TYPES ...uuuuuuuiuiuiuinininnninnnininnnnnnnnnsnsnnnnnnnnnnnnnnnnns 38
S R G0 NS N N TSP 39
B5.12 REGISTRATION .ovooovooosossososossossmsssosomsssmssmsmsms oo 41
6.13 VERSIONING OF CORBA/IDL SPECIFICATIONS.ccciiiutiiiiiiiiiieeiiieeeesisreresesseeeas 41
A Y O RN e 42
7.1 MANAGED OBJECT CLASSES........ccceiiutttiiiieeiiiiiisrtreeeiesssssisissssseeesssssesssssssessssssanans 42
7.2 PACKAGES ...t sassaaannsnnnnnnsnnnnnnnnnnnnns 43
(A N 21O =SS TP 44
7.4 ATTRIBUTE GROUPSuuuuuuiiueiininniiiiisisinnssssssssssssssnsssssssnsssnsssssnsssssnsnsnsnsnnnsnnnnnnnnnn 45
[75 ACTIONS oo oo ee oo e et e en e e e e e e en oo een oo e e eneien 45)
7.6 INOTIFICATIONSuuuiuuiuuniiniuianninasaanaaasassansssssssssssssssssssssssssssssssssnsssssnssssssssnnsnsnnnnnnnn 46
7.7 BEHAVIORS.....uututiiiiii it ieiiittett e e e e e s e eitaee e e e e e s e e et a e e s e e e s e s sabbbbaaeesesssesssbbbaeeaaaesasans 46
[7.8 NAME BINDINGS .ooovorsosossosssomsoomss oo 47
7.0 PARAMETERS ...ttttiiiiiiiiieittttietiessssssssssseessssssssasssssssessesssssessssssssssssssssssssssssnsssassssans 48
7.9.1 ACTION-INFO and ACTION-REPLY........oooiiiiee et eereee e aeea e 48
7.9.2 EVENT-INFO and EVENT-REPLY.............cccoviiiiiiiiiiiciciiie et 48
7.9.3 CONEXI-KEYWOI U.......eeeeeeeeee et e e e e e eneeereeneeaneea 50
7.9.4 SPECIFIC-ERROR.......uuviiiiiiiii ettt 50
[7.10 ASN.1 DATA TYPES ..euiuiuiriisissesissesisssssessssssssssssssssssssassssssssssssasssssssasssssssessssassesass 51
O TS 52
7.00.2 SEOUEBINICE.eeeeieeeee et e e et e e et e e eaneeeeeeanseeeeeaanneeeeeanneeeeennnes 52

viii

Draft ITU-T Recommendation X.780

7.10.3 SEOUENCE OF ...ttt e et e e et e e enreeeeneeeeneeaenreas 52
[S = o 52
[7.10.5 CROICE........cvviiiiiciiiie ettt e et e e et a e e e e e e e s eanbeeeeeaasbeeaessbteneeaanes 52|
7.10.6 Object |dentifier (OID).......ccccuueiiiieeeiiiieeeiieeeeeeeeeeeeeeeeeeeseeeeesssereesesseseeeessnns 53
[7.10.7 ODJECIINSIANCE.coevveeeereeeeereereseeresieereeeereeeeeresesrenesrensreneesneneenereees 53

B Styleldiomsfor CORBA IDL SPECifiCatiONS............coveeeereueeverierreerreeserenseensereeenns 53
E.l USE CONSISTENT INDENTATION . ..utttiiieiiiiieittireeeieeesssieisatereeessssssssssssssessssssssssssssens 53
.2 USE CONSISTENT CASE FOR IDENTIFIERS.uuuuuuuuennnnnnnnnnnnnnnsnsssssssssssssnsssssssnnnsnnnnes o4
8.3 FOLLOW JIDM APPROACH FORIMPORTcoccvtiiiiiiiiei ettt sesitireees e 54
B.4 UseJIDM APPROACH FOR OPTIONAL AND CHOICE.......cooiieiieeeceeeeeeee, 55
B.5 USE A CONSISTENT TYPE SUFFIXuvviiiiiiiiiiiiiiiirieiieesessesiassreeeesesssessssssssessssssssans 55
8.6 USEA CONSISTENT SUFFIX FOR SEQUENCE TYPES.cccoiiuvvriieeeeeieiiiirreeeeeeenenans 55
B.7 USE A CONSISTENT SUFFIX FOR SET TYPES. ...ccuvtviiiiieiiiiieitiieiieee e e s eseiiivenenaaenesns 56
B.8 USE A CONSISTENT SUFFIX FOR OPTIONAL TYPES.....uuuuuuiininieiiinninnnnnnns 56
B.9 ARRANGE OPERATION PARAMETERS IN A CONSISTENT MANNERcooorooveennn. 56
B.10 ASSUME NO GLOBAL IDENTIFIER SPACES.......uuuuuuuuuuunnnnnnannnnnnnnnnnnssnsnsnnnssnnsnssnsnnnes 56
B.11 MODULE LEVEL DEFINITIONS.......cceitttttiiieeeiieeiiirieetee e s e s esiitaeeeesesssessssssesesasenanans 56
B.12 USE OF EXCEPTIONSAND RETURN CODES ..vorovorosorsosssomsosmssssssms oo 56,
B.13 EXPLICITVS. IMPLICIT OPERATIONS ..utttiiiiiiiiiiistteieeiesssiiisisssssseesssssisssssssseeeesssasins 56
B.14 DON'T CREATE A LARGE NUMBER OF EXCEPTIONS.......ccvceiiiireeeeecieereeeeveeceenn, 56
B Compliance and CONFOIMANCE...............oeueeeerieeeeerieieeerieieteeieerseeeesseseeeeesereeeeeereanans 56
0.1 STANDARDS DOCUMENT COMPLIANCEuuuuuetuuuraineaseraenssansnsnsnnsnsnnsnnnsnsnnnnnnnnnnnnns 56
0.2 SYSTEM CONFORMANCE ...vvviiiiieieiiiettieeiee e e e s eeiiatataeesaaesssssiasbaeseesssssesssssreeesasssssans 57
0.3 CONFORMANCE STATEMENT GUIDELINES ...t snassnsssnnnnns 57
Rnnex A The Object Model CORBA IDL MOdUIE...........ccccoerereerereererceerecererierennns 59
[MODULE ITUT XT780.......cccuiiiiieitiiiiieeiiie s s eetiieseeeaeieessereeassessessssssessssasssesasssssseeesans 59

[IMPORTED TYPES.........oiitiiiiiiiiis ettt eceee e et e e e et e e e e ebee e e s senbaeeesanrenaeas 59
TFORWARD DECLARATIONSAND TYPEDEFS ... 59

[ENUMERATED TYPES........ooiiitiiiiiiiii et e et eeesesveesesssressssessesesans 62

[STRUCTURESAND UNIONS ...ttt eettee s etre e s s e satee e s ssrseaessenraeeseans 63

[EXCEPTIONScooiiiii ittt e ettt e e et e e e e eabaae e s seabaeeeeaaraeaaas 68

[MANAGED OBJECT INTERFACEocoovtieiieteiee ettt eeeeeaasseevaena e 70

[MANAGED OBJECT FACTORY INTERFACE.........cccccccooviiiiiiiiiiee e 71

| NOTIFICATIONS INTERFACEcciiiiieiiei et eeeeeesseeeassseneenesann 72

[TV A CROS .o e et e e et ere et ee e e et et ee e e et e e e e et ee e e e et eeeeee et neans 86
Annex B Network Management Constant Definitions................coveeveeeverevvensvenseenne 87
| APPLICATIONERRORCONST MODULEcccciiiutiieiiitiieeeiittreeeseisreeeeesiseeeeseissessesesssenesans 87

| CREATEERRORCONST MODULE vovvovororossossssoosssssssomsoomsomsoomsomsmsmsosmsomsosmsomsmsnsonoons 87|

| DELETEERRORCONST IMODULE.......ciiiiiutiiiiiiutiieiiiseriessesseesssesssesssesssersessssessssessseseesns 88

{/ PROBABLECAUSECONST MODULE ...ttt 89

ITU-T Recommendation X.780 Draft

Table Of Figures

[Figure 1. CORBA Based Specification with Requirements Analysis and Desion............ 3
Figure 2. Example of ContaiNMENtc..eecouieeieieeiiieeeieeeeeeeeee et 11
Figure 3. Diamond INNEMTTANCEccuoeuiiiiiiiiieeee e 27

11 S e e] o s 30|

Draft ITU-T Recommendation X.780

Recommendation X.780

TMN Guidelinesfor Defining CORBA Managed Objects
(2001)

1 Scope

The TMN architecture defined in Recommendation M.3010 —2000 introduces concepts
from distributed processing and includes the use of multiple management protocols. The
initial TMN interface specifications for intra- and inter-administration interfaces were
developed using the Guidelines for the Definition of Managed objects (GDM O) notation
from OSI Systems Management with Common Management Information Protocol
(CMIP) asthe protocol. The inter-administration interface (X) included both CMIP and
CORBA GIOP/I1OP as possible choices at the application layer.

CORBA, adistributed processing technology, is being considered for use in the TMN
communication architecture primarily due to its acceptance by the Information
Technology industry. This acceptance is expected to enhance the availability of
CORBA -based interfaces due to better development tools and wide-spread expertisein
developing CORBA-based interfaces. Thistechnology, developed by the Object
Management Group (OMG), is aso being considered by multiple industries.
Specifications using this technology provide support for standard application
programming interfaces (APIs) and language bindings to programming languages, and
they also facilitate software portability. Theinteroperability solutions offered by the
object request broker combined with the Inter-ORB protocol address interoperability
between client and server. While CMIP and information models provide solutions for
interoperability between manager and agent systems, CORBA defines inter-object
interactions where the objects may be distributed.

1.1 Purpose

Severa groups are devel oping network management specifications that use CORBA
modeling techniques with IDL as the notation along with CORBA services. The scope
of this standard is to define guidelines suitable for use in the specification of
interoperable CORBA-based network management interfaces. Previous standards for
CORBA -based network management interfaces have mainly focused on TMN “X”
interfaces, which are interfaces between administrations (carriers). The demands placed
on these interfaces are different from those used “inside” an administration, “Q”
interfaces. The scope of this Recommendation covers all interfacesin the TMN where
CORBA may be used. It isexpected that not all capabilities and models defined here are
required in all TMN interfaces. Thisimpliesthat the framework can be used for

ITU-T Recommendation X.780 Draft

interfaces between management systems at all levels of abstractions (inter and intra-
administration) as well as between management systems and network elements.

ITU-T Recommendation Q.816[1]]defines a set of services that are required for CORBA-
based TMN interfaces. This Recommendation defines guidelines for specifying
information models written in CORBA IDL to which the services are applicable. It also
provides rules for translating existing GDMO modelsto IDL. Finally, it defines some
base IDL code for use by al CORBA-based TMN information models. The combination
of this Recommendation and Q.816 form a framework for defining and implementing
CORBA-based TMN interfaces.

Use of a common framework on telecommunications management interfaces has severa
advantages. Some examples are: facilitating reuse of models that are devel oped to meet
the generic requirements of telecommunications; profiling CORBA services for use by
the telecommunications industry; easing the definition of new services for TMN; reusing
the semantics of the existing rich set of models; and harmonizing the modeling approach
across groups using a single source similar to Recommendations X.720, X.721 and X.722
for CMIP. Re-using acommon approach to modeling resources and re-using a generic
information model for avariety of network technologies and network management
applications will speed the introduction of new network services while keeping network
management system development costs down.

The telecommunications industry has invested a great deal of time and energy in the
development of information models for the CMIP network management protocol. A
primary goal of the TMN CORBA framework is the re-use of these information models
by enabling their trandation to CORBA Interface Definition Language (IDL) with little
changein semantics. Asaresult, initial IDL information models are expected to be
derived from CMIP models.

1.2 Application

Recommendation M.3020 defines three phases in the devel opment of a TMN
specification. The three phases are Requirements, Analysis and Design. Figure 1 shows
this process and the scope of this Recommendation for developing CORBA based
interface specification relative to this process.

Draft ITU-T Recommendation X.780

Requirements

paradigm
independent
Analysis
@ (b)
v v v
paradigm cMIP » CORBA Pa?;gf'm
specific Design | () | Design Des'g?n

Figure 1. CORBA Based Specification with Requirements Analysisand Design

The requirements and analysis are specified using an approach that is not specificto a
network management technology paradigm. The output from the analysis phasesis used
for development in the design phase. In this phase, network management technol ogy
specific features are used to define information models. The arrows marked as (a) and (b)
show that the analysis output is mapped to GDMO/ASN.1 based model to use with CMIP
or IDL models to use with CORBA/I10OP, respectively. There are no prescriptive rules
available at this time to generate these models. It may be possible to develop such rulesin
the future in M.3020.

This Recommendation addresses the reuse of existing models developed in the CMIP
paradigm if CORBA/IIOP isto be used instead of CMIP. The arrow shown as (C) is
addressed by this Recommendation.

In developing the transformation from GDMO/ASN.1 definitions to CORB/IDL two
approaches are possible. In the first approach, every element of the syntax is translated to
CORBA/IDL using awell-specified algorithm or a prescriptive definition. This method,
is the one taken with Joint Inter-Domain Management (JIDM) where a gateway can be
used to support interoperability. The guidelines in this Recommendation address the
design phase for applications where the translation from the existing GDMO definitions
preserves the semantics and also uses the features of CORBA. The transformation is not
completely prescriptive. This approach is used not for inter-working using gateways but
to preserve the requirements and semantics of the models developed to meet the
telecommunication context. Thisis applied when the managing and managed systems are
designed to communicate using CORBA/I10P.

In addition to the recommendations for translating from GDMO information models
defined here, Recommendation Q.816 defines recommendations for CORBA servicesto
be used for managing telecommunications networks. Q.816 aspects of the framework are
applicable irrespective of how CORBA based specifications are developed (i.e., using the
path designated as (b) or (¢) in Figure 1).

ITU-T Recommendation X.780 Draft

In addition to taking advantage of CMIP information models, another purpose of the
guidelinesisto take advantage of CORBA. The framework leverages the functions
defined in the CORBA specifications, including a set of Common Object Services. Also,
these guidelines re-use CORBA approaches and design patterns wherever they are
appropriate. Finally, while re-using existing models isimportant, it is equally important
that the framework support the development of new models. These guidelines do not
require a GDMO model to be developed prior to the development of an IDL model. In
fact, developing anew IDL information model for use within this framework is
straightforward and guidelines for doing so are provided.

ITU-T Recommendation M.3120[19]] provides a CORBA IDL version of the generic
network information model originally defined in Recommendation M.3100. The IDL
version follows the object modeling guidelines defined here and is designed to use
CORBA-based TMN services defined in ITU-T Recommendation Q.816.

1.3 Document Roadmap
This document has the following structure:

Section 1. Introduction, document roadmap, and updates.

Section 2. References.

Section 3. Definitions of abbreviations used throughout the rest of the document.

Section 4. Requirements for the object modeling guidelines. These are the design
goals the guidelines must meet.

Section 5. Description of the CORBA IDL module that defines interfaces to be
used and sub-classed in network management interface specifications.
The actua IDL isin Annexes A and B.

Section 6. Guidelines for defining CORBA-based TMN information models.
These guidelines are specifically designed for IDL objects using the
TMN CORBA -based services in Recommendation Q.816.

Section 7. Guidelines for trandating GDMO information models to IDL models
suitable for use with the TMN CORBA-based servicesin
Recommendation Q.816.

Section 8. Styleidioms for CORBA IDL network management interface
specifications.

Section 9. Compliance and conformance guidelines.

Annex A. The IDL module for the modeling guidelines specification. This
annex is normative.

Annex B. Additional IDL defining constants used by the modeling guidelines.
This annex is normative.

1.4 Document Conventions

A few conventions are followed in this document to make the reader aware of the
purpose of the text. While most of the document is normative, paragraphs succinctly
Editor’ s note — This statement on normative aspect may need to be modified based on
ITU rules.

Draft ITU-T Recommendation X.780

stating mandatory requirements to be met by a management system (managing and/or
managed) are preceded by a boldface “R” enclosed in parentheses, followed by a short
name indicating the subject of the requirement, and a number. For example:

(R) EXAMPLE-1 Anexample mandatory requirement.

Reguirements that may be optionally implemented by a management system are likewise
preceded by an “O” instead of an “R.” For example:

(O) OPTION-1 An example optional requirement.
The requirement statements are used to create compliance and conformance profiles.

Many examples of CORBA IDL areincluded in this document, and IDL specifying the
datatypes and base classes are included in normative annexes. The IDL ispresented in a
9-point courier typeface:

/1 Exanple |IDL
interface foo {

voi d operationl ();
b

Instructions for extracting the IDL from an electronic version of this document and
compiling it are presented in the next section.

1.5 Compiling the IDL

An advantage of using IDL to specify network management interfacesisthat IDL can be
“compiled” into programming code by tools that accompany an ORB. This actually
automates the development of some of the code necessary to enable network management
applications to interoperate. This document has two annexes that contain code that
implementers will want to extract and compile. Both Annex A and Annex B are
normative and should be used by developers implementing systems that conform with
this standard. The IDL in this document has been checked with two compilers to ensure
its correctness. A compiler supporting the CORBA 2.3 specification must be used.

The annexes have been formatted to make it simple to cut and paste them into plain text
files that may then be compiled. Below are tips on how to do this.

1. Cutting and pasting seems to work better from the Microsoft® Word® version of this
document. Cutting and pasting from the Adobe® Acrobat® file format seems to
include page headers and footers, which cannot be compiled.

2. All of Annex A, beginning with theline“/* ThisIDL code...” through the end should
be stored in afile named “itut_x780.idl” in adirectory where it will be found by the
IDL compiler.

3. All of Annex B, beginning with the line*/* ThisIDL code...” through the end should
be stored in afile named “itut_x780Const.idl” in the same directory asthefile
containing Annex A.

ITU-T Recommendation X.780 Draft

4. The headings embedded in these annexes need not be removed. They have been
encapsulated in IDL comments and will be ignored by the compiler.

5. Comments that begin with the special sequence “/**” are recognized by compilers
that convert IDL to HTML. These comments often have special formatting
instructions for these compilers. Those that will be working with the IDL may want
to generate HTML asthe resulting HTML files have links that make for quick
navigation through the files.

6. The annexes have been formatted with tab spaces at 8-space intervals and hard line
feeds that should enable almost any text editor to work with the text.

2 References

2.1 Normative References

The following ITU-T Recommendations and other references contain provisions which,
through reference in this text, constitute provisions of this Recommendation. At the time
of publication, the editions indicated were valid. All Recommendations and other
references are subject to revision; all users of this Recommendation are therefore
encouraged to investigate the possibility of applying the most recent edition of the
Recommendations and other references listed below. A list of the currently valid ITU-T
Recommendationsis regularly published.

[1] ITU-T Recommendation Q.816, CORBA-Based TMN Services.

[2] The Object Management Group (OMG), “The Common Object Request Broker:
Architecture and Specification”, OMG Document formal/99-10-07, Revision 2.3.1,
October, 1999.

[3] The Object Management Group (OMG), “JIDM Interaction Translation,” Edition
4.31, OMG TC Document telecom/98-10-10, October 1998.

2.2 Additional References

The following standards contain information that was used in the devel opment of these
guidelines. Asstated in the introduction, a primary design goal of these guidelinesisto
enable the re-use of existing network management information models, at |east without
significant semantic changes. These documents provide many of the details on the ITU-
T’'s CMIP framework, and therefore define some of the functionality the CORBA object
modeling guidelines must support.

[4] ITU-T Recommendation X.703 (1997), Information Technology — Open Distributed
Management Architecture, October, 1997.

[5] CCITT Recommendation X.720 (1992) | ISO/IEC 10165-1 : 1992, Information
Technology — Open Systems I nter connections — Structure of Management
Information: Management Information Model.

Draft ITU-T Recommendation X.780

[6] CCITT Recommendation X.721 (1992) | ISO/IEC 10165-2 : 1992, Information
Technology — Open Systems I nter connections — Structure of Management
Information: Definition of Management Information.

[7] CCITT Recommendation X.722 (1992) | ISO/IEC 10165-4 : 1992, Information
Technology — Open Systems I nter connections — Structure of Management
Information: Guidelines for the Definitions of Managed Objects.

[8] ITU-T Recommendation X.720 Cor. 1, Corrigendum 1 to CCITT Recommendation
X.720, February, 1994.

[9] ITU-T Recommendation X.721 Cor. 1, Corrigendum 1 to CCITT Recommendation
X.721, February, 1994.

[10] ITU-T Recommendation X.721 Cor. 2, Corrigendum 2 to CCITT Recommendation
X.721, October, 1996.

[11] ITU-T Recommendation X.721 Am. 1, Amendment 1 to CCITT Recommendation
X.721, November, 1995.

[12] ITU-T Recommendation X.722 Cor. 1, Corrigendum 1 to CCITT Recommendation
X.722, October, 1996.

[13] ITU-T Recommendation X.722 Cor. 2, Corrigendum 2 to CCITT Recommendation
X.722, January, 2000.

[14] ITU-T Recommendation X.722 Am. 1, Amendment 1 to CCITT Recommendation
X.722, November, 1995.

[15] ITU-T Recommendation X.722 Am. 2, Amendment 2 to CCITT Recommendation
X.722, August, 1997.

[16] ITU-T Recommendation X.722 Am. 3, Amendment 3 to CCITT Recommendation
X.722, August, 1997.

[17] CCITT Recommendation X.733 (1992) | ISO/IEC 10164-4 : 1992, Information
Technology — Open Systems | nter connection — Systems Management: Alarm
Reporting Function.

[18] ITU-T Recommendation M.3010 (2000), Principles for a Telecommunications
management network, February, 2000.

[19] ITU-T Recommendation M.3120, CORBA-Based Generic Network Information
Model.

[20] ITU-T Recommendation Q.821 (2000), Stage 2 and Stage 3 description for the Q3
interface - Alarm Surveillance,(to be published).

3 Definitions
This section provides definitions for acronyms used throughout the rest of the document.

ASN.1 Abstract Syntax Notation #1.

ATM Asynchronous Transfer Mode.

CMIP Common Management Information Protocol.
CORBA Common Object Request Broker Architecture.
COS Common Object Services.

ITU-T Recommendation X.780 Draft

DN Distinguished Name.

EMS Element Management System.

GDMO Guidelines for the Definition of Managed Objects.
GIOP General Interoperability Protocol.

HTML Hypertext Markup Language.

ID Identifier.

IDL Interface Definition Language.

[1OP Internet Interoperability Protocol.

IOR Interoperable Object Reference.

ITU-T International Telecommunication Union — Telecom.
JIDM Joint Inter-Domain Management.

MO Managed Object.

NE Network Element.

NMS Network Management System.

OAM&P Operations, Administration, Maintenance, and Provisioning.
ORB Object Request Broker.

OID Object Identifier.

OMG Object Management Group.

ON] Open Systems Interconnection.

PDU Protocol Data Unit.

QoS Quality of Service.

RDN Relative Distinguished Name.

TMN Telecommunications Management Network.

TTP Trail Termination Point.

uiD Universal Identifier.

UML Unified Modeling Language.

uTC Universal Time Code.

4 CORBA Modeling Goals and Requirements

This section describes the key goals for modeling TMN resources using CORBA, and the
requirements that the modeling guidelines must meet to support these goals. Section 4.1
introduces the goals of the modeling guidelines. Subsequent sub-sections then provide
terminology and requirements. The requirements in Section 4 are requirements that the
framework must satisfy. They are based on the telecommunications management needs.
Sections 5, 6, 7, and 8 then describe modeling guidelines that meet these needs and define
how to achieve the requirements of section 4 by using CORBA in acertainway. The
rulesin Section 5, 6, 7, and 8 on how to use CORBA also arereferred to as requirements.

4.1 Goals

This document specifies guidelines for defining CORBA managed objects for use on
interfaces supported by telecommunications network management systems and network
elements. Some key goals of the modeling guidelines are:

» Application Interoperability
e Common Usage of CORBA Common Object Services

Draft ITU-T Recommendation X.780

e Information Model Transparency

This section elaborates on these three goals.

4.1.1 Application Interoperability

A key goal of the TMN architecture, and in particular the information architecture, isto
promote a standard framework for providing interoperability and information exchange
between systems from a diverse set of network management system suppliers.
Interoperability between systems involves many aspects of development. At itslowest
layer, a common communication mechanism must be in place to support acommon
syntax, the establishment of connectivity and the exchange of operation requests/replies
between systems. This aspect of interoperability isinherently supported by the CORBA
specification.

For TMN, thereis the need to provide application interoperability. That is, management
systems from diverse suppliers will be utilized within a single administration's TMN to
support different functions necessary to support management of its networks. To
simplify integration of these various suppliers systems, they must agree on the semantics
of the information being exchanged. Thisis accomplished with the specification of an
information model. This document specifies the rules for defining these information
models.

4.1.2 Common Usage of CORBA Common Object Services

A second aspect of these guidelinesis the reliance upon a common usage and profiling of
the distributed processing environment of choice. Rather than re-defining the interface
capabilities needed to support common network management functions such as object
naming and notification filtering with each information model, these guidelines rely upon
a set of support services. These support services enable the information models to be
simpler, and aso enhance interoperability. The support services required for CORBA
based interfaces are specified in Recommendation Q.816.

4.1.3 Information Model Transparency

If CORBA isused in places within the TMN architecture where existing information
models (e.g. GDMO) are well established, then the framework must support the reuse of
those models without any major changes.

A single standard way to map these GDMO information modelsto OMG IDL is needed
so that the same models are always presented by the application protocol to the
application with the same set of services (capabilities).

4.2 Entities

An entity type describes atype of “thing” in the real world with an independent
existence. An entity type may be an object with a physical existence —a circuit pack,
managed element, or slot — or it may be an object with a conceptual existence—a
subnetwork, termination point, or link. Each entity type has particular properties, called
attributes that describeit.

ITU-T Recommendation X.780 Draft

An entity instance (or entity) describes a particular instance of an entity type (e.g.,
Circuit Pack #1). Each entity’s attributes are described by particular values that
represent the state of that instance. In addition, each entity must be uniquely identifiable.

In CORBA, an entity may have many manifestations. An entity may be represented by
an IDL data structure, avauetype, an interface type or acomponent. This document
describes how CORBA is utilized to model entities.

4.2.1 Access Granularity

In the context of TMN operations, granularity defines the level of abstraction that is
exposed between systems. Access Granularity identifies the level at which entities may
be accessed (i.e., how information is exposed via an interface). For CORBA, each
CORBA object is provided a unique address known as an Interoperable Object Reference
(IOR). The IOR provides an address to the client system identifying which server system
to connect to for communication with the server side CORBA object.

In CORBA, it is possible to define different access abstractions (i.e., access granularity)
to the Entities defined for TMN (e.g., ITU-T Rec. M.3100). Two different access
abstractions are defined here:
1) Instancegranularity: Each entity hasits own IOR. For the creation of new Entities,
thisimplies the instantiation of a new CORBA object.
- 1 IOR / entity instance

For example, an entity typein the ATM domainisan atmLink. Inthe Instance
Grained approach, a CORBA object is defined that supports the same attributes as the
entity type which it represents. For each instance of the atmLink, an independent
CORBA object is created. Thus each atmLink can be uniquely addressed by its IOR.

2) Application-specific granularity: Instances of awell-defined set of entity types are
accessed viaasingle IOR (asingle interface).
-1 10R / Family (set of) entity types
Bulk operations are defined in application-specific CORBA IDL interfaces, which
pass identities and states of managed entities using operation parameters employing
lists of IDL structured types.

The CORBA object modeling guidelines defined in this specification are applicable to the
specification of managed object interfaces that support instance-grained access
granularity. TMN standards may also be defined using application-specific access
granularity. Such interface specifications, however, are outside the scope of this
Recommendation.

4.3 Principles of Containment and Naming

Containment isalogical representation of how entities of one type contain entities of
another type. A Containment Tree defines the relationship between the entity instances.
An entity instance is contained by one and only one containing entity instance.
Containing entity instances may themselves be contained in another entity instance

10

Draft ITU-T Recommendation X.780

forming a directed graph. The directed graph forms what is called the Naming (or
Containment) Tree.

The containment relationship can be used to model real-world hierarchies of parts (e.g.,
assembly, sub-assemblies and components) or real-world organizational hierarchies (e.g.,
company name, org. name).

An example of apossible containment tree is shown in Figure 2 below}

Trail
Termination
Point

Eqg. Holder

Figure 2. Example of Containment

4.3.1 Naming

One purpose of containment relationshipsis for naming entities. Names are designed to
be unique in a specified context; for TMN, this context is determined by the containing
entity instance.

An entity that is named in the context of another entity istermed a"Subordinate Entity".
The entity that establishes the naming context (this term is used in general and should not
have the direct connotation of a COS Naming Service Naming Context) for other entities
is caled the "Superior Entity".

A "Subordinate Entity" is named by the combination of:
— The name of its"Superior Entity".

— Information uniquely identifying this “ Subordinate Entity” within the scope of its
superior entity.

The name of an entity that is unique in alocal naming context may not be so in some
larger naming context. However, if the local naming context is unique in the larger
context, alocal name can be made unique by qualifying it by its naming context; the
name of the naming context is used as the qualifier. Thisarrangement can be visualized
as adirected graph with each edge (or arrow) pointing from a named object to a naming
context.

11

ITU-T Recommendation X.780 Draft

The naming context can itself be recursively qualified by another naming context, so the
complete naming structure can be visualized as a single-rooted hierarchy. This hierarchy
is caled the naming tree. Thus"Superior Entities' become the naming contexts and their
names become the names of the contexts. An object name need only be unique within
the context of its superior Entities; within awider context its name is always qualified by
names of it superior Entities.

4.3.2 Entity Identification

Because a*“ Superior Entity” may contain multiple “ Subordinate Entities’ of the same
type, each of these contained entities of the same type must be distinguishable relative to
their containing entity. The relative name of an entity within its containing entity is
called an entity’ s Relative Distinguished Name (RDN). For example, there may be
several equipment holders within a managed element. To uniquely identify each
equipment holder within the managed element, the equipment holders must be provided
an RDN. The RDN should identify the name of the entity type (e.g., equipment holder,
which is an entity type) and a unique value within the scope of the containing entity.

An RDN isabasic element of aDistinguished Name (DN), as specified in ITU-T Rec.
X.720. A DN isdefined by a sequence of RDNs starting from a specific context. The
DN yields a unique name relative to this context.

4.4 Managed Object Classes

These modeling guidelines specify that each entity type maps one-to-one with a CORBA
operational interface. When an entity type is mapped in this manner, the CORBA object
representing the entity typeis called a Managed Object Class. A Managed Object Class
must also exhibit the ability to emit notifications (see ITU-T Rec. X.703).

The term “Managed Object Class’ isdefined in ITU-T Rec. X.720. Asexplained in ITU-
T Rec. X.703, managed object classes and sub-classes map to interfaces and derived
interfaces.

4.5 Packages

It is necessary to capture the notion of packagesin CORBA IDL. Packages are groups
of capabilities (attributes, actions, or notifications) that may be conditionally supported
by aManaged Object Instance. A managing system must have the capability to
determine which packages are supported by a Managed Object Instance. If any
operations are performed on a Managed Object, and those operations are contained by a
Conditional Package that is not instantiated for that Managed Object, then the Managed
Object must indicate an error.

4.6 Attributes

The guidelines must support the definition of attributes (i.e., visible properties) on
Managed Object Classes.

12

Draft ITU-T Recommendation X.780

4.6.1 GETand SET

The value of an attribute may be observable or modifiable across a standard interface. |If
observable, the information modeler must define a"get" method for that attribute. |If
modifiable, the information modeler must define a"set" method for that attribute.

4.6.2 Generic Attribute Get

CORBA-based TMN information models should allow a managing system the ability to
read arbitrary groups of attributes from a single managed object with a single operation.
This service allows many management tasks to be performed with a single operation.
Support of the Generic Attribute Get is required.

4.6.3 Set-valued Attributes

For attributes containing lists of values, amodeler should have to capability to allow
managing systems to add or remove individual values to/from lists without resending all
the information in the original list.

4.7 Creation and Deletion of Managed Objects

The existence of Managed Objects (MOs) is closely related to the containment
relationship between the MOs. A MO's existence is tied to the existence of that MO's
superior MO Instance. If the specified “ Superior MO” does not exist for a*“ Subordinate
MQ”, then that “ Subordinate MO” can not be created. Similarly, if aMO's “ Superior
MQ” is deleted, then that “ Subordinate MO” (and the “ Subordinate MO's” subordinates)
can no longer exist. Given this, there are creation and deletion semantics that must be
enforced by the TMN CORBA framework.

The following sections define the high-level requirements that must be supported for
object creation and deletion. Recommendation Q.816 describes the generic services used
to carry out creation (i.e., the factory) and deletion (i.e., the factory in coordination with
the terminator service). Section 6 defines modeling guidelines for how the requirements
defined in this section are supported.

471 Creation

When creating a Managed Object, three aspects of the MO’ s existence must be identified:

» TheMO’'sname

* TheMO'sattribute values

* Theconditional packages of the MO that are to be instantiated with the creation of the
new MO.

Note that definition of these aspectsin the create request may be either explicit or
implicit. Options for identifying these aspects of aMO’ s existence are defined in the
following three sections.

4.7.1.1 Ildentification of the MO Name

The name of the MO to be created can be determined in one of two ways:
1. The manager may specify, as a parameter of the create operation, areference to an
existing MO which isto be the superior of the new MO and may specify the RDN of

13

ITU-T Recommendation X.780 Draft

the new MO in the create operation’s attribute list. This resultsin the complete
specification of the MO name being supplied by the manager.

2. The manager may specify, as a parameter of the creation operation, areferenceto an
existing MO which isto be the superior of the new MO and may omit specifying the
RDN of the new MO. Inthis case, the RDN of the new MO is assigned by the
managed system.

If the associated information is not correct or for some other reason the create operation
can not be performed then the factory attempting to perform the operation shall indicate
an error.

4.7.1.2 I|dentification of the MO Attributes

When aMO is created, its attributes are assigned values that are valid for the type of
attribute. These values are derived from information in the Create operation and the MO
class definition in one of the two manners listed below:

1. Thecreate request is permitted to specify an explicit value for each individual
attribute. When the MO is created, explicit values are assigned to attributes as
required by the MO class definition.

2. The MO class definition is permitted to specify how default values are assigned to
attributes that are not set by the create operation.

If default values are not specified for an attribute, then the managing system must supply
avalue for that attribute in the create request. If no value is specified for that attribute,
then an error should occur.

If an explicit value is defined for a particular attribute in the create request, then the MO
will take that value for the specified attribute over any potential default value that may be
specified for that attribute.

4.7.1.3 ldentification of MO Packages for Instantiation

To ensure that underlying resources can be instantiated with required capabilities, the
manager must be able to specify the capabilities (i.e., the conditional packages) that the
managed object should have instantiated.

Instantiation of a conditional package will occur if an associated condition is satisfied for
the managed object being instantiated. The manager may also request the instantiation of
aconditional package as part of the create request, by including it in the packages
attribute of the create request.

4.7.2 Dedletion

For deletion, deletion semantics may support the deletion of all contained entities while
in other cases, the delete method immediately failsif there are contained subordinate
entities. These semantics must be maintained for each entity type.

14

Draft ITU-T Recommendation X.780

4.8 Inheritance

One "Managed Object Class' may be defined as a specialization of another "Managed
Object Class' by utilizing inheritance. Specialization of a"Managed Object Class"
implies that all methods and attributes defined on the superclass will also be supported by
the subclass.

In CORBA IDL, an attribute or operation cannot be inherited from more than one
interface, nor can an inherited operation or attribute be redefined by a subclass. (Note
that, in general, it is not expected that a CORBA information model would define a
method or attribute in a class, where that same method or attribute may also be defined in
the superclass. However, there are cases in the mapping from GDMO to IDL wherethis
may occur. For example, because GDMO attributes specify permitted and required
values, asubclass in GDMO may sometimes redefine the same attribute. Care must be
taken when mapping to IDL that the same attribute is not redefined.)

A subclassin CORBA can not inherit the same attribute or method (with the same name)
from more than one superclass (unless they in turn inherited it from the same base class).
Also, a subclass can not redefine the same attribute or method (with the same name)
defined in one of its superclasses.

These guidelines place no constraints over CORBA inheritance.

5 The Object Model IDL Module

Before describing the rules for defining TMN managed objects using CORBA Interface
Definition Language (IDL),[2] this section presents a network management module |
containing a set of object interfaces and supporting data structures specified in CORBA
IDL. ThisIDL moduleisintended to play arolein CORBA-based network management
similar to that played by the GDMO and ASN.1 definitionsin ITU-T Recommendation
X.721[6] for CMIP. It providesthe basic set of IDL definitions on which information |
models are then built.

The IDL isincluded in Annexes A and B of this document. Annex A contains the base
classes (interfaces), data structures, and notifications. Annex B is a separate file

containing just constant definitions. Both of these are based on the GDMO and ASN.1
definitions found in X.721. |

X.721 isaconvenient source for capabilities that must be provided in network
management information models. X.721 defines the following managed object classes
using GDMO:

* 9typesof records (Log Record, Event Log Record, Alarm Record, Attribute
Value Change Record, Object Creation Record, Object Deletion Record,
Relationship Record, Security Alarm Report Record, State Change Record)

» Discriminator and Event Forwarding Discriminator

 Log

e System

15

ITU-T Recommendation X.780 Draft

e Top

Each of these has attributes, actions, and supporting data types and parameters. In
addition, X.721 defines 15 notifications.

Looking at the managed object classes listed above, it is clear that many of these are
covered by the CORBA Common Object Services already included in the framework (see
ITU-T Recommendation Q.816 for details on the TMN CORBA Based TMN Services):

» The CORBA Telecom Event Log service defines a structure for holding log
records, so the record classes need not be redefined. (Note that by specifying the
use of the CORBA Telecom Event Log Service the TMN CORBA framework
treats log records as data structures, not objects.)

* The CORBA Noatification Service defines afiltering capability, so the
discriminator and event forwarding discriminator need not be redefined.

 The CORBA Telecom Event Log Service defines the equivalent of X.721's Log.

That leaves just System and Top, along with the notifications. System is not really a
framework class and belongs instead in a generic information model (if it is needed). The
IDL in Annex A, therefore, defines a*“top” managed object interface, called “Managed
Object,” that isintended to be subclassed by all other managed object interfaces similar
to the way the managed object class named “ Top” is subclassed by all CMIP managed
object classes. Alsoincluded isageneric “factory” object. Managed object factories are
used for object creation. (The CORBA based TMN services defined in ITU-T
Recommendation Q.816 includes a Terminator service that handles object deletions
independent of object type, but object creation is handled by class-specific factories so
that object creation operations may be strongly typed.) The notifications are defined on a
third IDL interface. In addition, anumber of IDL datatypes are defined. Finally, some
IDL pre-compiler macros are defined to ease managed object interface specification.
Each of these is discussed below.

5.1 The Base (Top) Managed Object Interface

Thefirst interface defined in Annex A is the ManagedObject interface, found after all the
data type definitions. It isintended to be the base managed object interface from which
al other interfaces inherit. It defines a set of capabilities that all managed object
instances must support. These capabilities are:

* A method that returns the name of the object.

* A method that returns the interface (actual class) name of the object.

* A method that returns the conditional packages supported by the object instance.

* A method that returns the creation source of the object (whether it was created
autonomously by the managed resource, in response to a management operation,
or unknown).

* A method that returns the delete policy for the instance. Thisisan enumerated
value and indicatesif the object is not deletable, if it is deletable only if it contains
no objects, or if all contained objects will be deleted when it is deleted.

16

Draft ITU-T Recommendation X.780

* A method that returns a CORBA value type object containing all of the readable
attributes for the object.

* A destroy operation.

The IDL describing the ManagedObject interface (without comments) is:

i nterface ManagedObj ect {

NameType nanmeCet ()
rai ses (ApplicationError);

hj ect C assType obj ect d assCet ()
rai ses (ApplicationError);

StringSet Type packagesGet ()
rai ses (ApplicationError);

Sour cel ndi cat or Type creati onSour ceCet ()
rai ses (ApplicationError);

Del et ePol i cyType del etePol i cyGet ()
rai ses (ApplicationError);

ManagedObj ect Val ueType attributesGet (
i nout StringSetType attributeNanes)
rai ses (ApplicationError);

voi d destroy()
rai ses (ApplicationError, DeleteError);

}; 1/ end of ManagedObject interface

5.1.1 The nameGet() Operation

The first operation, nameGet(), returns the CORBA name of the object. NameTypeisa
type definition for the CORBA Naming Service Name type. NameTypeis used to
conform to the IDL conventions defined later in this document. This method returns the
compound name of the object, beginning with the name assigned to the local root naming
context under which the object is contained. That is, the method returns the “globally
unique” name for the object. See ITU-T Recommendation Q.816 for details on assigning
aunique name to the root naming context of a managed system. The ApplicationError
exception is defined to be raised by any managed object operation if the operation cannot
be completed due to some resource problem. See Section 5.5 below for details on this
and all the other exceptions.

5.1.2 The objectClassGet() Operation

The objectClassGet() operation returns the scoped interface name (actual class name) of
the object. Scoped interface names include the name(s) of the module(s) in which the
interface is defined. The return value type, ObjectClassType, is atype definition for
string. If the object’s classis aminor extension of another class (e.g., an “R1” class), the
string returned is the name of the actual class (with the “R1”). For example,
“EquipmentR1”.

17

ITU-T Recommendation X.780 Draft

5.1.3 The packagesGet() Operation

The packagesGet() operation returnsthe list of conditional packages supported by an
object instance. The notion of conditional packages, each with astring name, is
supported by these guidelines. See Section 6.6 for details. SringSetTypeisatype
definition for alist of strings.

Note that this differs slightly from the packages attribute on CMIP objects because this
framework does not support the definition of mandatory packages, only conditional. In
CMIP it ispossible for the packages attribute to list mandatory packages. Obviously,
since the definition of mandatory packages is not supported by this framework, they can’t
be listed in the packages attribute of a managed object.

5.1.4 The creationSourceGet() Operation

The creationSour ceGet() operation returns a value indicating the system that caused the
object to be created. Sourcelndicator Type is an enumerated type with three values:
resour ceOper ation, managementOperation, and unknown. It indicatesif the object was
created autonomously by the resource, in response to a management operation, or if itis
unknown why the object was created.

5.1.5 ThededetePolicyGet() Operation

The deletePolicyGet() operation returns the delete policy for this object instance. Thisis
an enumerated value that indicates if the object is not deletable, if it is deletable only if it
contains no objects, or if al contained objects will be deleted when it is del eted.
(Deleting an object but not its contained objects is not allowed.) This policy is set when
the object is created by its factory based on the name binding information identified in
the create operation.

5.1.6 The attributesGet() Operation

The attributesGet() method is used to return al, or any subset, of an object’ s attribute
valuesin one operation. For each managed object interface in an information model, a
CORBA valuetype containing data members for each of the readable attributes on that
interface will be defined. (Readable attributes are those with an <attribute name>Get()
operation.) This method may be used to retrieve this value type for any managed object.
The value types will be defined following the inheritance hierarchy of the managed
object interfaces (except that value types cannot support multiple inheritance), and each
will ultimately be derived from the ManagedObjectValueType defined for the
ManagedObject interface. The managed object must return a value type defined for its
interface in response to this method. Thus, when a client invokes the attributesGet()
operation on any managed object, it will receive back areferenceto a
ManagedObjectValueType which it may then narrow (cast) to the value type defined for
the interface on which the operation was invoked.

Complicating this somewhat are the concerns that a client may not want to retrieve all of
the attribute values from an instance, and an instance may not support al of the attributes
that are in conditional packages. (The value typesinclude attributes in conditional
packages.) Thisisaccommodated through the use of the in/out attributeNames

18

Draft ITU-T Recommendation X.780

parameter. On invocation, the client may submit alist of the names of the attributesin
which it isinterested, with anull list having the special meaning that all supported
attributes should be returned. Any names on the list that are not valid attribute names
should be ignored by the managed object. In its response the object will return the actual
list of attributes for which values are supplied. Note that this list may not match the
submitted list. The object must always return an accurate list, even if the submitted list
was null or had invalid names. If all the names on the submitted list areinvalid, the
object should return anull list and an empty value type.

Because the structure of the value type is pre-defined, the object must fill in some value
for the attributes not requested or not supported. Basicaly, the object may return any
values for these attributes, but the values should be as short as possible for efficiency.
Thus, null values should be returned for strings, references, and lists of any kind. Any
value may be returned for integers and enumerated types. The client must consider any
value for an attribute not named in the list returned by the object to be invalid.

The base interface ManagedObject currently only has a method that returns a CORBA
value type containing all of the readable attributes for the object. It does not contain a
similar method for setting the attributes because not all attributes are settable.

5.1.7 Thedestroy() Operation

The final operation on the object, the destroy() operation, is used to release any resources
associated with the managed object and to deleteit. The DeleteError exception is raised
by the object if it has a delete policy of NotDeletable. The DeleteError exception isaso
an extensible means of reporting problems destroying an object that are model -
dependent. For example, trying to delete a Trail Termination Point object before the
Trail isdeleted might result in aDeleteError. 1TU-T Recommendation Q.816 defines a
service called the “ Terminator Service,” however, to implement the logic needed to
enforce delete policies and to maintain the integrity of the naming tree. The destroy
operation is actually intended to be used by this service, and should not be directly
invoked by a managing system. See ITU-T Recommendation Q.816 for details on the
Terminator Service.

(R) OBJECT-1. Theinterfaces used to model resources on a managed system shall
inherit (directly or indirectly) from the ManagedObject interface described above and
defined in the CORBA IDL in Annex A. The capabilities described above shall be
supported.

5.2 The Managed Object Factory

Sometimes managed objects are created automatically by the managed system,
sometimes they are created as a result of an action on another object (such as a cross-
connection object created in response to a connect action on a fabric), and sometimes
they are created in response to a request from a manager to create an object. Inthislast
case, on CMIP systems, the create operation is typically handled by the CMIP agent
framework. It can’t be handled by the object itself because it hasn’t been created yet. In
CORBA implementations there is no agent framework, so something needs to be present

19

ITU-T Recommendation X.780 Draft

on the managed system to enable the managing system to create objects. In CORBA
systems thisis often handled by “factory” objects. The ManagedObjectFactory interface
isintended to be the base interface from which other factory interfaces inherit. It will
define capabilities that all managed object factories are expected to support. Currently,
no such capabilities have been identified, so the interface is null (inherits from nothing
and has no attributes or methods). It is aplaceholder in which capabilities may be placed
in the future if needed. It also serves as a common superclass for all factories.

CORBA IDL information models are expected to include afactory interface per managed
object interface (unless the managed object classis not instantiable). The factories will
contain operations for creating managed objects. These operations will take a number of
parameters, such as the new object’ s superior object, the new object’s name, and values
for each of the writeable or set-by-create attributes, etc. Upon successful creation of the
new object, the factory will return areferenceto it.

In addition to creating objects, it is expected that factories will also create name bindings
in the CORBA Naming Service for the new objects. Though this functionality could be
implemented elsewhere, it is believed that implementing it in the factories will simplify
implementations by relieving the managed object implementation from this task, leaving
them to focus on representing resources. See ITU-T Recommendation Q.816 for details
on how the TMN CORBA framework makes use of the CORBA Naming Service.

To help clientsfind factories, ITU-T Recommendation Q.816 defines a Factory Finder
Service. Thisservice acts as a broker between clients and factories. Basicaly, factories
register themselves with the service, then clients query the well-known serviceto find a
factory of aparticular type. See ITU-T Recommendation Q.816 for details on the
Factory Finder Service.

(R) FACTORY-1. Thefactory objects used to create managed objects on a managed
system shall inherit (either directly or indirectly) from the ManagedObjectFactory
interface described above and defined in the CORBA IDL in Annex A.

(R) FACTORY-2. All factories shall be registered in the Factory Finder object(s)
instantiated on that system.

5.3 The Notifications Interface

The third interface defined in Annex A isthe notificationsinterface. Each of the
notifications in X.721 has a corresponding operation on thisinterface. The notifications
are defined as typed method calls as required by ITU-T Recommendation Q.816. The
OMG Notification Serviceis used to filter and broadcast notifications. The typed
notification methods can be used directly with a notification service that supports typed
notifications. Mappings between these typed event methods and structured events are
provided in Q.816.

All of the notification operations defined in this interface pass a number of parameters,
some of which are common to all of the notifications. Several of the notifications have

20

Draft

ITU-T Recommendation X.780

identical parameters, but are used for dlightly different reasons. The notifications
interface IDL looks like this:

interface Notifications {

}s

voi d equi prent Al arm (

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
)

n

53 3303 053 353 303035 35333333335

Ext er nal Ti mreType

NanmeType

hj ect Cl assType

Noti f | DType

Correl atedNoti fi cati onSet Type
Addi ti onal Text Type

Addi ti onal | nfor mati onSet Type
Pr obabl eCauseType

Speci fi cProbl enSet Type

Per cei vedSeverityType

Bool eanTypeOpt

NanmeType

Tr endl ndi cati onTypeOpt

Thr eshol dl nf oType

At tri but eChangeSet Type
AttributeSet Type

Pr oposedRepai r Acti onSet Type
Bool eanTypeOpt

Bool eanTypeOpt

Suspect Obj ect Set Type

/1 end of Notifications interface

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,

correl atedNoti ficati ons,

addi ti onal Text,

addi ti onal I nf o,

pr obabl eCause,

speci fi cProbl ens,
percei vedSeverity,
backedUpSt at us,
backUpbj ect,

trendl ndi cati on,

t hreshol dl nf o,

st at eChangeDefi ni ti on,
noni t or edAttri but es,
pr oposedRepai r Act i ons,
al ar nEf f ect OnSer vi ce,
al ar mi ngResuned,
suspect Obj ect Li st

The other fourteen notification operations are similar to the one above. The names of the
15 notifications defined are:

» Attribute Value Change * Physica Violation

e Communications Alarm * Processing Error Alarm

e Environmental Alarm e Quality of Service Alarm
* Equipment Alarm » Relationship Change

* Integrity Violation * Security Violation

* Object Creation
* Object Deletion
* Operationa Violation

o State Change

e TimeDomain Violation

This CORBA Framework requires the use of notification identifiers where they may not
be required in other interfaces (they are not required in ITU-T X.733). Toillustrate,
below are four possible cases where the mapping of alarm notification identifiers from
the network element / EM S interface to the EMS / NM S interface must be done:

1. The network element always uses notification identifiers and the managed object is

represented in both interfaces. In this case, the EM S passes the alarm (with its
notification identifier) on to the NMS.

21

ITU-T Recommendation X.780 Draft

2. The network element never uses notification identifiers and the managed object is
represented in both interfaces. In this case, the EM S uses an internal counter,
includes this value as the notification identifier and passes the alarm onto the NMS.

3. The network element sometimes uses notification identifiers and the managed object
is represented in both interfaces. Because the notification identifier isrequired, the
EMS must define avalue when oneis not provided. It may be difficult to define a
value at the EM S because notification identifier values must be unique across all
notifications of a particular managed object instance throughout the time that
correlation is significant [17]. Thus, the EMS must choose avalue that is not being
used in current dlarms and will not be used in subsequent alarms. Extra care must be
taken when doing this, since the algorithm for choosing notification identifier values
Isowned by the producing system (in this case, the network element).

In one possible solution, the EMS could supply its own value for notification
identifier for all alarms. Thiswould aso require the updating of each alarm’s
correlated notification lists, resulting in the EM S maintaining a compl ete mapping of
network element Notification Identifier valuesto EMS Notification Identifier values.

In another possible solution, the EM S and network element could agree on supporting
different subsets of notification identifier numbers.

Alternatively the EM S could supply its own number and ignore potential collisions,
thus allowing their rare occurrence.

4. Anaarm is mapped from one network element / EM S interface object to a different
EMS/ NMS interface object. Similar to the above item, the EMS must supply a
notification identifier value that is unique for the EMS/ NM S managed object. The
correlated notification lists also must be updated.

5.4 The Data Type Definitions

Preceding the interface definitions in Annex A are a number of data structure and type
definitions. Most of these are used in the notifications. These were derived from the
ASN.1 modulein X.721 with minor changes to simplify syntax. Where possible, modern
object-oriented concepts such as in/out parameters and exceptions have been employed
and are reflected in these types.

One data type to note isthe time type. These guidelines adopt the universal time code
defined for CORBA’s Time Service. This datatype consists of alarge integer that counts
the hundreds of nanoseconds that have passed since midnight 15 October, 1582. To
account for worldwide time, the time is expressed relative to the time in the Greenwich
time zone using a signed short integer for the difference. This means systems based on
these guidelines must know their local time zone. This approach makes it easy to
compare times, though, because timeis represented as an integer. Standard libraries for
converting between the integer representation and more familiar formats will likely be
widely available.

22

Draft ITU-T Recommendation X.780

5.5 Exceptions

The IDL Modulein Annex A defines some exceptions for use by managed object
operations. These may be raised on some operations, as defined below. In addition, any
of the standard CORBA exceptions may be raised on any operation. For example, the
“CORBA:NO_PERMISSION” exception might be raised to signal a security violation.
The exceptions defined are:

val uetype ApplicationErrorlnfoType {
public U DType error;
public Istring details;

}s

val uetype CreateErrorlnfoType : ApplicationErrorlnfoType {
publi ¢ M3Set Type rel at edObj ect s;
public AttributeSet Type attributelist;

}s

val uetype Del eteErrorlnfoType : ApplicationErrorlnfoType {
publ i c M3Set Type rel at edObj ect s;
public AttributeSet Type attributelist;

s
val uet ype PackageErrorlnfoType : CreateErrorlnfoType {
public StringSet Type packages;
b
exception ApplicationError { ApplicationErrorlnfoType info; };
exception CreateError { CreateErrorlnfoType info; };

exception DeleteError { DeleteErrorlnfoType info; };

1.1.1 The ApplicationError Exception

An ApplicationError exception is raised when an operation cannot be completed due to
some application-level condition at the managed system. Information returned with the
exception includes an identifier for a specific condition, and a string with additional
details or an explanation.

A few identifiers for specific error conditions are defined by the framework. These
should be used whenever possible. Information models, though, may define additional
error condition codes, or create their own exceptions.

The data returned with the application error exception is a value type, which means that it
may be extended. That is, for acertain error condition codes, the actual datatype
returned might be an extension of the base application error info type. Because the error
code isin the base type, the client code can examineit, and if itsvalueisonethat is
passed back in a sub-class, the client can narrow (cast) the value type and access the
additional information.

The ApplicationError exception shall be included in the raises clause of every managed
object and managed object factory operation. A few error code values for the application

23

ITU-T Recommendation X.780 Draft

error exception have been defined for the framework. Each is discussed in sections
below.

55.1.1 invalidParameter

An application error exception with an error code of invalidParameter is raised when the
value of some operation parameter is not valid for the operation requested. The name of
the bad parameter is returned in the details field.

55.1.2 resourceLimit

An application error exception with an error code of resourceLimit is raised when an
operation cannot be completed due to some transient error on the managed system, such
aslack of memory. A string containing an explanation is returned in the details field.

55.1.3 downstreamError

An application error exception with an error code of downstreamError israised when an
operation cannot be completed due to an error downstream from the managed system.
An example of thisiswhen an operation can’t be completed because an EM S cannot
communicate with an NE.

1.1.2 The CreateError Exception

The CreateError exception is raised when an error occurs on a factory create operation.
It should be included in the raises clause of every managed object factory create
operation.

The data returned with this exception extends that of a general ApplicationError, and
adds alist of related object, and the attribute val ues the object would have had if it had
been created. The specific error codes defined for this exception by this framework are
presented below. Implementations should use these whenever possible. Information
models may add new values, or define new exceptions for special cases.

5.5.1.4 invalidNameBinding

A create error exception with an error code equal to invalidNameBinding is raised when
the name binding included in the create operation does not support the creation of the
object in this situation.

5.5.1.5 duplicateName

A create error exception with an error code equal to duplicateName is raised when the
name included in the create operation is a duplicate.

5.5.1.6 unsupportedPackages

A create error exception with an error code equal to unsupportedPackages is raised when
one or more of the requested packages is not supported by the implementation. Note that
when this error code is used, the returned data structure is actually a
PackagesErrorInfoType structure, which extends the CreateErrorinfoType structure. The

24

Draft ITU-T Recommendation X.780

PackagesErrorInfoType structure includes alist of packages, which in this case will be
the unsupported packages.

5.5.1.7 incompatiblePackages

A create error exception with an error code equal to incompatiblePackages is raised
when some of the requested packages are not compatible with each other or the resource
for which the object is being created. Note that when this error code is used, the returned
data structure is actually a PackagesErrorInfoType structure, which extends the
CreateErrorInfoType structure. The PackagesErrorinfoType structure includes alist of
packages, which in this case will be the incompatible packages.

1.1.3 The DeleteError Exception

The DeleteError exception is raised when an error occurs on a delete operation. It is
included in the raises clause of the destroy operation on the base ManagedObject
interface, which is then inherited by every managed object.

The data returned with this exception extends that of a general ApplicationError, and
adds alist of related object, and the attribute val ues the object had when the delete
attempt was made. The specific error codes defined for this exception by this framework
are presented below. Implementation should use these whenever possible. Information
models may add new values, or define new exceptions for special cases.

5.5.1.8 notDeletable

A delete error exception with the constant value equal to notDeletable is raised when an
attempt is made to invoke the destroy() operation on a managed object that should not be
destroyed according to its delete policy. (Note that the destroy() managed object
operation is defined for use by other parts of the framework. Managing systems that
invoke it directly run the risk of corrupting data on the managed system.)

Also, the Terminator Service will raise this exception when aclient tries to delete an
object with adelete policy of notDeletable.

5.5.1.9 containsObjects

A delete error exception with the constant value equal to containsObjectsis raised when
an attempt is made to delete a managed object that has subordinates and a delete policy of |
deleteOnlylfNoContainedObjects.

Managed objects are not responsible for detecting this condition, but the Terminator
Serviceis.

5.6 Macro Definitions

Following the interfacesin Annex A are the definitions of some macros. These macros
simply provide shorthand notations for identifying which notifications are supported by
which objects. Dueto the limited capability of CORBA IDL to accept information like
this, it was felt these macros would be useful.

25

ITU-T Recommendation X.780 Draft

The MandatoryNotification macro identifies notifications that must be supported by an
object, and the Conditional Notification macro identifies notifications that must be
emitted by a managed object if it supports a particular package. Both macros take
arguments identifying the name of an operation (recall that operations are used to convey
notifications) and the scoped name of the interface on which the operation is defined.
The Conditional Notification macro also accepts a third parameter, the name of the
package to which the notification belongs.

The notification macros expand into nothing. Unfortunately, IDL is simply too limited to
provide away to capture thisinformation. Comments could be generated, but they are
just immediately discarded by the compiler. Formatted comments, like those used to
generate HTML, unfortunately can’t be used because they require some IDL construct to
which they are associated. It was hoped that the upcoming CORBA Component Model
would provide a solution, but implementations won't be available in time for these
guidelines. Inthe future it may be possible to modify the macros to generate IDL
consistent with the CORBA Component Model. For now, though, the information about
which notifications are emitted by which object classes is captured by these macros.

5.7 The Constant Definitions

Interface specifications always contain a number of constants whose values are agreed
upon by everyone to mean the same thing. For example, everyone agreesa“1” in a
certain field means aloss of signal, a“2” means aloss of frame, etc. X.721isno
exception and defines a number of constants. These are reproduced in IDL formin
Annex B. For details on the mechanism used to convey pre-defined constants, see
Section 6.11.

6 Information Modeling Guidelines

This section presents guidelines for developing CORBA -based TMN information models.
Guidelines for the trandation of existing models specified in GDMO are provided in the
next section.

6.1 Modules

IDL Modules are used to group together interfaces, type definitions, exceptions, and
other IDL constructs. Modules also provide name-space delineation; identifiers within a
module must be unique but may be re-used in other modules. In almost al cases, a
module shall be used to group the constructs used to specify an information model.
Modules may be nested within other modules, and modules may span multiple files. The
IDL specified in these guidelines is contained within a single module, named
“itut_x780". For example:

nodul e itut_x780 {

}; /1 end of nodule itut_x780

This module has sub-modules for constant definitions.

26

Draft ITU-T Recommendation X.780

6.2 Interfaces

Each entity accessible viathe CORBA network management interface shall have an IDL
interface defined for it. Interfaces group together a set of attributes and methods that can
be thought of as being provided by a single software object. Interfaces may inherit
capabilities from other interfaces and interfaces defined to model an entity must inherit
(directly or indirectly) from the interface named ManagedObject defined in this
document. For example:

i nterface Equi prent : ManagedObj ect {

} /1 end of interface Equi prent

Such interfaces are referred to as “managed object interfaces.” The objects that support
these interfaces are “managed objects.” Because the ManagedObject interface defined in
this document has a set of capabilities that are inherited by al managed object interfaces,
each managed object must implement a base set of functions to exist inthe TMN
CORBA framework.

One issue information modelers may face is CORBA’ s limited support for multiple
inheritance. An interface may inherit an operation or attribute from multiple super

classesonly if they in turn inherited them from the same super class. Thisisknown as
“diamond” inheritance, and is depicted in the figure below.

/

hY
&

Class

Figure 3. Diamond Inheritance

If an information modeler is faced with having to inherit the same capability from two
different classes that do not share a common super class, the modeler may have to modify
the classes and create a virtual super class from which the capability can be inherited.

For example, creating “D” from “B” and “C” above but where “A” does not exist, the

27

ITU-T Recommendation X.780 Draft

modeler may have to modify the super classes by creating a new virtual class (“A”) with
the common capability that is then inherited by “B” and “C.”

6.3 Attributes

Attributes are modeled within interfaces as operations used to access the attribute’ s value.
The names of the operation, aswell as the input and output types, indicate the name of
the attribute as well as the type of operation. (CORBA IDL does support attributesin
addition to operations, but at this time only operations are allowed to raise user-defined
exceptions. Aswill be seen, user-defined exceptions are needed on attribute accesses.
For this reason, operations are defined to access attributes rather than merely defining
attributes. Future versions of CORBA plan to allow user-defined exceptions on attribute
access, and these guidelines may change to take advantage of this.)

6.3.1 Readable Attributes

Managed objects should have an operation named “ <attribute name>Get” on their
interface for each readable attribute. The type returned by this operation reflects the type
of the attribute. For example:

Admi ni strativeStateType adm nistrativeStateGCet()
| rai ses (ApplicationError);

Attributes that are settable but not readable, which is rare, should not have aread
operation defined on the interface.

Attribute get operations that may return large amounts of data should define an iterator to
enable the client system to control the return flow of information. For an example of the
use of iterators, see ITU-T Q.816.

6.3.2 Settable Attributes

Managed object interfaces should have an operation named “ <attribute name>Set” for
each settable attribute. The operation return type should be void and the input parameter
should reflect the type of the attribute. For example:

void administrativeStateSet (in AdnministrativeStateType admi nState)
| rai ses (ApplicationError);

Attributes that are not settable should not have such an operation on the interface.

6.3.3 Sat-valued Attributes

Many managed object attributes may contain sets of values. In these cases, the
operations defined above should still be supported (if the attribute is readable and/or

| writeable). Because CORBA does not explicitly define a complex type for sets, the input
or return types for these operations will be CORBA sequences. Values returned for these
attributes should not contain duplicate values, and the order of the values is unimportant.
Also, it may be necessary to support the addition or removal of values to these attributes.
These operations should be named “ <attribute name>Add” and “ <attribute
name>Remove”. The return types for these operations should be void and the input
parameter to each should be a sequence reflecting the type of the attribute. For example:

28

Draft ITU-T Recommendation X.780

voi d supportedByObj ect sAdd (i n ManagedObj ect Set Type obj ects)
rai ses (ApplicationError);

voi d supportedByOhj ect sRemove (i n ManagedObj ect Set Type obj ects)
rai ses (ApplicationError);
6.3.4 Exceptions

Attribute access operations may also raise exceptions. The following exceptions are
defined to be raised on attribute access operations:

1. ApplicationError. Thisexception shall beincluded in the raises clause of every
managed object operation, including attribute access operations. It may be used to
signal anumber of conditions, such as avalue that is out-of-range, aresource
limitation on the managed system, etc.

2. Conditional Package Exceptions. If the attribute is part of a conditional package, the
exception defined for that conditional package shall be included in the raises clause of
the attribute access operations. It israised when an attempt to access the attribute is
made but the package to which it belongs is not supported by the instance. See more
on Conditional Packages in Section 6.6 below.

In addition to these, an implementation may also raise any of the standard CORBA
exceptions. Operations that raise exceptions shall not modify the value of the attribute.
An example of an attribute access operation that raises an exception is:

voi d supportedByOhj ect sRemove (i n ManagedObj ect Set Type obj ects)
rai ses (ApplicationError);

6.3.5 Sandard Attributes

Managed objects model resources, and often there is commonality among managed
objects. Thisis sometimes represented using an inheritance rel ationship among object
classes, but there may also be commonality between objects when no inheritance
relationship exists. A good example of thisis similar attributes. Many managed objects
have similar attributes. To make the implementation of management interfaces easier,
these guidelines define some standard data types that should be used for attributes
whenever possible. That is, modelers should attempt to use these type definitions instead
of defining new types. Also, the attribute name, and the names of the operations to
access the operation should be used. In fact, when defining a new model, it is good
practice to re-use attribute types and names from existing models whenever possible.
The standard attributes defined are:

Data Type Attribute Name Access Method

AdministrativeStateType administrativeState | administrativeStateGet()

AvailabilityStatusSetType | availabilityStatus availabilityStatusGet()

BackedUpStatusType backedUpStatus backedUpStatusGet()
Control StatusSet Type control Status control StatusGet()
SourcelndicatorType creationSource* creationSourceGet()

29

ITU-T Recommendation X.780 Draft

DeletePolicyType deletePolicy* deletePolicyGet()
Externa TimeType external Time externa TimeGet()
NameType name* nameGet()
ObjectClassType objectClass* objectClassGet()
Operational StateType operational State operational StateGet()
StringSetType packages* packagesGet()
Procedural StatusSetType procedural Status procedural StatusGet()
StandbyStatusType standbyStatus standbyStatusGet()
UnknownStatusType unknownStatus unknownStatusGet()
UsageStateType usageState usageStateGet()

* These attributes are inherited by all managed objects.

Tablel. Standard Attributes

6.4 Actions

In addition to attributes, many managed objects will have actions — methods for purposes
other than accessing an attribute. The parameters and return types for these operations
are simply defined to meet the needs of the action. The name of the operation should
reflect the purpose of the operation. The following exceptions have been defined to be
raised on action operations:

1. ApplicationError. Thisexception shall beincluded in the raises clause of every
managed object operation, including action operations. It may be used to signal a
number of conditions, such as a parameter value that is out-of-range, a resource
limitation on the managed system, etc.

2. Conditional Package Exceptions. If the action is part of a conditional package, the
exception defined for that conditional package shall be included in the raises clause of
the action operations. It israised when an attempt to invoke the action is made but
the package to which it belongsis not supported by the instance. See more on
Conditional Packagesin Section 6.6 below.

In addition to these, an implementation may also raise any of the standard CORBA
exceptions. Other exceptions specific to the action may and should be defined for other
error conditions. Alternatively, an information model may extend the error code points
defined for the ApplicationError exception.

Actions that may return large amounts of data should define an iterator to enable the
client system to control the return flow of information. For an example of the use of
iterators, see ITU-T Q.816..

6.5 Notifications

Most managed objects are expected to emit notifications under certain conditions. In the
TMN CORBA framework, notifications are conveyed by method invocations from a
managed object back to a managing system, with the help of the Notification Service.

30

Draft ITU-T Recommendation X.780

Thus, the notification operation is actually defined for the managing system’s CORBA
interface, not the managed object’ sinterface. These guidelines define a number of
standard notifications, but if a new notification must be defined it should be defined as an
operation on an interface named “Notifications” within the information model’ s module.
The name of the operation should be the name of the notification. The parametersto the
operation should reflect the data to be reported in the notification. The notification
operation’s return type must be void, and it must have only “in” parameters. Note that
the “oneway” keyword preceding the notification operation definition should not be used.
Notifications following these guidelines are confirmed. That is, when a managed object
sends a notification to a channel, the receipt of that notification will be confirmed back to
the managed object by the channel. Likewise, asthe channel sends the notification to
each recipient, a confirmation is received by the channel. Quality of Service guarantees,
specified in ITU-T Recommendation Q.816 define the reliability of the channel itself.
Thus, the delivery of notifications to recipients can be guaranteed.

A means of documenting which managed objects emit which notifications is also needed.
Rather than simply noting this through commentsin an IDL file, amacro statement is
used. Actually, these guidelines define two macros, one for use when the naotification is
mandatory and the other when the notification is part of a conditional package. The
macros are intended to be used within a managed object interface and are defined as
follows:

MANDATORY_NOTI FI CATI ON(<i nt erface nane>,
<notification operation name>);

CONDI TI ONAL_NOTI FI CATI ON(<i nt er face nane>,
<notification operation name> <package nane>);

For example:
i nterface Equi prent : ManagedObj ect {

MANDATORY_NOTI FI CATI ON(i tut _x780:: Notifications, objectCreation);
CONDI TI ONAL_NOTI FI CATI ON(i tut _x780:: Notifications,
equi pnent Al arm equi prrent Al ar mPackage) ;

} /1 end of Equipnent interface

The package name used in the conditional notification macro is the same as used
elsewhere. See Section 6.6 on packages for details. The macros actually expand into
nothing because there really isn’'t a good alternative in CORBA IDL. Thus, the macros
are for documentation purposes and don’t actually result in code generation. Anitem for
further study is modifying the macros to generate IDL that would identify the
notifications supported by an object. The release of the CORBA Component Model
specification provides an opportunity to do thisin a manner consistent with that model.
Only one notification may be listed in each macro. Thisisto make the possible future
modification of the macros simpler.

6.6 Conditional Packages

These information modeling guidelines support the notion that not all capabilities defined
for a class of managed objects need to be supported by all instances. In fact, groups of

31

ITU-T Recommendation X.780 Draft

capabilities can be defined so that either all or none of the capabilities are supported.
These groups of capabilities are referred to as packages. The choices for representing
packagesin IDL arelimited. Defining a separate interface for each package would result
in too many interfaces, so instead the approach described here is used.

Each operation that is part of a conditional package may raise an exception defined for
the package. The name of the exception shall be NO<package name>. For example:

exception NOadm ni strativeStatePackage {};

Admi ninstrativeStateType adninistrativeStateGet()
rai ses (NCadmi ni strativeSt at ePackage);

Notifications that are emitted as part of a conditional package are denoted with the
CONDITIONAL_NOTIFICATION statement as described above.

Rules concerning when the capabilities included in a package should be supported and
when they shouldn’t are placed in comments related to the managed object interface. An
operation may be included in more than one conditional package by listing multiple
NO<package name> exceptionsin its raises clause. An exception will be raised only if
none of the packages are present, and then any of the package exceptions may be raised.
If an operation is mandatory, it must list no package exceptionsin itsraises clause. A
notification may list multiple packages in the CONDITIONAL_NOTIFICATION macro.

6.7 Behavior

CORBA DL lacks aformal means of capturing object behavior. Inthefutureitis
possible that information models will be documented with UML and will include use
cases and object interaction diagrams. DL, however, islimited to comments. Therefore,
when necessary or helpful, comments must be used to describe object behavior.

The IDL in this document contains a number of comments. They are formatted to be
parsed by compilers used to convert IDL to HTML for easier reading. A formatted
comment begins with /** and ends with */ and is associated with the next IDL construct.
HTML formatting tags are allowed with these comments, as are certain keywords
(preceded by a‘ @’ symbol) that are converted by the IDL-to-HTML compilersinto
additional formatting. While viewing IDL with an HTML browser is convenient, note
that the use of the macros described above isimpacted by this. Because macro expansion
is performed as a part of the conversion to HTML, the pre-expanded macro information
will belost. Thus, the macros used to identify the notifications supported by each
managed object will have been expanded.

6.8 Name Binding Information

Containment is a very important relationship in network management. Inthe TMN
CORBA -based framework, containment is represented through names. This,
unfortunately, places no restrictions on the containment relationships that could possibly
exist. Thereisnothing to prevent, for example, a network object from being contained by
aconnection object. Clearly, some means of restricting the possible containment

32

Draft ITU-T Recommendation X.780

relationships to only those that are sensible is desirable. These restrictions, however,
must be extensible under control of the information modeler.

To meet these needs, these guidelines require that IDL modules specifying CORBA -
based TMN information models also contain information defining the possible
containment rel ationships among the managed object classes. This containment
relationship information is referred to as managed object name binding information.
(Unfortunately, this may be easy to confuse with the name binding information stored in
the CORBA Naming Service. Thetwo are not the same.)

Managed object name binding information is represented in CORBA IDL using the
following conventions:

1.

2.

3.

Each information model IDL module shall contain a sub-module named
“NameBindings’ for managed object name binding information.

Within this name binding module, sub-modules shall be defined for each allowed
containment rel ationship.

Each name binding sub-module shall assign values to these 7 constants;

const string superiord ass

const bool ean superi or Subcl assesAl | owed
const string subordi nat ed ass

const bool ean subor di nat eSubcl assesAl | owed
const bool ean manager sMayCr eat e

const Del etePolicyType deletePolicy

const string ki nd

The superiorClass constant contains the scoped class name of the superior
(containing) object. If an object may be the “top-most” object on a managed system,
that is, if it may be contained directly under alocal root naming context, the
superiorClass name binding value shall be an empty string. The

superior SubclassesAllowed constant is a Boolean field that will have avaue of true if
subclasses of the superior class type are acceptabl e using this name binding. The
subordinateClass constant contains the scoped class name of the subordinate object
(the object to be created). The subordinateSubclassesAllowed constant indicates if
subclasses of the subordinate object may be created using this name binding. The
manager sMayCreate flag indicates if object creation is supported across the
management interface using this name binding. The value of setting this flag to false
isthat it enables all containment relationship information to be documented in IDL,
even if the subordinate object is only created by the managed system. The
deletePolicy constant contains the value that will be assigned to the managed object’s
deletePolicy attribute when it is created. The kind constant contains the value that
will be assigned to the kind field in the CORBA Name Binding for the object when it
IS created.

The value chosen for the kind field in a name binding will typically be the unscoped
subordinate class name. (Unscoped class names will typically be used to reduce the
length of names.) The main purpose of the kind field is to segment the naming space
to keep naming collisions from occurring. Name binding modules for new versions

33

ITU-T Recommendation X.780 Draft

of existing interfaces might reuse the kind values used for the older interfaces. For
example, name binding modules for Equipment and EquipmentR1 interfaces might
both use the value “Equipment”. Otherwise, though, it will probably be safest to use
aunique value for each class of interface.

4. The name of a name binding sub-module shall be
<subordinateClass> <superiorClass>, where <subordinateClass> is the value
assigned to the subordinateClass constant and <superiorClass> is the value assigned
to the superiorClass constant in the module. If two name binding modulesin the
same parent modul e share the same superior Class and subordinateClass values but
differ in other values, the name of one of the modules shall be appended with aword
denoting a difference between the two. For example: * Equipment_Equipment” and
“Equipment_Equipment_NotDeleteabe’.

Some example managed object name bindings:

nodul e itut_nB8120 {
/** The follow ng nodul e contai ns nane binding information */
nodul e NarmeBi ndi ngs {

/** This nane bi nding nodul e al |l ows Equi pnment objects to be
created under Managed El ement objects.

*/

nodul e Equi prrent _ManagedEl emrent {
const string superiordass = “itut_nB120:: ManagedEl enent”
const bool ean superi or Subcl assesAl | owed = TRUE;
const string subordi nateCd ass = “itut_nmB120:: Equi pnent”;

const bool ean subor di nat eSubcl assesAl | owed = TRUE;
const bool ean nmanager sMayCr eat e = TRUE;
const Del etePolicyType del etePolicy =
i tut_x780:: Del et eOnl yl f NoCont ai ned(hj ect s;
const string ki nd = “Equi prent”;
}; /1 end of Equi pnent_ManagedEl enent nane bi ndi ng nodul e

/** This nane bi nding nodul e al |l ows Equi pnment objects to be
created under other Equi prent objects.

*/

nodul e Equi pnent _Equi pment {
const string superiord ass = “itut_nB120:: Equi prent”;
const bool ean superi or Subcl assesAl | owed = TRUE;
const string subordi nateC ass = “itut_nm3120:: Equi pnent”;

const bool ean subor di nat eSubcl assesAl | owed = TRUE;
const bool ean manager sMayCr eat e = TRUE;
const Del etePolicyType del etePolicy =
itut_x780:: Del et eOnl yl f NoCont ai nedCbj ect s;
const string ki nd = “Equi prent”;
}; I/ end of Equi pnent_Equi prent nane bi ndi ng nodul e

}; end of nane binding nodul e
}; end of itut_nB120 nodul e

Draft ITU-T Recommendation X.780

Note that the deletePolicy constant is of an enumerated type and according to CORBA
IDL constant definition rules, if thistypeis defined in another module, the value assigned
to the constant must be scoped to that module. The DeletePolicyType is defined in
module itut_x780, and the example IDL moduleisitut_ m3120. Therefore, the
DeleteOnlylfNoContained value must be scoped by preceding it with the string
“itut_x780::". Thetypeitself, DeletePolicyType, must also be scoped. This can be done
with atypedef statement at the beginning of the module.

6.9 Factories

The TMN CORBA -based framework defines a service for del eting objects, but objects
are created with class-specific factories. Factories are objects with interfaces distinct
from the objects they are used to create, but usually related. Each class of managed
objectswill also have afactory class. Thisisdone so that the factory create operations
may be strongly typed and specific to the class of objectsthey create. The result of thisis
that the IDL modules defining managed object interfaces will also contain interfaces for
the factories used to create the objects. The name of the factory IDL interface shall be
“<Managed Object Class Name>Factory”.

This document defines a base managed object factory interface from which each factory
interface must inherit. Factories do not follow the same inheritance hierarchy as the
objects they create. Factories ssmply inherit from the ManagedObjectFactory interface.
An example of afactory interface definition is:

i nterface Equi pment Factory : ManagedObj ect Factory {

}; /1 end of EquipnentFactory interface

Because factories cannot create subclasses of objects, new factories must be defined for
each subclass.

Every instantiable class shall have afactory defined for it, even if at the time no name
binding modules allowing managers to create instances are defined. Thisisto allow for
the future definition of name binding modules that do enable managers to create
instances.

6.9.1 Create Operations

Each factory interface shall define a single operation for clientsto use to create objects.

The name of this operation shall be “create” and it shall return areference to the type of
object created by the factory. Thefirst four parametersto every create operation are
awaysthe same. After these come parameters for each writeable or set-by-create |
attribute defined for the managed object. (A set-by-create attribute is one for which the
object has no “set” operation, but for which avalue is specified on the create operation.)
The names of these parameters are the same as the name of the attribute. (Thisisthe

name of an attribute accessor operation minus the ending “Get” or “Set”.) Each create
operation also has to accept parameters to set the values of any writeable or set-by-create |
attributes of all super-classes of the object created by the factory. Hereisan example of a
create operation for an equipment factory:

35

ITU-T Recommendation X.780 Draft

Equi prrent cr eat e(

i n NameBi ndi ngType naneBi ndi ng, // nodul e name contai ni ng NB i nfo.

i n ManagedObj ect superiorObject,// Reference to containing object.

i nout string namne, /1 Infout, may be null if auto-create.

in StringSet Type packages, /1 List of packages requested.

/1l Witeable and set-by-create val ues
/1 for Equi pment superclass attributes.
/1 Witeable and set-by-create val ues
/1 for Equipnment attributes.

);

6.9.1.1 Name Binding

The name binding parameter conveys the name of a module containing managed object
name binding information, as described in the Section 6.8. An example value might be
“itut_m3120::NameBindings::Equipment_Equipment”. Given this, the factory can check
to seeif thevalueisavalid name binding identifier. (A factory might either be “hard-
coded” with name binding information available when the system is compiled, or it might
access the information in the CORBA Interface Repository at run-time.) If the name
binding information can not be found, the factory shall raise an invalidParameter
ApplicationError exception, returning “nameBinding” as an argument. (Thisisan
ApplicationError exception with the error code set to invalidParameter and the details
string set to “nameBinding”.) If the name binding information can be found, but is
incompl ete, the factory shall raise an invalidNameBinding CreateError exception.

The factory must also check to seeif the subordinate class type specified in the name
binding module matches the type of objectsit creates. If it isdoesn't, the factory can
then check to seeif the type of objectsit createsis a subclass of the subordinate class
constant value. If itis, and if the subordinateSubclassesAllowed constant istrue, it can
proceed to create the object. If not, it would reject the request by raising an
invalidNameBinding CreateError exception.

Finally, if the managersMayCreate constant in the name binding module is false, the
factory would also reject the request by raising an invalidNameBinding CreateError
exception. (Factories may have a second create operation for internal use by the
managed system that does not check this value and that is not exposed across the
management interface.) The inclusion of name binding modules with

manager sMayCr eate val ues set to fal se enables capturing all of the containment
information in IDL, asis possible with GDMO, even if the objects are created only by the
managed system itself.

The other information in the name binding module will be used by the factory when it
creates the object and its CORBA naming service name binding. The deletePolicy
constant will be assigned to the new managed object’ s attribute of the same name. The
kind constant value will be used when the factory creates the managed object’ s name
binding in the CORBA naming service.

6.9.1.2 Superior Object

The second parameter in the create operation is areference to the superior object, under
which the new object isto be created. Using standard CORBA capabilities, the factory

36

Draft ITU-T Recommendation X.780

shall examine the class of the superior object to determineif it matches the type specified
in the superiorClass constant defined in the name binding module. If it doesn’t, the
factory must next check to seeif the supplied referenceis of a subclass of the type
specified in the superiorClass constant. If itis, and if the superior SubclassesAllowed
constant in the name binding is true, the factory may proceed to create the object. If not,
the factory must reject the request by raising an invalidNameBinding CreateError
exception, returning “superiorObject” in the details.

If the superiorClass constant in the name binding module is an empty string, then objects
of the subordinate class may be created with no superior object (parent), and their nameis
bound directly to alocal root naming context. Usually, these objects will be created by
the managed system, but in these cases the superior object reference would be null.

6.9.1.3 Name

The third parameter is the name to be assigned to the new object. This string will become
the ID field of the CORBA Name Binding created in the CORBA naming service for the
new object. Thiswill be relative to the superior object’s name. If the parameter isinout,
it indicates that the factory must support auto-naming. In this case, a client may submit a
null string for the name, and the factory will choose a suitable string and return the
chosen value. If instead the client submits a string, the factory shall use this value instead
(and return it asthe out value). If the parameter isin only, auto-naming is not supported
and the client must supply aname. If it doesn’t, the factory shall raise a badName
CreateError exception. The factory raises a duplicateName CreateError exception if the
supplied nameisaduplicate. (This means both the ID and kind fields match an existing
object contained by the superior object.)

6.9.1.4 Packages

The packages attribute isimportant. It tells the factory not only which packages an
instance must support, but which parameter values on the create operation it must ignore.
Because they are strongly-typed, create methods include a parameter for each writeable
or set-by-create attribute of an object, even if an attribute is part of a conditional package.
The factory must ignore the values for any attribute in packages that are not requested by
the client, even if the factory instantiates the object with the package anyway. (If the
factory instantiates an object with a package not requested by the client, the factory must
choose theinitial values.) Thisfreesthe client from having to supply values for attributes
in packages it does not want. Instead, the client can submit any value. For efficiency, the
values submitted for attributes in packages not requested by the client should be short.

If the client supplies an invalid package name in the packages parameter, the factory shall
rai se an unsupportedPackage CreateError exception and return the name of the package
as the argument. An incompatiblePackages CreateError exception may also be raised if
the client requests the creation of an instance but specifies packages that may not coexist
in the same instance.

37

ITU-T Recommendation X.780 Draft

6.9.1.5 Superclass Parameters

Following these first four parameters will be parameters for each of the writeable and set-
by-create attributes for any superclasses of the type of objects created by the factory.

6.9.1.6 Object Class Parameters

Finally, following the superclass parameters will parameters for each of the writeable and
set-by-create attributes for the managed object class created by the factory.

6.9.2 Factory Finder

To ease the task of finding afactory, ITU-T Recommendation Q.816 defines a factory
finder interface. (The factory finder is a common design pattern in CORBA
applications.) Thisenablesaclient to easily find a factory by interacting with awell-
know broker with knowledge of all the factories present on a managed system.

6.10 Managed Object Class Value Types

Each managed object class compliant with these guidelines inherits an operation from the
base Managed Object class that returns all or some subset of the object’s attributesin a
single valuetype. (CORBA 2.3 introduces the concept of value types, objects that are
passed by value instead of by reference.) Not only must the managed object
implementation support this feature, the IDL describing the managed object must include
avalue type with public attributes for each of the attributes supported by the managed
object. These guidelines define a base ManagedODbjectValueType, and the value types
defined for managed objects must ultimately derive from this base value type. The value
types defined for managed objects should usualy follow the inheritance pattern of the
managed objects interface, but since CORBA’ s value types support only single
inheritance, thiswon't always be possible. Thisis not a serious limitation, though. It
simply means that the value types defined for interfaces using multiple inheritance will
have to singly inherit from one of the superior value types, and the other attributes will
have to be added and maintained by hand.

As an example, assume the Equipment managed object interface inherits directly from
the base ManagedObject class, and has, among others, an attribute access function called
userLabel Get that returns atype UserLabel Type. The IDL describing the value type for
the Equipment managed object would look like this:

val uet ype Equi pnent Val ueType : ManagedObj ect Val ueType {
publi ¢ UserLabel Type user Label ;
/'l other attributes
b

The name of the value type is the name of the interface with “ValueType” appended.
Notice, too, that the name of the public attribute in the value type is the name of the
method on the managed object interface used to access the attribute without the appended
“Get.” Thisconvention should be followed for all attributes in value types. The type of
the attribute is the same as the type returned by the attribute access function.

38

Draft ITU-T Recommendation X.780

Code on the client side wishing to retrieve the attribute values for an equipment object
might look something like this:

ManagedObj ect Val ueType noVal ue;

Equi prent Val ueType eqVal ue;
Equi prrent eq;
eq = ... [/ code that sets eq to a CORBA proxy representing an

/'l equi pment object.

noVal ue = eq. getAttributes();
eqVal ue = (Equi pnent Val ueType) noValue; // cast return to proper type
Systemout.println(“User Label = “ + eqVal ue.userlLabel); // print |abel

When the IDL is compiled into an object-oriented programming language, both the
interfaces (in this case, Equipment) and the value types (ManagedObjectVal ueType and
EquipmentValueType) will be translated into classes. For the interfaces, the classes are
actually proxies. When methods are invoked upon them they make use of the ORB to
send the request back to the server. The classes trandated from value types, however, are
not proxies. They are simply local objects.

When the client invokes the call on the equipment proxy to get attributes, the response
from the server will be an EquipmentValueType. When the ORB receivesthis, it will
create alocal instance of an EquipmentValueType object with the attribute values
received from the server. Because the return type to the attributesGet() method, defined
on the base Managed Object interface, is ManagedObjectValueType, the reference to the
EquipmentValueType instance is passed back as a reference of type
ManagedObjectValueType. Thisworks because EquipmentValueType is derived from
ManagedObjectValueType. In order to access attributes that are specific to
EquipmentValueType, though, the client must narrow the reference by casting it to type
EquipmentValueType.

While the behind-the-scenes processing being done by the ORB is a bit complicated, the
aternative would be to use lists of CORBA any types to hold the attribute values. This
approach, though, would require even more processing. The any types would be much
more complicated for the programmer, too. As shown in the example above, using the
value typesis actually quite simple.

6.11 Constants

Network management systems require the ability to exchange information with
previously agreed-upon meanings. For example, a state change notification with a
probable cause of “1” might mean it was likely caused by aloss of signal, whilea*®?2”
means a loss of frame, etc. It's simple enough to define an enumeration or set of integer
values to be passed across an interface in some field, but it isalittle trickier to make this
mechanism extensible by multiple groups, likely acting in parallel. The mechanism used
by these guidelines for thisis referred to as the “Universal Identifier (UID).”

A UID isadata structure with two fields. Thefirst isastring meant to contain the scoped
name of an IDL module containing the constants defined for some field. The secondisa

39

ITU-T Recommendation X.780 Draft

short (16 bit) signed integer containing the value. For example, to send a value of “loss
of signal” in a probable cause field, a system would construct a UID structure with a
moduleName string equal to “itut_x780::ProbableCauseConst” and an integer value equal
t0 29. (Annex B contains the constants defined for these guidelines. Initisamodule
named “ ProbableCauseConst” which contains a constant named |ossOfSgnal with a
value of 29.)

Note that thisis the only format for constant values used within this framework. There
areno “local” values used.

These conventions shall be followed when defining constants for an information model:

1. Constant values shall be defined in separate modules, one for each set of constants
defined for a particular field. These sub-modules shall be contained within the
top-level module that contains the other constructs defined for the information
model.

2. The name of the module shall be the name of the field appended with “ Const”.

For example, values for the probableCause field (defined as type UIDType) are
contained within a module named * ProbableCauseConst”.

3. The constants defined within the sub-module must be of type const short. For
example:

const short | ossCOFSignal = 29;

4. Constants may be kept in a separate file, to reduce the length and complexity of
themain IDL file. Evenif the constants are in a separate file, the sub-modules
shall be within an IDL module statement with the same name as the module in the
main file. The main file shall have a pre-compiler include statement at the top of
the file to include the constants in any compilation run.

5. The sub-module shall also contain a string constant named “moduleName” that
contains the scoped name for that module. For example:

nmodul e itut_x780 {

nodul e Probabl eCauseConst {
const string nodul eName = “itut_x780:: Probabl eCauseConst”;

Yool eHd of nodul e Probabl eCauseConst

}: // end of nodule itut x780

Thisisreally just a courtesy to allow programmers to refer to the module' s name
by a constant rather than hard-coding module string names.

Note that other information models may extend the values for probable cause. There
could, for example, be amodule “itut_m3120::ProbableCauseConst” with additional
values for the probable cause field. These modules can even re-use the value 29. The
UID will still be unique because the module names will differ.

40

Draft ITU-T Recommendation X.780

6.12 Registration

CORBA |IDL requiresthat all the identifiers within a module must be unique. This
means that as long as a module nameis unique, al of its contents will be uniquely
named. CORBA IDL also definesan IDL compiler pragma statement that may be used
to define a unique prefix to the module identifiers when they are registered in the
CORBA interface repository, a central directory of interface information used by
CORBA ORBs. Thisframework requires that IDL documents contain a pragma prefix
statement using the organization’s Internet domain name as a prefix for the contained
modules.

This eliminates the need to register each individual construct.

6.13 Versioning of CORBA/IDL Specifications

When using CORBA, a management interface is specified as one or more object
interfaces defined using IDL. Inevitably, management interfaces change. Adding a new
CORBA object interface to a management interface is straightforward. The new CORBA
interface ssimply needs to be defined in IDL, and added to the specification identifying the
object interfaces to be supported on that particular management interface.

Updating an existing CORBA object interface, however, isalittletrickier. These
guidelines place a priority on backward compatibility. Therefore, the following rules
apply to extending an existing managed object interface. Note that these rules apply only
to extensions being made to a base class that do not result in changing the business
purpose of the object. That is, the new class models the same resource as the old class, it
simply has some additional capabilities.

1. Thename of the new object interface shall be the same as the existing interface with
the letter “R” and a numeral appended, starting with “1.” Subsequent extensions will
increment the numeral. So, extending an interface for “ Equipment” managed objects
would result in an interface named “ EQuipmentR1.”

2. The new interface shall be defined within the same module name as the existing
interface. (CORBA modules are really just name spaces, and may be spread across
multiple files.)

3. Thenew interface shal inherit from the existing interface.

4. Capabilitiesinherited from the existing interface cannot be removed or modified in
the new interface. If an operation definition must be modified, a new operation must
be defined. The name of the new operation shall be the same as the existing
operation with the letter “R” and a numeral appended, starting with “1.” Subsequent
extensions will increment the numeral.

5. Thevaluefor the kind field used in name bindings will continue to be determined by
a constant in the name binding modul es referenced when the object is created. Any
name bindings valid for the existing interface shall be valid for the new interface.
That is, a name binding module for an Equipment object shall also be valid for an
EquipmentR1 object, even if the module' s value for subordinateSubclassesAllowed is
fase.

41

ITU-T Recommendation X.780 Draft

6. Referencesto the new interfaces should be of the most specific type. (If they aren't,
the new capabilities can’t be accessed.) Also, the value of the objectClass attribute
reported by an object of the new class should be the most specific type. CORBA
provides some means for determining the actual class of areference based on
information contained in the IOR.

For example, consider the following object interface:

interface Foo {
void action(in int A in int B);
}

The action might be extended like this:

interface FooRl: Foo {
void actionRL(in int A, inint B, inint C;
}

The old action would still be avalid operation.

A similar approach, appending the name with “R” and an incremented number, shall be
used when other existing IDL definitions are revised, including constant definitions, type
definitions, and valuetype definitions.

7 GDMO Translation

This section provides guidelines for creating IDL information models from existing
information models described using GDMO. The sections below describe how each of
the GDMO templatesisto be translated to CORBA IDL.

7.1 Managed Object Classes

Each Managed Object Classin a GDMO specification shall be trandated into a managed
object interface. Trandations of Managed Object Classes derived from the GDMO Top
class shal inherit from the ManagedObject CORBA IDL interface. Trandlations of
classes not derived directly from Top shall inherit from the translation of whatever class
they are derived from. All managed object interfaces must inherit directly or indirectly
from the ManagedObject interface. Multiple inheritanceis allowed subject to the rules of
CORBA IDL. Note, however, that these rules do differ from CMIP. In particular,
CORBA does not alow an attribute or operation to be inherited from multiple sources
unlessthey in turn inherited it from the same common source. If a multiple-inheritance
translation from CMIP does not meet the CORBA rules, the transator will haveto
choose to inherit from one superclass and manually add the other capabilities from the
other class. Another option isto modify the conflicting superclasses so that they inherit
the conflicting capability from a common source. This, of course, would require re-
definition of these superclasses.

The inability to inherit from a potential superclass also means manual work may be

required if the potential superclass or any of its super classesis modified. A more serious
issue isthat CORBA polymorphism is based on inheritance. If the subclass does not

42

Draft ITU-T Recommendation X.780

inherit from aclass, it can not be polymorphic to it. Unfortunately thisisalimitation of
CORBA, not these guidelines.

Attributes, actions, and notifications in mandatory and conditiona packages are
translated into operations on the interface according to the guidelines below. A comment
preceding the interface should describe the conditions under which the capabilities of a
conditional package are to be supported by an instance, based on the PRESENT IF clause
for that package. Note that CORBA does not allow the re-definition of a capability
present in asuperclass. Therefore, if a capability is defined as conditional in a superclass,
it cannot be redefined as mandatory in a subclass. (As described above, capabilities are
denoted conditional when they raise a NO<package name> exception. This exception
cannot be removed in asubclass. The best alternative will be a comment indicating that
the subclass should not raise the exception. Another alternative would be to forsake
inheritance and manually add the capability, making it mandatory while doing so. This
could lead to problems with polymorphism, however, and manual updating.)

Registration of individual interfacesis not required.

7.2 Packages

Unfortunately, IDL does not provide a means of defining packages in one place other
than by translating a package into an interface. This, though, would result in alarge
number of extrainterfaces and increase the complexity of the CORBA interface. Instead,
these guidelines include the concept of conditional support for groups of capabilities.

As described above, whenever a GDMO package isincluded in a Managed Object Class,
the trandation of that classto an IDL interface includes atrandation of each of the
templates in the package.

GDMO attributes that are part of a conditional package shall be translated into access
operations each with araises clause that includes the exception defined for that package.
GDMO actionsthat are part of a conditional package shall be translated into an operation
that also has araises clause that includes the exception defined for that package. GDMO
notifications that are part of a conditional package shall be trandated into a
CONDITIONAL_NOTIFICATION macro statement.

The present if clause in the GDMO object’ s conditional package statement shall be
translated to a comment preceding the IDL translation of the object.

Trangdations from CMIP can also encounter problems when the same capability is
included in different conditional packages. These rules shall be followed:

1. If the capability is mandatory in one source and conditional in another, it must be
mandatory in the translated class.

2. If the capability is part of multiple conditional packages, the translated operation will
include an exception for each package. An exception will be raised only if none of
the packagesis present, and then any one of the exceptions may be raised.

ITU-T Recommendation X.780 Draft

3. If the same conditional package isincluded from multiple super classes, the condition
under which the packagesisincluded in the new classisalogica “OR” of the
conditions in the super classes.

4. Notifications that are part of multiple packages are transated into just a single macro
statement. If any of the packages are mandatory, the
MANDATORY_NOTIFICATION macro statement isused. Otherwise, the
CONDITIONAL_NOTIFICATION macro statement is used, and all of the package
exceptions are listed.

If a GDMO template occursin multiple conditional packages included in asingle object,
the modeler may want to consider making the capability mandatory or defining a new
conditional packages for the capability.

Note that using exceptions to represent packages only supports conditional packages. |If
multiple mandatory packages are present in a GDMO class, they won't be distinguishable
on the trand ated interface

Behavior statements accompanying a package definition shall be translated to comments
in the interface definitions of the IDL objects transated from the GDM O objects that
include the package.

Registration of packagesis not required.

7.3 Attributes

As described above, GDMO managed object classes list the packages that are to be
included in the class definition. The package then lists the attributes, actions, and
notifications that make up that package. When translating a managed object class, each
template in the included packages will be translated to an operation on the managed
object interface, and most of these will include attribute definitions.

Attributes that support GET capabilities shall have an <Attribute Name>Get operation
defined for them. The return type for the operation shall be atrandation of the attribute’s
ASN.1 syntax.

Attributes that support REPLACE capabilities shall have an <Attribute Name>Set
operation defined for them. Theinput parameter type for the operation shall be a
tranglation of the attribute’s ASN.1 syntax.

Attributes that support ADD capabilities shall have an <Attribute Name>Add operation
defined for them. Attributes that support REMOVE capabilities shall have an <Attribute
Name>Remove operation defined for them. The input parameter type for these
operations shall be IDL sequences trandlated from the attribute’s ASN.1 syntax.

Attributes that support the set-by-create capability shall accept aninitial value for the
attribute on factory create methods but shall not have a SET operation. (The factory

Draft ITU-T Recommendation X.780

create method will also accept values for attributes that are settable, but not attributes that
are merely readable.)

Default values are defined as constants within an interface. The identifier of the constant
shall be <AttributeName>Default. The interface may also have an operation for setting
the attribute to its default, or the client can just use the SET operation with the default
constant. The set-to-default operation shall be named <AttributeName>SetDefault and it
shall accept no parameters and return void. CORBA IDL allows constants to be defined
for only base types and enumerated types, so if the attribute’ s type is complex, no default
can be defined for it. In these cases, a set-to-default operation must be defined and a
comment associated with the set-to-default operation shall describe the default value.

A few other attribute-related GDM O capabilities cannot be re-created with IDL. GDMO
attributes with a DERIVED-FROM clause will have to have the capabilities of the other
attribute manually added to the interface specification. (The syntax of the derived-from
attribute will be used.) Matching rules are defined by the Multiple-Object Operation
Service constraint language, which is part of the TMN CORBA services defined in ITU-
T Rec. Q.816. These matching rules simply depend on the basic type of the attribute.
There are no matching rules per attribute. Initial values, permitted values, and required
values are not supported.

It will often make sense to define an IDL type for each attribute. Even if the attributeisa
simple type, an IDL typedef statement may be used to define atype for it. A comment
preceding the type definition for an attribute is the best place to put atrangation of an
attribute’ s behavior statement. Otherwise, the behavior statement may be translated to a
comment preceding the attribute’ s access operation on the object interface.

The standard attributes defined by these guidelines shall be used whenever possible. See
Section 6.3.5.

Registration of attributesis not required.

7.4 Attribute Groups

These guidelines do not support the concept of attribute groups. GDMO attribute groups
have no equivalent trand ation.

7.5 Actions

Actions shall be trandlated to IDL operations. The input parameters, output parameters,
and return type for the operation shall be transated from the action’ s input and output
ASN.1 syntax. That is, the input syntax should be translated to IDL in parameters, while
the output syntax istrandlated to amix of out parameters and the return value. IDL inout
(in/out) parameters may be used where appropriate. Also, exceptions should be defined
to return values for error conditions rather than returning unions of normal and error
values.

45

ITU-T Recommendation X.780 Draft

GDMO actions with a mode of unconfirmed (those that lack the MODE CONFIRMED
clause) may be trandated to methods with the IDL keyword oneway preceding the return
type. Such operations must have a return type of void and no out or inout parameters,
though. IDL operations without the oneway keyword are confirmed.

7.6 Notifications

These guidelines define the IDL equivalent of the 15 notifications found in ITU-T Rec.
X.721, which are the notifications used in most GDMO information models. Typicaly,
notificationsin GDMO packages will smply be translated to a notification macro
statement on each interface that includes the package. A
MANDATORY_NOTIFICATION statement is used if the notification is part of a
mandatory package and a CONDITIONAL_NOTIFICATION statement is used if it is part
of a conditiona package.

The mapping of object attributes to notification fields within a notification statement is
not supported. If some special mapping is required it should be documented with a
comment. Repliesto notifications are not supported.

If anew notification must be defined it should be defined as an operation on an interface
named “Notifications” within the information model’s module. The name of the
operation shall be the name of the notification. The parameters to the operation shall be
tranglated from the notification’ s information syntax. The notification operation’s return
type must be void, and it must have only in parameters. ITU-T Recommendation Q.816
provides information on how the datais placed into a structured notification. Note that
attribute 1Ds are not needed. Instead, parameters are identified with a name and data
type. The scoped interface name and notification operation may then be used within
notification macro statements.

If anotification needs to be extended, it must be done by defining a new operation. The
new operation should contain the same parameters as the old. For example, the IDL
below extends the equipment alarm by adding a parameter named “newData’ of type
“newType.”

nodul e newibdul e {
interface Notifications {

voi d equi prent Al arm (

i n External Ti meType event Ti e,
i n Suspect Qbj ect Set Type suspect Qbj ect Li st
in newlType newDat a) ;

}

7.7 Behaviors

GDMO behavior templates shall be translated to formatted IDL comments immediately
preceding the IDL construct with which each behavior is associated. Attribute behaviors
shall be trandlated to IDL comments preceding the type definition for the attribute type.

46

Draft ITU-T Recommendation X.780

Package behaviors shall be trandlated to IDL comments preceding the exception defined
for the comment.

7.8 Name Bindings

Each GDMO name binding shall be translated into an IDL name binding module as
defined in Section 6.8. The various constructs in the GDM O name binding shall be
trand ated as follows.

The superior class name in the name binding shall be assigned to the value of the
superiorClass constant in the name binding module. If the GDMO superior class clause
has an AND SUBCLASSES modifier, the value of the IDL name binding constant
superior SubclassesAllowed shall be true. Otherwise, it shall be false.

The subordinate class name in the name binding shall be assigned to the value of the
subordinateClass constant in the name binding module. If the GDMO subordinate class
clause has an AND SUBCLASSES modifier, the value of the IDL name binding constant
subor dinateSubclassesAllowed shall be true. Otherwise, it shall be false.

If the GDMO name binding has a CREATE clause, the value of the IDL name binding
constant managersMayCreate shall be true. Otherwise, it shall be false.

If the GDMO name binding has no DELETE clause, the value of the IDL name binding
constant deletePolicy shall be notDeletable. If it hasa DELETE clause with either no
modifier or an ONLY-IF-NO-CONTAINED-OBJECTS modifier, the value of deletePolicy
shall be deleteOnlylfNoContainedObjects. If it hasa DELETE clause with a
CONTAINED-OBJECTS modifier, the value of deletePolicy shall be
deleteContainedObjects.

If the name binding create clause has a WITH-AUTOMATIC-INSTANCE-NAMING
modifier, the managed object factory create operation should define the name parameter
asinout, and include a comment indicating that the client may submit anull name, and if
so the factory will choose a name and return it.

Creating an object by copying a partial set of attribute values from areference object is
not possible with a strongly-typed factory method because there is no way for the factory
to tell which valuesit should copy and which it should use from the operation’s
parameters. A strongly-typed operation that copies all values from areference could be
defined, but the utility of thisislimited. A weakly-typed operation that accepted a
reference object aswell asapartial list of attributes could also be defined on afactory,
but the difficulty of implementing this does not seem to be worth the benefit. Therefore,
the trandation of the WITH-REFERENCE-OBJECT modifier in a hame binding create
clause is not supported.

Parameters on create clauses shall be trandated to CreateError exceptions. This may

require defining a new value for the error ID. A comment should be placed in the name
binding IDL module noting which CreateError exception error 1Ds apply to objects

47

ITU-T Recommendation X.780 Draft

created with that name binding. If it is not possible to trandlate a create clause parameter
to aCreateError exception, another, less desirable, alternative isto define a new factory,
and trangdlate the parameter to an exception on a create operation on that factory. Because
of the general-purpose nature of the CreateError exception, though, the need for this
should berare. (See more on parameters, below.)

7.9 Parameters

GDMO parameters provide extensibility for GDMO information models. Parameter
templates are used to augment an existing specification in the areas of notifications,
actions (requests, responses, and failures), and specific errors when defining subclasses.
The GDMO definitions of al notifications and many actions contain an extensibility field
that is further defined by the subclasses (if required). In the case of specific errors, class-
specific errors are used to augment the general “processing failure” error in CMIP. The
format of thisinformation is often alist of name-value pairs, where the name defines the
datatype of the value.

Translating GDMO parameters to IDL provides a good opportunity to make the currently
defined extensions that have been found useful with many object classes a“normal,”
strongly-typed part of the model. For example, three GDMO parameters that have been
defined for alarms have been included in the notifications defined in the IDL. (The three
parameters are “ Alarm Effect On Service,” “ Suspect Object List,” and “Alarming
Resumed.”)

There are several key words used in GDMO parameter templates to specify the semantics
of the extensions. The translation of the various extension capabilities available with
parameter templates based on these keywords is discussed below.

7.9.1 ACTION-INFO and ACTION-REPLY

In keeping with the strong typing recommended in the framework, GDMO parameters
with the keywords “ ACTION-INFO” in the template are not trandated as an extension
field. Instead, anew interface is subclassed from an existing interface that specifies the
action but adds the extensions asregular “in” parameters of that method. The name of
the IDL parameter should be taken from the name of the parameter, and the data type of
the parameter should be trandated from the GDMO parameter’ s syntax. “ACTION-
REPLY” parameters would likewise be translated to “out” parameters on the operation.

The above method implies that subsequently adding a parameter to an already-existing
IDL operation is not supported. Instead, the information modeler may use the more
conventional approaches provided by CORBA for extending an interface, such as
subclassing an object interface and defining a new method there, with additional in and/or
out parameters, or additional exceptions. See Section 6.13 for guidelines on this.

7.9.2 EVENT-INFO and EVENT-REPLY

In cases where the “EVENT-INFO” parameters have already been defined, they are
translated to regular “in” parameters on the IDL operations used to convey a notification.

Draft ITU-T Recommendation X.780

These guidelines do not support responses to notifications, so thereis no trandation for
“EVENT-REPLY” parameters.

Since this framework already defines a set of notifications, translating EVENT-INFO
parameters could mean redefining one of the notification operations. See Section 7.6.

In most cases, however, re-using an existing notification definition will be preferred In
cases where the GDMO extensions are predefined, as for alarm information, they should
be included in the translated notification IDL specifications. The framework notification
IDL, however, also supports an “additional information” field, which is aweakly typed
name-value pair list. This can be used to add information to these previously-defined
notifications. The notification event type will not change. The new managed object
interface that needs to use the extension for a specific parameter must note the use of this
parameter in comments, though. Unfortunately, there is no other mechanism except
using the macros shown above to specify which notifications are supported by which
objects, and this does not support also specifying parameters. The advantage of using the
same notification type isto allow the managers to receive the notifications and not be
concerned with having to register for a new notification type. If the extensions are not
understood because of different versions of manager and agent, then the additional
information is discarded.

The specification of the extensions for the additional information is described below.

The notifications defined by this framework include a field named

“additional Information” that closely resembles the “additional Information” field in CMIP
notifications. The IDL syntax of the “additional Information” field in the notificationsis
type “ Additional InformationSetType”:

struct Managenent Ext ensi onType {
Ul DType id; /1 identifies the type of info
any i nfo; /!l type will depend on id

3

t ypedef sequence <Managenent Ext ensi onType> Addi ti onal | nfor mati onSet Type;

Parameters with the EVENT-INFO keywords are translated by defining a Unique
Identifier (UID) for each parameter. See Section 6.11 for details on this. In short,
though, the modeler defines a sub-module named “ Additional InformationConst” in which
a constants of value type “short” isdefined. The names of these constants are the names
of the GDMO parameters. The value of each constant could also be derived from the
GDMO, based perhaps on the last number of the parameter’s registration. Otherwise, an
integer unique to the constants in that module should be chosen. This definition must
also include a comment indicating the data type of the value that accompanies the UID in
the “additional Information” field. As an example, if the Alarm Effect On Service
parameter had not been made a norma member of the Alarm Info data structure used by
alarmsin this framework, it might have been trandated like this:

nodul e itut_nB8100 {

49

ITU-T Recommendation X.780 Draft

nodul e Addi tional I nformati onConst {

/** Alarmeffect on service paraneters are acconpani ed by a bool ean
value in the “any” field indicating if service has been affected. */

const short al arntffectOnService = 1;
}; // end of nodul e Additional I nformati onConst

}; // end of module itut_nm3100

A managed object’s IDL interface can then identify the notifications it supports as usual,
but a comment should indicate the parameters that will be included in the notifications.

7.9.3 Context-Keyword

Context-keyword parameters identify information that is to be passed in anamed field in
aCMIP PDU. Thisnamed field is usually a sequence of data structures consisting of an
identifier and an “any” data type which holds a value whose type depends on the
identifier. In CMIP, these context-keyword parameters may be passed in action
parameters or in notifications. The transglation of context-keyword parameters for actions
is not supported by this framework due to the preference for strong typing. Instead,
additional information for actions should be translated to regular operation parameters.
(See ACTION-INFO parameters above.)

For notifications, except for extensions (explained above), if fields are defined to be of a
weak type, then the same approach as for the extension field can be used. However, this
approach has not been used in most of the GDMO standards. The distinction in the case
with EVENT-INFO keyword versus context-keyword is the former is designed for
extensibility where one or more parameters can be added. The recommended approach in
the case of multiple extension is the use of EVENT-INFO and therefore al standards
have defined parameters using this keyword.

7.9.4 SPECIFIC-ERROR

“SPECIFIC-ERROR” parameters are returned in CMIP processing failure messages.
They indicate an abnormal outcome of an operation. There are two options for
trandating these parameters. First, they may be translated to IDL exceptions raised by
the operation for which the specific error parameter is defined. The name of the
exception should be taken from the GDM O parameter name, and the data type returned
with the exception should be derived from the GDMO parameter’s syntax. Since
specific-error parameters may be defined for different kinds of GDMO templates,
specific error parameters on actions should be translated to exceptions raised by the
action and specific error parameters on attributes should be translated to exceptions raised
by the attribute access operation. Also, specific error parameters on the “ Create” clause
of a name binding should be translated to exceptions on the create operation on the
factory interface. Thereisno trandation of a specific-error parameter on a notification
supported by this framework since responses to notifications are not allowed.

The second option for tranglating specific-error parametersisto trandate the parameter
into anew code point for one of the standard exceptions defined by the framework. The

50

Draft ITU-T Recommendation X.780

framework defines three standard exceptions: the CreateError exception, raised on
factory create operations, the DeleteError exception, raised on managed object delete
operations, and ApplicationError exceptions, raised on all other managed object
operations. The ApplicationError exception returns a unique identifier that identifies the
specific application error, and atext explanation. The create and delete error exceptions
extend thisinformation by adding alist of related objects that may be involved, and the
attributes of the object on which the object was attempted. Thelist of related objects
might show, for example, some objects that must be deleted before the target object can
be deleted. The attributes might contain object state information pertinent to the error.

Trandating a specific-error to a code point used by one of these standard exceptions
should be used whenever possible. Since the data types returned in the exceptions are
value types, they may be extended for specific code points. Because the delete operation
isinherited from the base managed object interface specific-error parameters appearing in
GDMO name binding delete clauses must be translated to DeleteError exception code
points. Thisisdone similarly to the EVENT-INFO parameters described above.
Basically, the modeler defines a delete error sub-module for UID constants. The constant
definitions must include a comment indicating what datawill be placed in the
“relatedObjects’” and “attributeList” fields accompanying an error with that identifier.
Also, if the modeler has extended the standard value type returned for the code point, a
comment must note the actual datatype returned so that the managing system may
narrow the type and access the additional information. The framework, in fact, includes
some delete error code points that extend the standard del ete error value type.

Finally, acomment on the managed object’s IDL interface indicates the delete error
values that might be raised in an exception when an incorrect attempt to del ete the object
ismade. An exampletrandationis:

nodul e itut_nB8100 {
nodul e Del et eError Const {
/** Network TTP Termi nates Trail delete errors are raised when an
attenpt is nade to delete a TTP before the trail has been del eted.
It includes a reference to the Trail in the “rel atedObjects” field. */
const short networkTTPTerm natesTrail = 54;

}; // end of nodul e Del et eError Const

}; // end of nodule itut_nm3100

7.10 ASN.1 Data Types

GDMO uses the ASN.1 language to define the syntax of attributes as well as operation
and notification parameters, so when converting GDMO templatesto IDL, these syntax
definitions will also haveto be trandlated. This section gives guidelines on translating
ASN.1 syntax to CORBA IDL.

51

ITU-T Recommendation X.780 Draft

7.10.1 Basic Types

CORBA IDL defines the following basic types to which ASN.1 basic types may be
trandated: any, boolean, char, double (for double-precision floating-point numbers),
enum (for enumerated types), fixed, float (for single-precision floating-point numbers),
long (for large integers), object (for object references), octet, short (for small integers),
string, wchar (for “wide” characters), and wstring (for strings of “wide” characters).

This framework uses the string type for al strings, and defines a typedef called “Istring”
for cases where the string may contain escaped international characters. Istringisa
typedef of wstring, or “wide” strings. These are string composed of “wide” (16-bit)
characters.

Temporary Note - Contributions are solicited on using the alternative typedef of
Istring to string instead of wstring since strings can carry international character sets
when codeset negotiation, supported by GIOP version 1.1 and greater, is used.
Wstring types are mapped by CORBA |anguage bindings to the programming
language wstring type, which is often tied to just Unicode.

In addition, the CORBA Time service defines atime type referred to a“ UtcT” that is
used by this framework.

7.10.2 Seguence

CORBA DL supports the definition of data structures using the struct keyword, similar
to ASN.1 sequence types.

7.10.3 Segquence of

CORBA DL supports the definition of sequences of types, both basic and complex, in
much the same way as the ASN.1 sequence of type.

7.10.4 Set of

CORBA DL does not support the definition of complex set types as does ASN. 1.
Instead, sets are translated to IDL sequences. The convention of ending the type name
with “ SetType” shall be followed. When handling set values, duplicates should be
eliminated and order ignored.

7.10.5 Choice

CORBA DL supports the definition of discriminated unions, which serve the same
purpose as ASN.1 choice types.

In the interest of simplifying the implementation of CORBA-based TMN standards, this
framework recommends the conservative use of discriminated unions. Often when
translating from ASN.1 to CORBA IDL, the translated type can be simplified with no
loss of semantics. For example, usually a choice between a string and null can simply be
trandated to astring. A comment that the string may possibly be null can be added to
identify this possibility. A choice between a sequence of (or set of) and null can likewise
be trandated to just the sequence.

52

Draft ITU-T Recommendation X.780

7.10.6 Object Identifier (OID)

This framework defines atype called “Universal Identifier” (UID) that isdesigned to bea
replacement for ASN.1 OIDs.

7.10.7 Object Instance

The framework supports two possible trandations for ASN.1 object instance types. Since
each managed object has a name, the name type defined by the CORBA Naming Service
can be used. (Thisframework defines atypedef for the CORBA Naming Service names,
called NameType.) Also, CORBA object references may be used. Since all managed
object interfaces must inherit from the ManagedObject interface, the type
ManagedObject should be used whenever a general reference to an object is required.
The modeler may also use atype specific to a class of managed objects, such as
Equipment. This has the advantage of making a model more strongly typed.

8 Style Idioms for CORBA IDL Specifications

This section defines a set of styleidioms for the Interface Definition Language (IDL) of
the Common Object Request Broker Architecture (CORBA) to be used in interface
specifications. Having a set of styleidiomswill result in CORBA/IDL specifications
with aconsistent style. This may require some additional work by editors, but this extra
effort is worth the increased readability of the CORBA/IDL specifications. Itis
important to keep in perspective that style conventions are for the benefit of the reader,
not necessarily to the benefit of the author.

8.1 Use Consistent Indentation

This section demonstrates the indentation style that may be used in the IDL modules. As
an example, an excerpt from the CORBA Security Service non-repudiation moduleis
shown below:

enum Evi denceType {
SecPr oof of Creati on,
SecPr oof of Recei pt,
SecPr oof of Approval ,
SecPr oof of Retri eval ,
SecPr oof of Ori gi n,
SecPr oof of Del i very,
SecNoEvi dence // used when request-only token desired

}s

interface NRPolicy {
void get _NR policy_info (
out Security::ExtensibleFamily NR policy_id,

out unsi gned | ong pol i cy_versi on,
out Security::TineT policy_effective_tine,
out Security::TinmeT policy_expiry_tine,

out Evi denceDescri ptorlListType supported_evidence_types,
out Mechani snmDescri pt or Li st Type supported_nechani sns

53

ITU-T Recommendation X.780 Draft

8.2 Use Consistent Case for Identifiers

Several languages enforce case rules (such as ASN.1) while others have de-facto rules.
These rules allow readers to easily distinguish identifiers of different type leading to
increased readability. IDL does not enforce case, so the following rules are proposed.

» Operations, parameters, attributes, members and constants shall have every
embedded word capitalized except for the first word capitalized.
» All other identifiers shall have the first letter of every embedded word capitalized.

nodul e Car Mbdul e {
struct Engi neType {
Pi st onType pi ston;
RodType pi st onRod;
typedef string KeyType;
enum Wont St art ReasonType {

Bat t eryl sDead,
NoGas

b
exception Wnt Start {
Wont St art ReasonType reasonEngi newnt Start;
b
i nterface FordRanger ({

voi d startEngi ne(
in KeyType key
)

rai ses (
wnt Start;
)

attribute Engi neType engi ne;

8.3 Follow JIDM Approach for IMPORT

At the beginning of a module that imports a type from another module, create alocal
typedef. This explicitly lists the type that the importing module is dependent upon from
the exporting module. (Note: the name of the local identifier need not be the same name

nodul e | mporti nghbdul e {

/1 Inports

t ypedef ExportinghMdul e:: SonmeType SoneType,;

typedef Exportinghbdul e:: SomeQt her Type SomeQt her Type;

t ypedef Exporti ngModul e:: Sonet hi ngEl se Sonet hi ngEl seType;

Draft ITU-T Recommendation X.780

astheidentifier in the exporting module).

8.4 Use JIDM Approach for OPTIONAL and CHOICE

For enumerated and numeric (integer and floating) types, use the ASN OPTIONAL and
CHOICE mappingsto IDL as prescribed in the Open Group and Open-Network
Management Forum Joint Inter-domain Management (JIDM) group’s Inter-Domain
Management: Specification Translation.”) An exampleis given below:

/1 Choice

enum Car Choi ceType {
For d,
Cheverol et,
Chrysl er

s
uni on Car Type swi tch (Car Choi ceType) {

case Ford:
case Cheverolet:
case Chrysler:

For dType
Chevr ol et Type
Chrysl ert Type

f ordVal ue;
chevr ol et Val ue;
chrysl er Val ue;

}

/1 Optional
uni on SunRoof TypeOpt swi t ch(bool ean) {case TRUE: SunRoof Type the_val ue};

For strings, sequences, and object references, anull value can usually be used to
represent optional cases where no valueis present. In cases where there is a semantic
difference between a null and a not present, the above method may be used.

For structures and unions, the above method may be used or a decision may be made to
use null values within the structure to represent optional values that are not present. For
example, for a structure composed of two strings, two nulls could represent an optional
value that is not present. If avalueisoptiona it should be marked as optiona with a
comment.

As aways, guidelines need to be used with common sense. The resulting translation
should be evaluated for clarity and usability. If the trandation istoo complex, the
modeler may want to try to ssimplify it.

8.5 Use a Consistent Type Suffix

Append the suffix “Type” to al IDL types. Thisallows type identifiers and membersto
use the same name without collisions since IDL is case insensitive. In addition, this
idiom increases readability by clearly separating type identifiers from other identifiers.

8.6 Use a Consistent Suffix for Sequence Types.

For sequences (ordered, duplicates allowed) use a suffix of “ SeqType” to distinguish
sequences from singulars.

55

ITU-T Recommendation X.780 Draft

8.7 Use a Consistent Suffix for Set Types.

For sets (unordered, duplicates disallowed) use a suffix of “SetType” to distinguish sets
from singulars.

8.8 Use a Consistent Suffix for Optional Types
For optional types use a suffix of “TypeOpt” to distinguish them from the non-optional
type.

8.9 Arrange Operation Parameters in a Consistent Manner

A consistent ordering of parameters increases readability. Arrange parametersto
operations by in, out, then inout.

8.10 Assume No Global Identifier Spaces

To reduce name collisions and promote reuse, all identifiers shall be scoped to a
particular context (e.g., module, and interface).

8.11 Module Level Definitions

All type definitions shall be at the module level. Nesting type definitions within alower
context leads to difficulties in reuse and duplication.

8.12 Use of Exceptions and Return Codes

Exceptions shall be used for exceptional conditions such as error conditions. Normal
returns shall be handled though return codes and output parameters.

8.13 Explicit vs. Implicit Operations

An operation should perform an explicit function. Using parameters as aflag to
implicitly change the behavior of the operation can be confusing. Factor each behavior
into a separate explicit operation.

8.14 Don’t Create a Large Number of Exceptions

Having alarge number of exceptions increases the difficulty of understanding an
interface definition. Group exceptions by category, or make use of the standard
exceptions (ApplicationError, CreateError, and DeleteError) by defining new error code
points for them, if necessary.

9 Compliance and Conformance

This section defines the criteria that must be met by other standards documents claiming
compliance to these guidelines and the functions that must be implemented by systems
claiming conformance to this specification.

9.1 Standards Document Compliance
Any specification claiming compliance with these guidelines shall:

56

Draft ITU-T Recommendation X.780

1. Derive (directly or indirectly) all interfaces that model resources from the
ManagedObject interface described in Section 5.1 and defined in the CORBA IDL in
Annex A.

2. Define, for each managed object class that can be instantiated, afactory interface
derived (directly or indirectly) from the ManagedObjectFactory interface described
in Section 5.2 and defined in the CORBA IDL in Annex A.

3. Usethe constants defined in the CORBA IDL in Annex B whenever appropriate.

4. Usethe notifications described in Section 5.3 and defined in the CORBA IDL in
Annex A whenever appropriate.

5. Adhere to the conventions for defining CORBA TMN managed objects specified in
Section 6.

6. Adhereto the IDL conventions specified in Section 8

7. Specify notifications as methods on a “Noatifications’ interface if none of the
notifications defined in this document are applicable.

8. Define and use a NO<package name> exception for identifying the attributes and
actions that are parts of a conditional package.

9. Use the macros defined in this document for identifying the notifications that are to
be supported by a managed object.

10. Use the definitions for generic attribute types found in Section 6.3.5 wherever
applicable.

11. Define IDL name binding modules to identify allowable containment rel ationships.

12. State in its compliance clause a reference to the module(s) from which other generic
attributes are used.

13. Follow the GDMO to IDL mapping rules defined in Section 7 if the IDL model isa |
translation from GDMO.

9.2 System Conformance
An implementation claiming conformance to this document shall:

1. Support al of the capabilities of the ManagedObject interface described in Section |
51
2. Support the create operation behavior described in Section 6.9. |

9.3 Conformance Statement Guidelines

The users of these guidelines must be careful when writing conformance statements.
Because IDL modules are being used as name spaces, they may, as allowed by OMG IDL
rules, be split acrossfiles. Thus, when a module is extended its name won’t change.
Instead, anew IDL file will smply be added. Simply stating the name of amodulein a
conformance statement, therefore, will not suffice to identify a set of IDL interfaces. The
conformance statement must identify a document and year of publication to make sure
theright version of IDL isidentified.

57

Draft ITU-T Recommendation X.780

Annex A The Object Model CORBA IDL Module
(Normative)

/* This IDL code is nmeant to be stored in a file named “itut_x780.idl”
|l ocated in the search path used by IDL conpilers on your system */

#i fndef | TUT_X780_I DL
#define | TUT_X780_| DL

#i ncl ude <CosNani ng.idl >
#i ncl ude <CosTi ne.idl >
#i ncl ude <itut_x780Const.idl>

#pragma prefix “itu.int”

/* Mbst coments in this file are formatted to be parsed by an |DL-to-HTM
converter such as idldoc or orbacus hidl. */

/I MODULE itut_x780

/** This nmodul e provides the fundanmental capabilities for inplementing network
managenent interfaces and defines the "nanaged object" interface. The

i nterfaces bel ow are nodel ed after the nanaged object specifications

found in the ITUT CMP specification docunent X 721. */

nodul e itut_x780 {

/[IMPORTED TYPES

/1 Types inported from CosNam ng
t ypedef CosNami ng:: Name NaneType;

/1 Types inported from CosTi me
typedef TineBase::UcT UcT,;

I FORWARD DECLARATIONS AND TYPEDEFS

/** International strings are strings of wide (16 bit unicode)
characters. */

typedef wstring Istring;

/** Istring Sets are just sets of Istrings */

typedef sequence <Istring> IstringSetType;

/[** Additional Text Type is often used in notifications to convey a
text explanation for the notification.

*/

typedef Istring Additional Text Type;

/** Avalibility Type is used in a sequence to indicate the
availability of a resource. Zero or nore of these conditions may be
i ndi cat ed.

*/

typedef short AvailabilityStatusType;

59

ITU-T Recommendation X.780 Draft

const Avail abilityStatusType inTest = O;
const AvailabilityStatusType failed = 1;
const AvailabilityStatusType powerOFf = 2;
const Avail abilityStatusType of fLine = 3;
const AvailabilityStatusType of fDuty = 4;

const Avail abilityStatusType dependency = 5;
const Avail abilityStatusType degraded = 6;
const AvailabilityStatusType notlnstalled = 7;

const AvailabilityStatusType |ogFull = 8;

/** Availability status is used to indicate the availability of a
resource. It is represented as a sequence of integers because several
of the conditions may exist at once.

*/

t ypedef sequence<Avail abilityStatusType> Avail abilityStatusSet Type;

/** Backed Up Status Type is used to indicate if an object has a back
up. */

t ypedef bool ean BackedUpSt at usType;

/** Control Status Type is used in a sequence to indicate the

control status of a resource. Zero or nore of these may be indicated.
*/

t ypedef short Control StatusType;

const Control StatusType subject ToTest = O;

const Control StatusType part Of Servi cesLocked = 1;

const Control StatusType reservedFor Test = 2;

const Control StatusType suspended = 3;

/** Control status set is used to indicate the control status of a

resource. It is represented as a sequence of integers because several
of the conditions nmay exist at once.
*/

t ypedef sequence<Control StatusType> Control St at usSet Type;

/** Generalized tine is a basic ASN. 1 type. It is usually represented
as a string in conputing |anguages but it has certain, parseable
formats. The 3 possible forns are:

Local tinme only. "YYYYMVDDHHWMVSS. fff", where the optional fff is
accurate to three decimal places,

Universal tinme (UTC time) only. "YYYYMVDDHHWVSS. fffZ", and

Di fference between | ocal and UTC tines. "YYYYMVDDHHMVESS. f f f +- HHVM' .

</ ol >

The options for representing this in IDL seemto be either a string or
the UtcT structure fromthe CORBA Tinme Service. UcT nakes it a little
easier to conpare tines fromdifferent zones, but requires nanaged
systens to know their tinme zones. UcT was picked.

*/

typedef UtcT GeneralizedTi neType;
/** External Time is generalized tine. */
typedef GeneralizedTi meType External Ti meType;

/** Forward decl aration. */

60

Draft ITU-T Recommendation X.780

i nterface ManagedObj ect;

/** MO is shorthand for Managed Object. CORBA uses object references
of type "object"” to identify objects. These are used instead of ASN. 1
obj ect instances. For network nanagenent interfaces, all objects will
i nherit fromthe "ManagedObject” interface. */

t ypedef ManagedObj ect MO,

/** MO Set is a set of MOreferences. */

t ypedef sequence <M>> MOSet Type;

/** MO Seq is a sequence of MO references. */

t ypedef sequence <M>> MOSeqType;

/** A set of nanmes is definded as a sequence of nanes. */

t ypedef sequence <NanmeType> NaneSet Type;

/** Notification IDs are long integers. */

typedef long Notifl DType;

/** This defines a set of notification IDs. */

t ypedef sequence <l ong> Noti fl DSet Type;

/** Procedural Status Type is used in a sequence to indicate the
procedural status of a resource. Zero or nore of these may be

i ndi cat ed.

*/

t ypedef short Procedural StatusType;

const Procedural StatusType initializationRequired = O;

const Procedural StatusType notlnitialized = 1;

const Procedural StatusType initializing = 2;

const Procedural StatusType reporting = 3;

const Procedural StatusType term nating 4;

/** Procedural Status Set is used to indicate the procedural status of

a resource. It is represented as a sequence of integers because
several of the conditions may exi st at once.
*/

t ypedef sequence<Procedural Stat usType> Procedural St at usSet Type;
/** ScopedNane is just a string. */

typedef string ScopedNaneType;

/** Scoped Name Sets are sinply sets of Scoped Nanes. */

t ypedef sequence <ScopedNaneType> ScopedNaneSet Type;

/** In CORBA, strings containing scoped nanes are used to identify
obj ect classes (actually, "interfaces"). */

t ypedef ScopedNanmeType Obj ect d assType;

/** Object Class Set is a set of object classes */

61

ITU-T Recommendation X.780 Draft

typedef sequence <Objectd assType> bj ect Cl assSet Type;

/** Name Binding Mddules are identified with scoped nanmes. */

t ypedef ScopedNaneType NaneBi ndi ngType;

[** StartTinmeType is used to specify a time when sonething starts.
It is often paired with a StopTi neType to control the activation of
sonme function.

*/

typedef GCeneralizedTi mneType StartTi meType;

/** String sets are sets of strings. */

t ypedef sequence <string> StringSet Type;

/** Unknown status is used to indicate if the status of a resource is
not known. A value of true indicates the status is unknown. */

t ypedef bool ean UnknownSt at usType;

I ENUMERATED TYPES

62

/* The following state objects are used in many interfaces and parall el
the state objects in CMP standards. */

/** Administrative State is read/wite. A "locked" object is usually
one that may not be changed or one which is not providing service.
Setting the Admininstrative State of an object to "shutti ngDown" begins
t he shutdown process for that object. */

enum Admi ni strativeStateType {l ocked, unlocked, shuttingDown};

/** Operational State is read only. It sinply reports the current
capability of the object to provide service. */

enum QOper ati onal St at eType {di sabl ed, enabl ed};

/** Usage state is read only. |If "idle," the resource is conpletely
unused. If "busy," the total capacity of the resource is in use.
"Active" is in between. */

enum UsageSt at eType {idle, active, busy};

/** Delete Policy indicates if an object can be deleted and if so if
any contai ned objects should automatically be deleted. Since objects
nmust not be orphaned, if an object has a delete policy of

“del et eOnl yI f NoCont ai nedOhj ects” the object nust not be deleted if it
has contai ned objects. A value of “del eteContai nedObjects” neans if
the object is deleted its contained objects should also be deleted. */

enum Del et ePol i cyType {notDel et abl e, del eteOnl yl f NoCont ai nedObj ect s,
del et eCont ai ned(bj ect s};

/** PerceivedSeverity reports the severity of an alarm "Indeterm nate"
is used when it is not possible to assign one of the other values */

enum Per cei vedSeverityType {indeterm nate, critical, mgjor, mnor,
war ni ng, cl eared};

Draft ITU-T Recommendation X.780

/** Source Indicator is used in many notifications. It identifies
whet her the notification is a result of a managenment operation or
somet hi ng that occurred on the nanaged system */

enum Sour cel ndi cat or Type {resourceQperati on, nanagenent Qperati on,
unknown} ;

/** The standby status attribute is single-valued and read-only.

The value is only neani ngful when the back-up relationship role exists.
I f "hot standby" the resource is not providing service, but is
operating in synchronismw th another resource that is to be backed-up
If "cold standby" the resource is to back-up another resource, but is
not synchronized with that resource. |If "providing service" the back-up
resource is providing service and is backing up another resource.

*/

enum St andbySt at usType { hot St andby, col dSt andby, providi ngService};
/** Stop tines are used to specify when sonme function should cease
There are normally two choices, the function runs continually (in
whi ch case no actual tine is specified) or the function ends at

a specified tine.

*/

enum St opTi neChoi ce {specific, continual};

/** Threshold indication describes if the threshold crossed was in the
up or down direction. */

enum Thr eshol dl ndi cati onType {up, down};

/** Trendl ndi cation values indicate if sonme observed condition is
getting better, worse, or not changing. */

enum Tr endl ndi cati onType {l essSevere, noChange, noreSevere};

I STRUCTURES AND UNIONS

/* The structures defined bel ow are used to pass val ues that nay be
optionally included. For sone types of values, like strings, lists,
and pointers, it is easy to tell if the value is included. For others
l'i ke enunerations, nunbers, and structures, it is not. */

/** AdministrativeStateTypeOpt is an optional type. |If the
discrimnator is true the value is present, otherwi se the value is
null. */

uni on Admini strativeStateTypeOpt switch (bool ean) {

case TRUE: Admi ni strativeStateType val ue
3
/** Bool eanTypeOpt is an optional type. |If the discrimnator is
true the value is present, otherwise the value is null. */

uni on Bool eanTypeOpt switch (bool ean) {

case TRUE: bool ean val ue
3
/** Fl oat TypeOpt is an optional type. |If the discrimnator is
true the value is present, otherwise the value is null. */

uni on Fl oat TypeOpt switch (bool ean) {

63

ITU-T Recommendation X.780 Draft

case TRUE: fl oat val ue;
b
/** LongTypeOpt is an optional type. |If the discrimnator is
true the value is present, otherwise the value is null. */

uni on LongTypeOpt switch (bool ean) {

case TRUE: | ong val ue;
}s
/** Operational StateTypeQpt is an optional type. |If the discrimnator
is true the value is present, otherwise the value is null. */

uni on Operational StateTypeOQpt switch (bool ean) {

case TRUE: Oper ati onal St at eType val ue;
3
/** Short TypeOpt is an optional type. |If the discrimnator is
true the value is present, otherwise the value is null. */

uni on Short TypeOpt switch (bool ean) {

case TRUE: short val ue;
b
/** Trendl ndi cati onTypeOQpt is an optional type. |If the discrimnator
is true the value is present, otherwise the value is null. */

uni on Trendl ndi cati onTypeOpt switch (bool ean) ({

case TRUE: Trendl ndi cati onType val ue;
s
[** Unsi gnedShort TypeOpt is an optional type. If the discrimnator is
the value is present, otherwise the value is null. */

uni on Unsi gnedShort TypeOpt switch (bool ean) {

case TRUE: unsi gned short val ue;
s
/** UsageStateTypeOpt is an optional type. |If the discrimnator is
true the value is present, otherwise the value is null. */

uni on UsageSt at eTypeOpt switch (bool ean) {
case TRUE: UsageSt at eType val ue;
b

/** Many tines interface specifications need to define standard val ues
to be passed across the interface. Also, often the schene used to
define these val ues needs to be extensible as new interfaces are

subcl assed, so enunerations don't work well. CMP uses QO Ds, strings
of nunbers that are often appended, in standards. To serve this
purpose, the Unique IDis used. It consists of two parts, a string

contai ni ng a scoped nodul e name, and an integer val ue defined as a
constant within that nodule. These U Ds, and the OhjectC ass type
defined above, replace ASN.1 O Ds. It is expected that each nodul e
will contain a constant string named "nodul eNane" that contains the
name of the nodule for error-free use by the programrer. A null nodul e
name Will indicate a null value for the UD. <p>

Code to interpret a UD nmight look Iike the follow ng code sni ppet:

<code><pre>
Ul DType pc; /'l probabl e cause

|f (pc. nodul eNane ==

Draft ITU-T Recommendation X.780

i tut_x780:: Probabl eCauseConst : : nodul eNane) //string conpare
switch (pc.value) {

case itut_x780:: Probabl eCauseConst: : adapterError:

case

i tut_x780:: Probabl eCauseConst : : appl i cati onSubsyst enfai | ure:
lc;ilse i tut_x780:: Probabl eCauseConst : : bandwi dt hReduced:

el se i f (pc. nodul eNane == MyLocal : : Probabl eCauseConst : : nodul eNane)
switch (pc.value) {

</ pre></ code>

@renber nodul eNane The scoped nodul e nanme where val ues are
def i ned.
@renber val ue The val ue defined as a constant within the
nodul e.
*/
struct Ul DType {
string nodul eNane; // modul e where val ue i s defined
short val ue; // constant within the nodule

s
t ypedef sequence <Ul DType> Ul DSet Type;

/** Managenent Extension is a structure for flexibly reporting
information. It is typically used in the Additional Information field
of notifications.

@ee

Addi ti onal | nf ormati onSet Type </ a>

@renber id identifies the type of information
@renber any contains the actual information, type will depend on
the value of the id nenber.
*/
struct Managenent Ext ensi onType {
Ul DType id; /'l identifies the type of info
any i nfo; /1 type will depend on id
3
/** Additional Information is a flexible way to report infornation that
does not fit into the structure of a notification. It contains a

sequence of a structure called "Managenment Extension". */

t ypedef sequence <Managenent Ext ensi onType>
Addi ti onal | nf or mati onSet Type;

/** An Attribute Value structure is used in a notification to report

the value of any attribute. The string used for the attribute's nane

is the same as the nane of the data nenber in the value object defined

for the object. In other words, it is the nane of an attribute accessor

nmet hod minus the “get” or “set”.

@renber attribut eNane the nanme of the attribute

@renber val ue contains the value of the attribute, type will
depend on the attributeNane.

*/

struct AttributeVal ueType {
string attributeNane;
any val ue; /1 type will depend on the attribute

}s

65

ITU-T Recommendation X.780 Draft

66

/** Attribute Value Sets are used to report attributes generically,
in a batch node. */

typedef sequence <Attri buteVal ueType> Attri buteSet Type;

/** An Attribute Value Change structure is used in a notification to
report an attribute that has been changed.

@ee Attri but eVal ueType</ a>

@renber attri buteNane the name of the attribute

@renber ol dval ue the old value, type will depend on the
attri but eNanme
@renber newval ue the new value, type will depend on the
attri buteNane.
*/
struct AttributeVal ueChangeType {
string attri but eNane;
any ol dVval ue; /1 type depends on attribute
any newval ue; /1 type depends on attribute

}s

/** An Attribute Change Set is used to report the attributes that have
been changed in an attribute value change notification. */

t ypedef sequence <Attri buteVal ueChangeType> Attri but eChangeSet Type;

/** A Correlated Notification is identified by the object that enmtted
the notification and the notification ID. Both are included in case
the Notification IDs are not uni que across objects.

@renber source Reference to object that enmitted the correl ated
notification. |If null, the correlated notifications
are fromthe same source as the notification containing
this data structure.

@renber notiflDs IDs of the correlated notifications. Notification
identifiers nust be chosen to be unique across all
notifications froma particul ar nmanaged obj ect
t hroughout the tinme that correlation is significant.

*/

struct CorrelatedNotificationType {

NaneType sour ce;
Noti f | DSet Type notifl Ds;

}s

/** Correlated Notification sets are sets of Correlated Notification
structures. */

t ypedef sequence <Correl atedNotificationType>
Correl at edNoti fi cati onSet Type;

/** Probabl eCause, in CMP standards, may be either an integer or GDMO
O D, a dot-notation string. The U D type is used instead. */

t ypedef Ul DType Probabl eCauseType;

/** Proposed Repair Actions are sets of unique identifiers. */
t ypedef Ul DSet Type ProposedRepair Acti onSet Type;

/** Security Al arm Causes are unique identifiers. */

typedef Ul DType SecurityAl ar mCauseType;

Draft ITU-T Recommendation X.780

/** Security Alarm Detector can indicate either a nechanismor a
specific object. According to X 721 a choice is nmade between one or
the other, though it is not clear why. (Actually, X 721 adds a third
choice for an AE-title which has no equivalent here.) Unless otherw se

i ndi cated, then, at npbst one of the nenbers will be non-null. Two
nulls may be sent if the nmanaged system does not support this property.
@renber mechani sm the schene or function detecting the alarm nmay
be nul |
@renber obj the object detecting the alarm may be null
*/
struct SecurityAl arnDetector Type {
Ul DType nmechani sm /1 may be null
NameType obj ; /1 may be null
s
/** Service User
@renber id the id of the service user

@renber details details about the service user, type will depend on id
*/

struct ServiceUserType {
Ul DType id;
any details; /1 value will depend on id

}s

/** Service Providers share the sanme representation as Service Users.
*/

t ypedef ServiceUser Type ServiceProvi der Type;
/** Specific Problenms are sets of unique identifiers. */
t ypedef Ul DSet Type Speci fi cProbl enfSet Type;

/** A Stop Time Type is used to indicate when sone function should
cease. In the specific case, an actual tine is given. In the
continual case, the function runs continually and no value is
carried in this union.

*/

uni on StopTi neType switch (StopTi neChoice) ({
case specific: GCeneralizedTi meType tine;
/* case continual carries NULL val ue */

b
/** A Suspect Cbject identifies an object that nay be the cause of a
failure. It is usually a conponent of a Suspect ObjectList.
@renber obj ectd ass hj ect class of the suspect object
@renber suspect Obj ect | nst ance hj ect instance of the suspect object
@renber failureProbability Optional failure responsibility
probability from1l to 100

*/
struct Suspect Obj ect Type {

hj ect O assType obj ect O ass;

MO suspect Cbj ect | nst ance;

Unsi gnedShort TypeOpt failureProbability;
s

/** Suspect Object Lists are used to identify objects that may be the
cause of a failure.

67

ITU-T Recommendation X.780 Draft

*/
t ypedef sequence<Suspect Obj ect Type> Suspect Obj ect Set Type;

/** Threshol d Level I|ndication describes multi-Ilevel threshold

crossings. Up is the only pernmitted choice for a counter. In ASN 1,
if indication is “up”, low value is optional.
@renber indication i ndi cates up or down direction of crossing.
@renber | ow t he | ow observed val ue.
@renber hi gh t he hi gh observed val ue.
*/
struct Threshol dLevel | ndType {
Thr eshol dl ndi cati onType i ndi cation;
Fl oat TypeOpt | ow, /1 observed val ue
fl oat hi gh; /1 observed val ue

}s

/** Threshold Level Ind Type Opt is an optional type. |If the
discrimnator is true the value is present, otherwi se the value is
null . */

uni on Threshol dLevel | ndTypeOpt switch (bool ean) {
case TRUE: Thr eshol dLevel | ndType val ue;
b

/** Threshold Information indicates some guage or counter attribute
passed a set threshold. The structure differs from X 721 sone to
simplify the syntax.

@renber attributelD Identifies the attribute that crossed the
threshold. Actually, it is an operation nane
on an interface mnus the "get" or "set". The

interface on which the operation is defined is
i ncluded el sewhere in the notification as
hjectC ass. A Null value indicates the entire
structure is null.

@renber observedVal ue Attributes that are of type integer will be
converted to floats.

@renber threshol dlevel This paraneter is for nulti-level threhsolds.

Opti onal .
@renber arnfi ne May be null (0). */
struct Threshol dl nfoType {
string attributel D
fl oat obser vedVal ue;
Thr eshol dLevel | ndTypeOpt t hr eshol dLevel ;
Ext er nal Ti neType ar nTi ne;

}s

I EXCEPTIONS

68

/** Application error info types are passed back in nanaged obj ect
exceptions.

@renber error A unique identifier identifying the problem

@renber details A text nmessage with additional information about the

pr obl em

*/

val uetype ApplicationErrorlnfoType {
public U DType error;
public Istring details;

}s

Draft ITU-T Recommendation X.780

/** Create error info types are passed back in nanaged object create

exceptions. They extend application error info types.

@renber rel atedObj ects objects that have sonme relationship to the
object to be created that sonehow prevented the
creation.

@renber attributelList the val ues that woul d have been assigned to the
created object. These may hold sone key to why
the object could not be created.

*/

val uetype CreateErrorlnfoType : ApplicationErrorlnfoType {
public M3Set Type rel at edObj ect s;
public AttributeSet Type attributelist;

}s

/** Delete error info types are passed back in nanaged object delete

exceptions. They extend application error info types.

@renber rel atedObj ects objects that have sone relationship to the
object to be deleted that sonehow prevented the
del eti on.

@renber attributeli st the attribute values assigned to the object to
be del eted. These may hold sonme key to why the
obj ect could not be del eted.

*/

val uetype Del eteErrorlnfoType : ApplicationErrorlnfoType {
publ i c M3Set Type rel at edObj ect s;
public AttributeSet Type attributelist;

b
/** A package error info type is a special create error. It will be
passed back in a nmanaged object create exception as a create error. |f

the U D error code natches the package error info type, the client

application may narrow the value type fromcreate error info type to

package error info type to access the additional infornation.

@renber packages the list of requested packages that conflicted
or could not be supported.

*/

val uetype PackageErrorlnfoType : CreateErrorlnfoType {
public StringSet Type packages;
b

/** Application error exceptions may be rai sed on any nanaged obj ect
operation to identify a problem preventing the operation from being
conpleted. */

exception ApplicationError { ApplicationErrorlnfoType info; };

/** Create error exceptions may be rai sed on any managed obj ect create
operation to identify a problem preventing the object from being
conpleted. */

exception CreateError { CreateErrorlnfoType info; };

/** Delete error exceptions may be rai sed by a nanaged object in
response to an attenpt to delete the object. They may al so be raised
by the term nator service. */

exception DeleteError { DeleteErrorlnfoType info; };

69

ITU-T Recommendation X.780 Draft

Il MANAGED OBJECT INTERFACE

/** This val uetype object contains nenbers for each of the attributes
accessible on this interface. */

val uet ype ManagedObj ect Val ueType {

publi ¢ NanmeType name;

public Objectd assType obj ect C ass;

public StringSet Type packages;

publ i ¢ Sourcel ndi cat or Type creationSource;

public Del etePolicyType del et ePol i cy;
b
/** The Managed hject interface is intended to be the base interface
fromwhich all other managed object interfaces inherit. It is a

central place to specify basic functions which all managed objects are
expected to support. */

i nterface ManagedObj ect {

/** This method returns the fully-qualified nane for the
object. This method is used rather than having a "get*ID"
met hod defined for each interface, as is done in CMP
specifications. This will ensure that objects have only a
single operation to retrieve names when they are sub-cl assed.
<p>

The response is a sequence of name conponent structures,
starting with the name assigned to the “local root” nam ng
context under which this object is contained. The client may
find the superiors of this object by renoving conponents from
the tail end of this sequence and perform ng a resolve
operation on the first part of the nane. */

NameType nameCet ()
rai ses (ApplicationError);

/** This nmethod returns the scoped nanme of the nobst-specific
class of the interface (e.g. “Equi pmentR1"). */

hj ect G assType obj ectd assGet ()
rai ses (ApplicationError);

/** This method returns a list of all the conditional packages
supported by this instance. */

StringSet Type packagesGet ()
rai ses (ApplicationError);

/** This method returns an indication of how the object was
created. */

Sour cel ndi cat or Type creati onSour ceGet ()
rai ses (ApplicationError);

/** This method returns a value indicating if the object nay be
deleted and if it may, if all contained objects are
automatically deleted. */

Del et ePol i cyType del etePolicyGet ()
rai ses (ApplicationError);

/** This nmethod nmay be used to generically get all of the

70

Draft ITU-T Recommendation X.780

attributes supported by an instance. Each interface is
expected to sub-class the Managed Obj ect value type and add the
other attributes supported by that interface. The managed
object must return a value object of that type. The client

must then narrow the reference to access all the attributes.
<p>

The client may also subnit a list of names indicating the
attributes it wishes to receive. These nanes nust match the
nmenber names in the val ue object. For nenbers not on the |ist,
and for nmenbers that are part of packages that are not
supported, the server may return any value but it should be as
short as possible. The server also returns the list of
attributes, which may be shorter due to exclusion of attributes
i n unsupported packages. The client nust regard the val ue of
any nenber not in the list as garbage. <p>

A null attribute nanes list indicates that all supported
attributes are to be returned. The server nust return the
actual list. */

ManagedObj ect Val ueType attri butesGet (
i nout StringSetType attributeNanes)
rai ses (ApplicationError);

/** This nmethod destroys the object. It is used to sinply
rel ease any resources associ ated with the nanaged object. It
does not check for contained objects or renpbve nane bi ndings
fromthe naming tree. <p>

The intent of this operation is to allow support services to
destroy the managed object. <p>

NOTE: Direct invocation of this operation froma nanagi ng
system coul d corrupt the nam ng tree and is reconmended only
under extraordinary circunstances. Clients wishing to delete
an obj ect should instead use the term nator service. */

voi d destroy()
rai ses (ApplicationError, DeleteError)

}; // end of ManagedObject interface

Il MANAGED OBJECT FACTORY INTERFACE

/** This interface defines the generic nmanaged object factory
interface. Al Munaged Object factories should inherit fromthis
interface. <p>

In addition to providing the neans for creating objects by nmanagenent
operation, the factories are assumed to take responsibility for

mai ntaining the integrity of the naming tree by creating nane bindi ngs
for the objects they create. <p>

Currently, this interface is null. It is included, however, as a
pl acehol der for capabilities that nmust be supported by all managed
obj ect factories.

*/

i nterface ManagedObj ect Factory {

71

ITU-T Recommendation X.780 Draft

}; /1 end of ManagedObj ectFactory interface

I NOTIFICATIONS INTERFACE

72

/** This interface contains the definitions of notifications enitted by
many nmanaged objects. <p>

The use of "typed" notifications is done here so that the notifications
can be docunmented in IDL and to support typed notifications for those
nmanager and nanagi ng systens that wish to use them Note that the
OMG s Notification Service supports both structured and typed
notifications. It is not clear if inplenmentations of the Notification
Service will support translation between them It is expected that the
i mpl erent ati on agreenment between the managi ng and nanaged system wil |
specify the use of structured or typed notifications. <p>

Notification users wishing to use typed notifications need only support
the interfaces below. Notification publishers and subscribers w shing
to use structured notifications based on the operations defined bel ow
shoul d follow these rules for constructing and reading the notification
structure:

The donmmin_type string in the fixed header of the structure should be
set to "tel ecommunications".

The event _type string in the fixed header of the structure should be
set to the scoped name of the operation. For exanple, for the
Attribute Value Change notification defined belowthis field would be
"itut_x780::Notifications::attributeVal ueChange".

The event _nane string in the fixed header of the structure should be
null.

Optional header fields may be included to support features like Qality
of Service as appropriate.

Each paraneter in the operation should be placed in a nane-val ue pair
inthe filterable body portion of the notification. The fd_nanme string
of this pair shall be set to the nanme of the paraneter and the type

pl aced in the associated fd_value will be the type specified for the
parameter. For exanple, each of the notifications defined bel ow has a
paranmeter naned “event Tine” that is an “External Ti meType.” This
parameter would be placed in the filterable data portion of the event.
The fd_name string of this pair would be set to "eventTi ne" and
fd_val ue would contain an External Ti neType value.

The remai nder of the body of the notification (the unfilterable part)
should be null.

Unfortunately, typed notifications are nmapped to notification
structures differently, so if one systemwants to use typed
notifications and the other structured, the structured notification
user rmust be aware of how the CORBA Notification Service translates
typed notifications to structured notifications. See the specification
for details. |In short, however, each of the parameters in the
operations below will be converted into a name-value pair in the
filterable data protion of the structured notification. Also, the
event _type field in the fixed header of the structured notification
will be set to the special value "9%YPED' and the domain_type field
will be an enpty string. Finally, a nane-value pair will be added as
the first element in the filterable data portion of the notification
with the nane "operation". The value associated with this nane will be

Draft ITU-T Recommendation X.780

a string with the value set to the scoped nane of the operation used to
emt the notification
(e.g. itut_x780::Notifications::attributeVal ueChange). <p>

Al so, structured notification publishers nay exclude notification
paranmeters that are marked “optional” or are of an optional type (a
type nane ending in “TypeOpt.” This should be done for efficiency.
This will, however, preclude the automatic conversion of structured
notifications to typed, so managers nust be capabl e of accepting
structured notifications. (They do not strictly have to support typed
notifications, but if managed systens enit typed notificati ons managers
shoul d accept themrather than translations because it will be nore
efficient.) If an “optional” paraneter is included in a notification,
the “optional” type (discrinmnated union) nust be used. <p>

Par amet ers naned "operation" should be avoided in notification
operations to support the use of typed notifications. While the
notification channel should be able to differentiate the real paraneter
fromthe one added based on their positions in the filterable data
list, it could have an inpact on filtering as the default filtering

| anguage does not have a way to differentiate paraneters based on
position. <p>

Because the scoped operation nane is placed in either the type_nane
string (when structured notifications are used) or a filterable body
nanme-val ue pair with the nane "operation" (when typed notifications are
used), there is no "event type" paraneter explicitly included in any of
the notification data structures. */

interface Notifications {

/** An Attribute Value Change notification is used to report changes to
the attributes of an object such as addition or deletion of nmenbers to
one or nore set-valued attributes and replacenent of the value of one
or nmore attributes.

@ar am event Ti ne Managed system s current tine.
@ar am sour ce hj ect emitting notification.
@ar am sour ced ass Actual class of source object.

@aram notificationldentifier A unique identifier for this
notification. Mist be unique for
an object instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications.

Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am addi ti onal Text Text nessage. Optional. Zero length
string indicates absence of this
par anet er.
@ar am addi ti onal I nfo Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
par am sour cel ndi cat or Cause of event. Optional. Use
"unknown" if not supported.
@ar am attri but eChanges Changed attri butes
*/
voi d attri but eVal ueChange (
i n External Ti meType event Ti e,
in NaneType sour ce,
in Objectd assType sour ced ass,
in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Additional Text Type addi ti onal Text,

73

ITU-T Recommendation X.780

74

i n Additional I nfornmati onSet Type
i n Sourcel ndi cat or Type
in AttributeChangeSet Type

)

Draft

addi tional I nf o,
sour cel ndi cat or,
attri but eChanges

/** A Conmmuni cations Alarmnotification is used to report when an
obj ect detects a comunications error.

@ar am event Ti ne

@ar am sour ce

@ar am sour ced ass

@aram notificationldentifier

@ar am correl at edNoti fications

@ar am addi t i onal Text

@ar am addi ti onal Info

@ar am pr obabl eCause
@ar am speci fi cProbl ens

@ar am percei vedSeverity
@ar am backedUpSt at us

@ar am backUpObj ect

@ar am trendl ndi cati on

@ar am t hreshol dl nfo

@ar am st at eChangeDefini tion
@ar am noni toredAttri butes

@ar am proposedRepai r Acti ons

@ar am al ar nEf f ect OnSer vi ce
@ar am al ar ni ngResumned

@ar am suspect Obj ect Li st

*/

voi d conmmuni cati onsAl arm (

in External Ti mreType
NameType

hj ect Cl assType
Noti f | DType

Addi ti onal Text Type
Pr obabl eCauseType
Bool eanTypeOpt
NameType

Thr eshol dl nf oType

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
in AttributeSet Type
i

53 33033 05 353 30053533 33333535

Correl atedNoti fi cati onSet Type
Addi ti onal | nf or mati onSet Type
Speci fi cProbl enSet Type

Per cei vedSeverityType

Trendl ndi cati onTypeOpt

At tri but eChangeSet Type

Pr oposedRepai r Acti onSet Type

Managed system s current tine.

ohject emtting notification.

Actual class of source object.

A unique identifier for this
notification. Mist be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
List of correlated notifications.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

Optional. Zero | ength sequence
i ndi cates absence of this paraneter.

"True" if backed up
WIl be null if backedUpStatus is
"fal se"

Optional. See type for details.
Optional. See type for details.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
True if alarmis service effecting.
True if alarm ng was just resuned,
possibly resulting in del ayed reporting
of an alarm

hj ects possibly involved in failure.

event Ti ne,

sour ce,

sour ced ass,

notificationldentifier,
correl atedNoti fications,

addi ti onal Text,

addi tional I nf o,

pr obabl eCause,

speci fi cProbl ens,

percei vedSeverity,

backedUpSt at us,

backUpObj ect

t rendl ndi cati on,

t hr eshol dl nf o,

st at eChangeDefi ni tion,

noni t oredAttri butes,

pr oposedRepai r Acti ons,

i n Bool eanTypeOpt
i n Bool eanTypeOpt

i n Suspect Obj ect Set Type

)

/** An Environnental
the environnent.
@ar am event Ti ne
@ar am sour ce

@ar am sour ced ass
@aram notificationldentifier

@ar am correl at edNoti fications

@ar am addi t i onal Text

@ar am addi ti onal Info

@ar am pr obabl eCause
@ar am speci fi cProbl ens

@ar am percei vedSeverity
@ar am backedUpSt at us

@ar am backUpObj ect

@ar am trendl ndi cati on

@ar am t hreshol dl nfo

@ar am st at eChangeDefini tion
@ar am noni toredAttri butes

@ar am proposedRepai r Acti ons

@ar am al ar nEf f ect OnSer vi ce
@ar am al ar ni ngResumned

@ar am suspect Obj ect Li st
*/
voi d envi ronment al Al arm (

in External Ti mreType
NameType
hj ect Cl assType
Noti f | DType
Addi ti onal Text Type
Pr obabl eCauseType
Bool eanTypeOpt
NameType
Thr eshol dl nf oType

i
i
i
i
i
i
i
i
i
i
i
i
i
i
in AttributeSet Type
i

5 3305 353 3 03035 335 33335

Draft

Alarmnotification is used to report

Correl atedNoti fi cati onSet Type
Addi ti onal | nf or mati onSet Type
Speci fi cProbl enSet Type

Per cei vedSeverityType

Trendl ndi cati onTypeOpt

At tri but eChangeSet Type

Pr oposedRepai r Acti onSet Type

ITU-T Recommendation X.780

al ar nef f ect OnSer vi ce,
al ar m ngResuned,
suspect Obj ect Li st

a problemin

Managed system s current tine.
ohject emtting notification.
Actual class of source object.
A unique identifier for this

notification. Mist be unique for
an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
List of correlated notifications.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
"True" if backed up

WIl be null if backedUpStatus is
"fal se"

Optional. See type for details.
Optional. See type for details.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
True if alarmis service effecting.
True if alarm ng was just resuned,
possibly resulting in del ayed reporting
of an alarm

hj ects possibly involved in failure.

event Ti ne,

sour ce,

sour ced ass,

notificationldentifier,
correl atedNoti fications,

addi ti onal Text,

addi tional I nf o,

pr obabl eCause,

speci fi cProbl ens,

percei vedSeverity,

backedUpSt at us,

backUpObj ect

t rendl ndi cati on,

t hr eshol dl nf o,

st at eChangeDefi ni tion,

noni t oredAttri butes,

pr oposedRepai r Acti ons,

75

ITU-T Recommendation X.780

76

i n Bool eanTypeOpt
i n Bool eanTypeOpt

i n Suspect Obj ect Set Type

)

Draft

al ar nef f ect OnSer vi ce,
al ar m ngResuned,
suspect Obj ect Li st

/** An Equi pment Alarmnotification is used to report a failure in the

equi pnent .

@ar am event Ti ne

@ar am sour ce

@ar am sour ced ass

@aram notificationldentifier

@ar am correl at edNoti fications

@ar am addi t i onal Text

@ar am addi ti onal Info

@ar am pr obabl eCause
@ar am speci fi cProbl ens

@ar am percei vedSeverity
@ar am backedUpSt at us

@ar am backUpObj ect

@ar am trendl ndi cati on

@ar am t hreshol dl nfo

@ar am st at eChangeDefini tion
@ar am noni toredAttri butes

@ar am proposedRepai r Acti ons

@ar am al ar nEf f ect OnSer vi ce
@ar am al ar ni ngResumned

@ar am suspect Obj ect Li st
*/
voi d equi pmrent Al arm (

in External Ti mreType
NameType
hj ect Cl assType
Noti f | DType
Addi ti onal Text Type
Pr obabl eCauseType
Bool eanTypeOpt
NameType
Thr eshol dl nf oType

i
i
i
i
i
i
i
i
i
i
i
i
i
i
in AttributeSet Type
i

5 3305 353 3 03035 335 33335

Correl atedNoti fi cati onSet Type
Addi ti onal | nf or mati onSet Type
Speci fi cProbl enSet Type

Per cei vedSeverityType

Trendl ndi cati onTypeOpt

At tri but eChangeSet Type

Pr oposedRepai r Acti onSet Type

Managed system s current tine.

ohject emtting notification.

Actual class of source object.

A unique identifier for this
notification. Mist be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
List of correlated notifications.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

Optional. Zero | ength sequence
i ndi cates absence of this paraneter.

"True" if backed up
WIl be null if backedUpStatus is
"fal se"

Optional. See type for details.
Optional. See type for details.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
True if alarmis service effecting.
True if alarm ng was just resuned,
possibly resulting in del ayed reporting
of an alarm

hj ects possibly involved in failure.

event Ti ne,

sour ce,

sour ced ass,

notificationldentifier,
correl atedNoti fications,

addi ti onal Text,

addi tional I nf o,

pr obabl eCause,

speci fi cProbl ens,

percei vedSeverity,

backedUpSt at us,

backUpObj ect

t rendl ndi cati on,

t hr eshol dl nf o,

st at eChangeDefi ni tion,

noni t oredAttri butes,

pr oposedRepai r Acti ons,

Draft ITU-T Recommendation X.780

i n Bool eanTypeOpt al ar nEf f ect OnSer vi ce,
i n Bool eanTypeOpt al ar m ngResuned,
i n Suspect Obj ect Set Type suspect Obj ect Li st

)

/** An Integrity Violation notification is used to report that a
potential interruption in information flow has occurred such that

informati on may have been illegally nodified, inserted or del eted.
@ar am event Ti ne Managed system s current tine.
@ar am sour ce hj ect emitting notification.

@ar am sour ced ass Actual class of source object.

@aram notificationldentifier A unique identifier for this
notification. Mist be unique for
an obj ect instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications.

Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am addi ti onal Text Text nessage. Optional. Zero length
string indicates absence of this
par anet er.
@ar am addi ti onal I nfo Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
@ar am securityAl ar mCause
@ar am securityAl arnBeverity Clears allowed? X 721 appears to
restrict the "cleared" value on this
al arm but cl ears shoul d be all owed.
@ar am securityAl ar mDet ect or
@ar am servi ceUser
@ar am servi ceProvi der

*/

void integrityViolation (
i n External Ti meType event Ti e,
in NaneType sour ce,
in Objectd assType sour ced ass,
in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Additional Text Type addi ti onal Text,
i n Additional I nfornmati onSet Type addi ti onal I nf o,
in SecurityAl armCauseType securityAl ar nCause,
in PerceivedSeverityType securityAl arnSeverity,
in SecurityAl arnDet ect or Type securityAl arnDet ect or,
in ServiceUserType servi ceUser,
i n ServiceProviderType servi ceProvi der

)

/** An Object Creation notification is used to report the creation of a
managed obj ect to another open system Note that the source field
shoul d be set to the created object, not the factory.

@ar am event Ti ne Managed system s current tine.
@ar am sour ce ohject emtting notification.
@ar am sour ced ass Actual class of source object.

@aram notificationldentifier A unique identifier for this
notification. Mist be unique for
an object instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications.

Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am addi ti onal Text Text nessage. Optional. Zero length

77

ITU-T Recommendation X.780 Draft

78

string indicates absence of this

par anet er .
@ar am addi ti onal Info Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am sour cel ndi cat or Cause of event. Optional. Use
"unknown" if not supported.
@ar am attri but eSet Attribute values. Optional. Zero length
sequence i ndicates absence of this
par anet er.
*/
voi d objectCreation (
i n External Ti meType event Ti e,
in NaneType sour ce,
in Objectd assType sour ced ass,
in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Additional Text Type addi ti onal Text,
i n Additional I nformati onSet Type addi ti onal I nf o,
i n Sourcel ndi cat or Type sour cel ndi cat or,
in AttributeSet Type attributeLi st

)

/** An Object Deletion notification is used to report the deletion of a
managed object. Note that the source field should be set to
t he obj ect being del et ed.

@ar am event Ti ne Managed system s current tine.
@ar am sour ce ohject emtting notification.
@ar am sour ced ass Actual class of source object.

@aram notificationldentifier A unique identifier for this
notification. Mist be unique for
an obj ect instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications.

Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am addi ti onal Text Text nessage. Optional. Zero length
string indicates absence of this
par anet er .
@ar am addi ti onal Info Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am sour cel ndi cat or Cause of event. Optional. Use
"unknown" if not supported.
@ar am attri but eSet Attribute values. Optional. Zero length
sequence i ndicates absence of this
par anet er .
*/
voi d obj ectDel etion (
in External Ti mreType event Ti ne,
in NameType sour ce,
in Objectd assType sour ced ass,
in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Additional Text Type addi ti onal Text,
in Additional I nfornmationSet Type addi ti onal I nf o,
i n Sourcel ndi cat or Type sour cel ndi cat or,
in AttributeSet Type attributeLi st

)

/** An Operational Violation notification is used to report that the
provi sion of the requested service was not possible due to the

unavail ability, malfunction or
event Ti ne

source

sour ced ass
notificationldentifier

@ar am
@ar am
@ar am
@ar am

@ar am

@ar am

@ar am

@ar am
@ar am

@ar am
@ar am
@ar am
*/

correl atedNotifications

addi ti onal Text

addi tional Info

securityAl arnCause
securityAl arnfSeverity

securityAl arnDet ect or
servi ceUser
servi ceProvi der

voi d operational Violation (

)

/** A Physi cal

n

5 3 33 035 3 3 335 35

Ext er nal Ti mneType
NameType

hj ect Cl assType
Noti f | DType

Correl atedNoti fi cati onSet Type

Addi ti onal Text Type

Addi ti onal | nf or mati onSet Type
Securi t yAl ar mCauseType

Per cei vedSeverityType

Securi t yAl ar mDet ect or Type

Servi ceUser Type

Servi ceProvi der Type

Draft ITU-T Recommendation X.780

i ncorrect invocation of the service.
Managed system s current tine.
oject emtting notification.
Actual class of source object.
A unique identifier for this
notification. Mist be unique for
an obj ect instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
Li st of correlated notifications.

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

Clears allowed? X 721 appears to
restrict the "cleared" value on this
al arm but cl ears shoul d be all owed.

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,
correl atedNoti ficati ons,
addi ti onal Text,

addi tional I nf o,
securityAl ar nCause,
securityAl arnSeverity,
securityAl arnDet ect or,
servi ceUser,

servi ceProvi der

Violation notification is used to report that a physical

resource has been violated in a way that indicates a potential security

attack.
@ar am
@ar am
@ar am
@ar am

@ar am

@ar am

@ar am

@ar am
@ar am

event Ti me

source

sour ceCl ass
notificationldentifier

correl atedNotifications

addi ti onal Text

additional Info

securityAl arnCause
securityAl arnfSeverity

Managed systemis current tine.

hject emitting notification.

Actual class of source object.

A unique identifier for this
notification. Mist be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)

Li st of correlated notifications.

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

Clears allowed? X 721 appears to
restrict the "cleared" value on this

79

ITU-T Recommendation X.780 Draft

al arm but cl ears should be all owed.
@ar am securityAl ar mDet ect or
@ar am servi ceUser
@ar am servi ceProvi der
*/

voi d physical Viol ation (

i n External Ti meType event Ti e,

in NaneType sour ce,

in Objectd assType sour ced ass,

in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Additional Text Type addi ti onal Text,

i n Additional I nfornmationSet Type addi ti onal I nf o,

in SecurityAl ar mCauseType securityAl ar nCause,

in PerceivedSeverityType securityAl arnSeverity,
in SecurityAl arnDet ect or Type securityAl arnDet ect or,
in ServiceUserType servi ceUser,

i n ServiceProviderType servi ceProvi der

)

/** A Processing Error Alarmnotification is used to report a
processing failure in a nanaged object.

@ar am event Ti ne Managed systemi s current tine.
@ar am sour ce hject emtting notification.

@ar am sour ced ass Actual class of source object.
@aram notificationldentifier A unique identifier for this

notification. Mist be unique for
an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

@ar am correl at edNoti fications

@ar am addi t i onal Text

@ar am addi ti onal Info

@ar am pr obabl eCause
@ar am speci fi cProbl ens Optional. Zero | ength sequence
i ndi cates absence of this paraneter.

@ar am percei vedSeverity

@ar am backedUpSt at us "True" if backed up

@ar am backUpObj ect WIl be null if backedUpStatus is
"fal se"

@ar am trendl ndi cati on Optional. See type for details.

@ar am t hreshol dl nfo Optional. See type for details.

@ar am st at eChangeDefini tion Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
True if alarmis service effecting.
True if alarm ng was just resuned,
possibly resulting in del ayed reporting
of an alarm

hj ects possibly involved in failure.

@ar am noni toredAttri butes
@ar am pr oposedRepai r Acti ons
@ar am al ar nEf f ect OnSer vi ce
@ar am al ar mi ngResumned

@ar am suspect Obj ect Li st

*/

voi d processi ngErrorAl arm (

i n External Ti mreType event Ti ne,

80

NaneType

Ohj ect Cl assType
Noti f | DType

Addi ti onal Text Type
Pr obabl eCauseType
Bool eanTypeOpt
NaneType

Thr eshol dl nf oType
AttributeSet Type

Bool eanTypeOpt
Bool eanTypeOpt

D 33003 0050353 053 00053 055 0 035 05D S S

)

Draft

Correl atedNoti fi cati onSet Type
Addi ti onal | nf or mati onSet Type
Speci fi cProbl enSet Type

Per cei vedSeverityType

Tr endl ndi cati onTypeOpt

At tri but eChangeSet Type

Pr oposedRepai r Acti onSet Type

Suspect Obj ect Set Type

ITU-T Recommendation X.780

sour ce,

sour ced ass,

notificationldentifier,
correl atedNotificati ons,

addi ti onal Text,

addi ti onal | nf o,

pr obabl eCause,

speci fi cProbl ens,

percei vedSeverity,

backedUpSt at us,

backUpOhj ect,

trendl ndi cati on,

t hreshol dl nf o,

st at eChangeDefi ni tion,

noni t oredAttri butes,

pr oposedRepai r Acti ons,

al ar nef f ect OnSer vi ce,

al ar m ngResuned,

suspect Cbj ect Li st

/** A Quality of Service Alarmnotification is used to report a failure

in the
@ar am event Ti ne

@ar am sour ce

@ar am sour ced ass

@aram notificationldentifier

@ar am correl at edNoti fications

@ar am addi t i onal Text

@ar am addi ti onal Info

@ar am pr obabl eCause
@ar am speci fi cProbl ens

@ar am percei vedSeverity
@ar am backedUpSt at us

@ar am backUpObj ect

@ar am trendl ndi cati on

@ar am t hreshol dl nfo

@ar am st at eChangeDefini tion
@ar am noni toredAttri butes
@ar am pr oposedRepai r Acti ons
@ar am al ar nEf f ect OnSer vi ce
@ar am al ar mi ngResumned

@ar am suspect Obj ect Li st

*/

void qualityOf ServiceA arm (
i n External Ti mreType

quality of service of the managed object.

Managed systemi s current tine.

hject emitting notification

Actual class of source object.

A unique identifier for this
notification. Mist be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
"True" if backed up

WIl be null if backedUpStatus is
"fal se"

Optional. See type for details.
Optional. See type for details.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
True if alarmis service effecting.
True if alarm ng was just resuned,
possibly resulting in del ayed reporting
of an alarm

hj ects possibly involved in failure.

event Ti ne,

81

ITU-T Recommendation X.780

82

Draft

NaneType

Ohj ect Cl assType

Noti f | DType

Correl atedNoti fi cati onSet Type
Addi ti onal Text Type

Addi ti onal | nf or mati onSet Type
Pr obabl eCauseType

Speci fi cProbl enSet Type

Per cei vedSeverityType

Bool eanTypeOpt

NaneType

Tr endl ndi cati onTypeOpt

Thr eshol dl nf oType

At tri but eChangeSet Type
AttributeSet Type

Pr oposedRepai r Acti onSet Type
Bool eanTypeOpt

Bool eanTypeOpt

Suspect Obj ect Set Type

D 33003 0050353 053 00053 055 0 035 05D S S

)

sour ce,

sour ced ass,

notificationldentifier,
correl atedNotificati ons,

addi ti onal Text,

addi ti onal | nf o,

pr obabl eCause,

speci fi cProbl ens,

percei vedSeverity,

backedUpSt at us,

backUpOhj ect,

trendl ndi cati on,

t hreshol dl nf o,

st at eChangeDefi ni tion,

noni t oredAttri butes,

pr oposedRepai r Acti ons,

al ar nef f ect OnSer vi ce,

al ar m ngResuned,

suspect Cbj ect Li st

/** A Rel ationship Change notification is used to report the change in
the value of one or nore relationship attributes of a nanaged object,
that result through either internal operation of the nmanaged object or

vi a managenent operation.

@ar am
@ar am
@ar am
@ar am

@ar am

@ar am

@ar am
@ar am

@ar am
*/

event Ti me

source

sour ceCl ass
notificationldentifier

correl atedNotifications

addi ti onal Text

addi tional I nfo
sour cel ndi cat or

rel ati onshi pChanges

voi d rel ati onshi pChange (

)

Addi ti onal Text Type

i
i
i
i
i
i
i
i n Sourcel ndi cat or Type
i

5D 3 3 3 53 5355

Correl at edNoti fi cati onSet Type
Addi ti onal | nf or mati onSet Type

At tri but eChangeSet Type

Managed systemis current tine.

hj ect emitting notification.

Actual class of source object.

A unique identifier for this
notification. Mist be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
List of correlated notifications.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Text nessage. Optional. Zero length
string indicates absence of this

par anet er .

Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
Cause of event. Optional. Use
"unknown" if not supported.

Changed rel ationship attributes

n External Ti meType event Ti e,
NaneType sour ce,
Ohj ect Cl assType sour ced ass,
Noti f | DType notificationldentifier,

correl atedNotifications,
addi ti onal Text,
addi ti onal | nf o,
sour cel ndi cat or,
rel ati onshi pChanges

/** A Security Violation notification is used to report that a security
attack has been detected by a security service or mechani sm

@ar am
@ar am
@ar am

event Ti me
sour ce
sour ceCl ass

Managed system s current tine.
hject emitting notification.
Actual class of source object.

Draft ITU-T Recommendation X.780

@aram notificationldentifier A unique identifier for this
notification. Mist be unique for
an obj ect instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications.

Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am addi ti onal Text Text nessage. Optional. Zero length
string indicates absence of this
par anet er.
@ar am addi ti onal I nfo Optional. Zero | ength sequence

i ndi cates absence of this paraneter.
@ar am securityAl ar nCause
@ar am securityAl arnBSeverity Clears allowed? X 721 appears to
restrict the "cleared" value on this
al arm but cl ears should be all owed.
@ar am securityAl arnDet ect or
@ar am servi ceUser
@ar am servi ceProvi der

*/

voi d securityViolation (
i n External Ti mreType event Ti ne,
in NameType sour ce,
in Objectd assType sour ced ass,
in NotiflDType notificationldentifier,
in Correl atedNotificationSet Type correl atedNotifications,
i n Additional Text Type addi ti onal Text,
in Additional I nfornmati onSet Type addi ti onal I nf o,
in SecurityAl armCauseType securityAl ar nCause,
in PerceivedSeverityType securityAl arnSeverity,
in SecurityAl arnDet ect or Type securityAl arnDet ect or,
in ServiceUserType servi ceUser,
i n ServiceProviderType servi ceProvi der

)

/** A State Change notification is used to report the change in the the
val ue of one or nore state attributes of a managed object, that result
through either internal operation of the managed object or via
managenent operati on.

@ar am event Ti ne Managed system s current tine.
@ar am sour ce hject emtting notification.
@ar am sour ceCd ass Actual class of source object.

@aram notificationldentifier A unique identifier for this
notification. Mist be unique for
an object instance. (Optional in X 721
but not here. See text for
di scussi on of possible inplications)
@aram correl atedNotifications List of correlated notifications.
Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am addi ti onal Text Text nessage. Optional. Zero length
string indicates absence of this
par anet er.
@ar am addi ti onal I nfo Optional. Zero | ength sequence
i ndi cates absence of this paraneter.
@ar am sour cel ndi cat or Cause of event. Optional. Use
"unknown" if not supported.
@ar am st at eChanges Changed state attributes.
*/

voi d st at eChange (

83

ITU-T Recommendation X.780

)

Addi ti onal Text Type

Sour cel ndi cat or Type

5 3 35333 3335

Correl atedNoti fi cati onSet Type
Addi ti onal | nfor mati onSet Type

At tri but eChangeSet Type

Draft

Ext er nal Ti mreType event Ti ne,

NameType sour ce,

hj ect Cl assType sour ced ass,

Noti f | DType notificationldentifier,

correl atedNoti ficati ons,
addi ti onal Text,
addi tional I nf o,
sour cel ndi cat or,
st at eChanges

/** A Time Domain Violation notification is used to report that an

event has occurred at

@ar am
@ar am
@ar am
@ar am

@ar am

event Ti me

source

sour ceCl ass
notificationldentifier

correl atedNotifications

an unexpected or prohibited tine.

Managed systemi s current tine.

hj ect emitting notification.

Actual class of source object.

A unique identifier for this
notification. Mist be unique for

an object instance. (Optional in X 721
but not here. See text for

di scussi on of possible inplications)
Li st of correlated notifications.
Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

@ar am addi t i onal Text Text nessage. Optional. Zero length
string indicates absence of this
par anet er .

@ar am addi ti onal I nfo Optional. Zero | ength sequence

i ndi cates absence of this paraneter.

@ar am securityAl ar nCause
@ar am securityAl arnBSeverity

Cl ears all owed?

X. 721 appears to

restrict the "cleared" value on this

al ar m but

@ar am securityAl ar nDet ect or
@ar am servi ceUser

@ar am servi ceProvi der

*/

voi d tinmeDormai nViol ation (

i n External Ti meType

NaneType

Ohj ect Cl assType

Noti f | DType

Correl atedNoti fi cati onSet Type
Addi ti onal Text Type

Addi ti onal | nf or mati onSet Type
Securi t yAl ar mCauseType

Per cei vedSeverityType

Securi t yAl ar mDet ect or Type
Servi ceUser Type

Servi ceProvi der Type

53 3 303035 3 35 335 335

)

cl ears shoul d be all owed.

event Ti ne,

sour ce,

sour ced ass,
notificationldentifier,
correl atedNotifications,
addi ti onal Text,

addi ti onal | nf o,
securityAl ar nCause,
securityAl arnSeverity,
securityAl arnDet ect or,
servi ceUser,

servi ceProvi der

/** These constants define the nanmes of the notifications declared

above and are provided to hel p reduce errors.

const string attributeVal ueChangeTypeNane

*/

"itut_x780::Notifications::attributeVal ueChange";

const string comuni cati onsAl ar nTypeNane

"itut_x780:: Notifications::conmunicationsAl arni;

const string environnental Al ar nTypeNane

"itut _x780::Notifications::environnental Al arni;

const string equi pnent Al ar mMTypeNane =

}s

lli
const stri

const stri

const stri

const stri

const stri

const stri

const stri

const stri

const stri

const stri

const stri

/** These
notificati
*/

const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri
const stri

Draft ITU-T Recommendation X.780

tut_x780:: Notifications::equipnentAl arni;

ng integrityViolationTypeNane =
tut_x780::Notifications::integrityViolation";
ng obj ect Creati onTypeNane =
tut_x780::Notifications::objectCreation";

ng obj ect Del eti onTypeNane =

tut_x780:: Notifications::objectDel etion";

ng operational Viol ati onTypeNanme =

tut_x780:: Notifications::operational Violation";
ng physical Vi ol ati onTypeNane =

tut_x780:: Notifications::physical Violation";

ng processingErrorAl arnifypeNanme =
tut_x780::Notifications::processingErrorAl arnt;
ng qualityCF Servi ceAl armifypeNane =
tut_x780::Notifications::qualityOServiceAl arni;
ng rel ati onshi pChangeTypeNane =
tut_x780::Notifications::relationshi pChange”;
ng securityViolationTypeNane =
tut_x780::Notifications::securityViolation";

ng stateChangeTypeNane =
tut_x780::Notifications::stateChange";

ng ti nmeDomnmi nVi ol ati onTypeNane =
tut_x780::Notifications::tinmeDomainViolation";

constants define the nanes of the paraneters used in the
ons decl ared above and are provided to help reduce errors.

ng additi onal I nf oNane "addi tional I nfo";

ng additi onal Text Nane "addi tional Text";

ng al arnEf f ect OnServi ceNanme = "al ar nEf f ect OnServi ce";
ng al ar mi ngResunmedNane = "al ar m ngResuned";

ng attributeChangesNane = "attri buteChanges”;

ng attributeListNane = "attributelList";

ng backedUpSt at usNanme = "backedUpSt at us";

ng backUpQhj ect Nane = "backUpObj ect™”;

ng correl atedNotificati onsNane = "correl atedNotifications
ng event Ti neNane = "event Ti ne";

ng nonitoredAttributesNane = "nonitoredAttributes”;

ng notificationldentifierName = "notificationldentifier";
ng perceivedSeverityNane = "percei vedSeverity";

ng probabl eCauseNane = "probabl eCause";

ng proposedRepai r Acti onsNane = "proposedRepai rActions"”;
ng rel ati onshi pChangesNane = "rel ati onshi pChanges”;

ng securityAl arnCauseNane = "securityAl arnCause";

ng securityAl arnDet ect or Name = "securityAl armDet ector”;
ng securityAl arnSeverityNanme = "securityAl arnBSeverity";
ng serviceProviderName = "serviceProvider";

ng serviceUserNane = "serviceUser";

ng sourceNane = "source";

ng sourceC assNane = "sourceCd ass";

ng sourcel ndi cat orName = "sourcel ndicator";

ng specificProbl ensNane = "specificProbl ens";

ng stateChangeDefinitionName = "stateChangeDefinition";
ng stateChangesNane = "stat eChanges”;

ng suspect Obj ect Li st Name = "suspect Obj ect Li st";

ng threshol dl nfoNane = "threshol dl nfo";

ng trendl ndicati onName = "trendl ndi cati on";

}; // end of Notifications interface

/1 end of itut_

x780 nodul e

85

ITU-T Recommendation X.780 Draft

I MACROS

/* The followi ng macros are provided for quickly and concisely defining
the notifications to be supported by an object. Exanple usage (within an
interface):

MANDATORY_NOTI FI CATI ON(i tut_x780:: Notifications, objectCreation);
CONDI TI ONAL_NOTI FI CATI ON(itut _x780:: Notifications, stateChange, statePackage);

The macros sinply expand into nothing, as CORBA | DL doesn't really have
anything for themto expand into that nakes sense. Eventually, these
may be changed to expand into | DL supporting the CORBA Conponent Model.
*/

#undef MANDATORY_NOTI FI CATI ON
#def i ne MANDATORY_NOTI FI CATI ON(I nt er faceNane, Notifi cati onNane)

#undef CONDI TI ONAL_NOTI FI CATI ON
#def i ne CONDI TI ONAL_NOTI FI CATI ON(I nt er f aceName, Noti ficati onName, PackageNane)

#endif // end of ifndef itut_x780_IDL

86

Draft ITU-T Recommendation X.780

Annex B Network Management Constant Definitions
(Normative)

/* This IDL code is intended to be stored in a file naned “itut_x780Const.idl”
and located in the same directory as the file containing Annex A */

#i f ndef | TUT_X780Const _| DL
#define | TUT_X780Const _| DL

#pragma prefix “itu.int”

nodul e itut_x780 {

/I ApplicationErrorConst Module
/** This nodul e contains the constants defined for the error code contained in
Application Error Info structures returned with Application Error exceptions.
*/
nodul e Applicati onError Const {
const string nodul eName = "itut_x780:: ApplicationErrorConst"”;
/** This application error exception code indicates the operation
failed due to a probl em downstream fromthe nanaged system
possi bly a comuni cation probl em between the managed system
and the resource */

const short downstreanError = 1;

/** An application error exception returining this code will return
the nanme of the offending paranter in the details field. */

const short invalidParanmeter = 2;

/** This application error exception code indicates the operation
failed due to a transient problemon the managed system */

const short resourceLinmt = 3;

}; // end of nodul e ApplicationErrorConst

I/l CreateErrorConst Module
/** This nmodul e contains the constants defined for the error code contained in
Create Error Info structures returned with Create Error exceptions.
*/
nodul e Creat eError Const {
const string nodul eName = "itut_x780:: CreateErrorConst";
/** This create error exception code indicates that the name incl uded
in the create operation is not valid. */

const short badName = 1;

/** This create error exception code indicates that the name included

87

ITU-T Recommendation X.780 Draft

}s

in the create operation is a duplicate. */
const short duplicateNane = 2;

/** This create error exception code indicates sone packages requested
in the create operation are inconpatible with each other. It must
be included in a PackageErrorlnfoType structure (subcl ass of
CreateErrorl nfoType). The packages |ist contains the nanes of the
unsupported packages. */

const short inconpatibl ePackages = 3

/** This create error exception code indicates that the nane binding
referenced in the create operation is not valid. */

const short invalidNameBinding = 4;

/** This create error exception code indicates a package requested in
the create operation is not supported. It nust be included in a
PackageError| nfoType structure (subclass of CreateErrorlnfoType).
The packages list contains the nanes of the unsupported packages.
*/

const short unsupportedPackages = 5;

/1 end of nodul e CreateErrorConst

/I DeleteErrorConst Module

/** This nodul e contains the constants defined for the error code contained in
Delete Error Info structures returned with Delete Error exceptions.

*/

nodul e Del et eError Const {

}s

88

const string nodul eName = "itut_x780:: Del et eErrorConst";

/** This delete error exceptin code indicates the object has both
subordi nates and a del ete policy of deleteOnlylfNoContained. */

const short containsObjects = 1;

/** This delete error exception code indicates the object has a delete
pol i cy of notDel etable, and cannot be deleted. */

const short notDel etable = 2;

/** This delete error exception code indicates the object had a
subordi nate object that could not be del eted, so the superior
obj ect(s) could not be deleted. */

const short undel et abl eCont ai nedOoj ect = 3;

/** This delete error exception code indicates the object is in
a state in which it cannot be deleted. */

const short invalidStateForDestroy = 4

/1 end of nodul e Del et eError Const

Draft

/l ProbableCauseConst Module

ITU-T Recommendation X.780

/** This nodul e contains the constant val ues defined for the

Pr obabl eCause Ul D.

These val ues were borrowed from X 721. */

nodul e Probabl eCauseConst {
const string nodul eName = "itut_x780:: Probabl eCauseConst "

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short

i ndeterm nate = 0,

adapterError =1

appl i cati onSubsystenfailure = 2;
bandw dt hReduced = 3

cal | Est abl i shnentError = 4;
conmuni cati onsProtocol Error = 5;
conmuni cat i onsSubsyst enfailure =
configurationO Custom zati onError
congestion = 8

corruptbata = 9;
cpuCycl esLi nmi t Exceeded = 10

dat aSet Or ModenError = 11
degradedSi gnal = 12

dTE_DCEl nterfaceError = 13

encl osur eDoor Open = 14;

equi pnent Mal function = 15;
excessiveVibration = 16
fileError = 17;

fireDetected = 18;

fl oodDet ected = 19;

fram ngError = 20;

7

heati ngOrVentil ati onOr Cool i ngSyst enProbl em = 21

hum di t yUnaccept abl e = 22

i nput Qut put Devi ceError = 23;

i nput Devi ceError = 24;

| ANError = 25;

| eakDet ect ed = 26;

| ocal NodeTransmni ssi onError = 27;
| ossOf Frane = 28;

| ossOf Si gnal = 29;

mat er i al Suppl yExhausted = 30
nmul ti pl exer Probl em = 31;
out O Menory = 32;
ouput Devi ceError = 33;

per f or manceDegr aded = 34;

power Probl em = 35
pressureUnaccept abl e = 36;
processor Probl em = 37;
punpFai l ure = 38;

gueueSi zeExceeded = 39

recei veFailure = 40
receiverFailure = 41

r enot eNodeTr ansm ssi onError = 42
resour ceAt Or Neari ngCapacity = 43
responseTi neExcessi ve = 44;
retransm ssi onRat eExcessi ve = 45
softwareError = 46

sof t war ePr ogr amAbnor mal | yTer mi nat ed

sof t war eProgranError = 48

st orageCapaci t yProbl em = 49
t enper at ur eUnaccept abl e = 50
t hreshol dCrossed = 51;

tim ngProblem = 52

t oxi cLeakDet ected = 53
transm tFailure = 54;

= 47;

89

ITU-T Recommendation X.780 Draft

const short transmtterFailure = 55;
const short underlyi ngResour ceUnavai |l abl e = 56;
const short versi onM smatch = 57;

}; I/ end of Probabl eCauseConst nodul e

/1 SecurityAl ar nCauseConst Modul e

/** This nodul e contains the constant val ues defined for the
SecurityAl arnCause U D. These val ues were borrowed from
X. 721. */

nodul e SecurityAl ar nCauseConst {
const string nodul eName = "itut_x780:: SecurityAl ar mCauseConst";

const short authenticationFailure =
const short breachOf Confidentiality
const short cabl eTanper = 3;

const short del ayedl nfornmation = 4;
const short deni al Of Service = 5;
const short duplicatelnformation = 6;

const short informationMssing = 7;

const short informationMdificationDetected = 8;
const short informationQutOf Sequence = 9;

const short intrusionDetection = 10;

const short keyExpired = 11;

const short nonRepudiationFailure = 12;

const short out Of HoursActivity = 183;

const short outOfF Service = 14;

const short procedural Error = 15;

const short unauthorizedAccessAttenpt = 16;
const short unexpectedl nformation = 17;

const short unspecifiedReason = 18;

1
= 2;

}; I/ end of SecurityAl armCauseConst nodul e

}; // end of itut_x780 nodul e

#endif // end of ifndef | TUT_X780Const_I| DL

90

	Foreword
	Table Of Contents
	Table Of Figures
	Table Of Tables
	Scope
	Purpose
	Application
	Document Roadmap
	Document Conventions
	Compiling the IDL

	References
	Normative References
	Additional References

	Definitions
	CORBA Modeling Goals and Requirements
	Goals
	Application Interoperability
	Common Usage of CORBA Common Object Services
	Information Model Transparency

	Entities
	Access Granularity

	Principles of Containment and Naming
	Naming
	Entity Identification

	Managed Object Classes
	Packages
	Attributes
	GET and SET
	Generic Attribute Get
	Set-valued Attributes

	Creation and Deletion of Managed Objects
	Creation
	Identification of the MO Name
	Identification of the MO Attributes
	Identification of MO Packages for Instantiation

	Deletion

	Inheritance

	The Object Model IDL Module
	The Base (Top) Managed Object Interface
	The nameGet() Operation
	The objectClassGet() Operation
	The packagesGet() Operation
	The creationSourceGet() Operation
	The deletePolicyGet() Operation
	The attributesGet() Operation
	The destroy() Operation

	The Managed Object Factory
	The Notifications Interface
	The Data Type Definitions
	Exceptions
	The ApplicationError Exception
	invalidParameter
	resourceLimit
	downstreamError

	The CreateError Exception
	invalidNameBinding
	duplicateName
	unsupportedPackages
	incompatiblePackages

	The DeleteError Exception
	notDeletable
	containsObjects

	Macro Definitions
	The Constant Definitions

	Information Modeling Guidelines
	Modules
	Interfaces
	Attributes
	Readable Attributes
	Settable Attributes
	Set-valued Attributes
	Exceptions
	Standard Attributes

	Actions
	Notifications
	Conditional Packages
	Behavior
	Name Binding Information
	Factories
	Create Operations
	Name Binding
	Superior Object
	Name
	Packages
	Superclass Parameters
	Object Class Parameters

	Factory Finder

	Managed Object Class Value Types
	Constants
	Registration
	Versioning of CORBA/IDL Specifications

	GDMO Translation
	Managed Object Classes
	Packages
	Attributes
	Attribute Groups
	Actions
	Notifications
	Behaviors
	Name Bindings
	Parameters
	ACTION-INFO and ACTION-REPLY
	EVENT-INFO and EVENT-REPLY
	Context-Keyword
	SPECIFIC-ERROR

	ASN.1 Data Types
	Basic Types
	Sequence
	Sequence of
	Set of
	Choice
	Object Identifier (OID)
	Object Instance

	Style Idioms for CORBA IDL Specifications
	Use Consistent Indentation
	Use Consistent Case for Identifiers
	Follow JIDM Approach for IMPORT
	Use JIDM Approach for OPTIONAL and CHOICE
	Use a Consistent Type Suffix
	Use a Consistent Suffix for Sequence Types.
	Use a Consistent Suffix for Set Types.
	Use a Consistent Suffix for Optional Types
	Arrange Operation Parameters in a Consistent Manner
	Assume No Global Identifier Spaces
	Module Level Definitions
	Use of Exceptions and Return Codes
	Explicit vs. Implicit Operations
	Don’t Create a Large Number of Exceptions

	Compliance and Conformance
	Standards Document Compliance
	System Conformance
	Conformance Statement Guidelines

	Annex A 	The Object Model CORBA IDL Module
	Annex B Network Management Constant Definitions

