3GPP TSG-SA5 (Network Management) Meeting #7

Tampere, Finland, 26-29 October, 1999

Tdoc S5-99242

 Appendix I (M.3020)

Example use of GDMI (LCS Provision)

A.1
Introduction

This appendix contains an example use of GDMI template. The example shows how the requirements, analysis and design phases may be documented using a combination of text, UML diagrams and tabular representation. This example is based on Recommendation M.3208.1 for provisioning a dedicated leased circuit service. The use of UML in all three phases and how the design phase can reference behaviour definitions in the analysis phase is illustrated here. This covers only a small subset of the requirements contained in Rec. M.3208.1. Where appropriate, existing text from Rec. M.3208.1 is used.

I.2
GDMI template

I.2.1
Scope

This Recommendation describes a subset of TMN management services for Dedicated Leased Circuits network identified in the Recommendation M.3200 as a TMN managed area. Its main focus is on the management services of Customer Administration and Maintenance management for the point-to-point Leased Circuit Services (LCS) that may be offered by one or more service providers and may be controlled by the SC with different levels of visibility. The LCS is defined between a single SC and a single SP. These management services are also applicable for interactions between management systems of different service providers or within a service provider.
I.2.2
RequirementsI.2.2.1
Business Level Requirements

TMN management services in this recommendation specify interface requirements for Leased Circuit Services between an operation system (OS) and an operation system (OS) to provision and manage Leased Circuit Services. The interfaces addressed by the TMN management services in this Recommendation are applicable to both X Interfaces across jurisdictional boundaries and Q interfaces within a TMN. Support for the services described in this recommendation are at the discretion of the Service Provider.

In general, the definition of a service should be independent of the particular network used to transport the service. This allows multiple technologies to support the service. Therefore, network level information should not be presented to the service layer. However, specific service features may be defined which allow network or network element information to be presented to a service customer. In this case, an abstraction of the information appropriate to the service feature is transferred.

I.2.2.1.1`
Actor Roles

Service customer

Service Customer; See definition of “Customer” in ITU-T Recommendation M.3320. This use of service customer specializes the definition to the context of the TMN Management role for the Service Level.

Service provider

A general reference to an entity that provides telecommunications services to Customers and other users either on a tariff or contract basis. A SP may or may not operate a network. A SP may or may not be a Customer of another SP. In this document, the phrase “SP’s (sub) network” is used to reference the network(s) used by the SP to provide the LCS.

I.2.2.1.2

Telecommunications resourcesxe "Telecommunications resources"
Dedicated leased circuit service

The dedicated leased circuit service is a point-to-point connection between two service access points which cannot be changed after creation of the service . The Dedicated LCS uses the Service Name and Service Class to define the value for service specific parameters and to designate which parameters may be changed by the SC following provisioning of the service.
I.2.2.1.3

High Level Use Case

At the top level, M.3200 identifies as the managed area the “Customer Administration of Leased Circuit Service”. An actor in the role of the service customer interacts with an actor in the service provider role to perform the various CNM activities. These activities are grouped together using function set groups defined either in Rec. M.3400 or new definitions to meet the additional capabilities. A service provider may assume the service customer role if the end to end service is to be provisioned and maintained by multiple service providers.

Figure I.1 is the highest-level use case where a service customer actor interacts with the service provider actor. The use case customer admin LCS uses the function sets indicated by the three use cases. This recommendation addresses the requirements and analysis corresponding to the service provisioning aspects. Other documents in this series expand on other function set groups.

The use cases representing function set groups are refined further into function sets and finally into management functions. As will be seen later, the functions in one function set use case may extend the functions in another set to accomplish the over all requirements of the management service.

[image: image1.wmf]service

provider

service

customer

1.new service request

2.valid request, service request created

3. valid input parameters, respond with service request

creation

4. invalid request parameters, respond with service request

failure

5 modify service request

6.respond to modify service request (accept/modify/reject)

7. report request state/parameter changes

8. service creation report

service

request

service (subclass)

1:

3:

4:

5:

6:

7:

2:

8:

Figure I.1 Customer Administration of LCS Use Case

The service customer actor interacts with the service provider actor to accomplish the requirements for use case called “service provisioning”. Service provisioning use case uses two use cases: LCS configuration function set and Link configuration function set. The use case service provisioning describes the requirements for the service customer actor to request the creation of either a leased circuit service or pre-provisioned link connections. The latter can be used by the service customer (as an example) to create leased circuit services in real time by selecting specific link connections to be connected (possibly to meet a scheduled major game event) for a period of time during certain times of specific days. The stereotype <<include>> is used to indicate that the use case service provisioning employs the reusable fragments for creating leased circuits and link connections.

The activities of creation of LCS configuration function set use case is extended by the administrative function set use case. The <<extends>> stereotype is used to indicates this as follows. The configuration function set contains activities for the service customer to provide the minimum capabilities for creating service order (request service). When the creation of the service is not possible in real time, the administrative functions are used by the service provider. The SP may inform for example the progression of the request (as an example the availability date for the service has been extended or the requested bandwidth is not what can be provided etc.). The <<extends>> denotes the fact that the use case adds to the functions in the LCS configuration function set by providing (for example) reporting capabilities on the status of the request to create a new service or modify a previously issued service request or an existing service.

Figure I.2 depicts the use cases that are required to meet the service customer’s needs for service provisioning activities.

[image: image11.wmf]Invalid Parameters Encountered

Cancel LCS Request

service customer

Modify LCS

<<

extends>>

Create LCS

<<

extends>>

<<

extends>>

sevice provider

Delete LCS

<<

extends>>

LCS

Configuration

Function Set

Figure I.2. Service Provisioning Use Case for CNM of LCS and Link Connections

I.2.2.2
Requirements Level Specification

The LCS configuration function set, as noted above describes the scenarios for a service customer actor to interact with the service provider actor to request provisioning an LCS (non real time or real time) or a link connection (non-real time). Specializing the generic provisioning function set in Recommendation M.3400 for LCS and Link connections refines the use case further.

I.2.2.2.1

Actor Roles

No new actor roles beyond those identified in the discussion of business level requirements are needed for specification level requirements.

I.2.2.2.2

Telecommunications resourcesxe "Telecommunications resources"
No additional resources beyond those identified in the business level requirements are required.

I.2.2.2.3

TMN management functions

The LCS configuration function set use case has three functions: request creation of a service, delete an existing service or modify either the parameters of a previously issued service creation request or an existing service. The request for creating a service is also referred to service order request or a service customer creating a service order to the service provider. Once the service order is created, a service customer actor may cancel the requested order. Note that even though the example shows that cancellation of the request is associated with only create service function, it can also be used to extend the other two functions – cancel the deletion request or the modification request. The service level agreement (referred to as SLA or contract) between the service provider and service customer defines the policies associated with such a cancellation. Examples policy decisions include if work has already started based on the request, what is the accounting policy for the completed part, and the security requirements associated with canceling a request.

I.2.2.2.4

Use Cases

Figure I.3 refines the LCS configuration function set in terms of the following use cases: Create LCS, Delete LCS and Modify LCS. The service provider interacts with the configuration function set use case, which uses the three use cases. The create LCS use case defines the requirements for a service customer to issue a service order requesting the name, class as well as the values of the relevant parameters for the requested service.

The Cancel LCS request use case is extended by defining the scenario where the customer can cancel a previously issued service request. If the request contains invalid parameters (for example the requested service class and or name is not valid or not offered by the service provider), then error condition occurs and appropriate error scenarios are generated by the extended use case “Invalid request parameters encountered”.

Note – New stereo types may be needed in defining the requirements in some management services and managed areas. This example uses only the UML defined stereotypes.

At the specification level requirements, the CNM functions are identified. The summary associated with these functions can be included here. As an example, the following modified description taken from Rec. M.3208.1 can be used to

Create LCS Use Case: This use case allows the SC to request the creation of one or more Dedicated Leased Circuit Services. The SC shall identify the service to be provisioned, and service features (as specified in the Information Flow), the service availability date requested, the customer contact within the organization, and relevant information about the originating and terminating locations of the service (see Information Flow). The SC may also specify the route of the explain in text the use case Create LCS and how it is extended to detect errors and reject the request.

requested service and a user identifier for the requested leased circuit. The SP may reject the request (described in the extended use case) if the service provider does not offer the requested service.

[image: image12.wmf]Service Provisioning

sevice provider

service customer

Maintenance

Trouble Administration

Customer Admin LCS

<<

include>>

<<

include>>

<<

include>>

Figure I.3a Decomposition of LCS Configuration Function Set Use Case

[image: image13.wmf]Invalid Parameters Encountered

service customer

sevice provider

Create LCS

<<extends>>

Delete LCS

Configure LCS

<<include>>

<<include>>

Modify LCS

<<include>>

Cancel LCS Request

<<extends>>

<<extends>>

<<extends>>

Figure I.3b Decomposition of LCS Configuration Function Set Use Case

The requirements for the use cases are to support the over all requirements discussed in the functions in I.2.2.2.3.

I.2.2.3
Analysis

I.2.2.3.1
Object Classes and State Charts

The classes to support the create LCS and Link Connection use cases are shown in Figure I.4. A service customer object class may issue one or more service requests as shown by the association with cardinality marked as 1 and *. Because there are common properties associated with requesting LCS and Link Connections, a generic class called “service request is identified”. To improve readability, not all attributes and any of the operations permitted on the object classes are shown here. The attribute “provider request number” is included here without showing the visibility or type (as these are attributes that are exposed on an interface for management, they are to be considered as public, even though they may have different visibility from software perspective). The type is not included because it may be different based on the design paradigm. A generalization relationship exists between the service request to create LCS or link with the generic service request as shown in the figure.

The LCS service request class supports the requirements for the use case Create LCS. The detailed parameters are shown in the information flow table. The interactions between the service customer and service provider for this use case are shown in sequence, collaboration and activity diagrams.

Customer name is a mandatory attribute of the object class service customer. A customer may have several services from a service provider and aggregation is used to describe this. The service object LCS and Link Connection are the result of performing successfully the use cases Create LCS service and Create Link Connection respectively. A service must belong to a customer and the cardinality between the customer and services indicate this requirement.

When a service is created (LCS or Link connection) it is identified using the attribute “service ID”. The constraint {frozen} is used to indicate that once the service is created, the value of this attribute may not change during the lifetime of the object. This also implies that the attribute is read-only and can not be changed either by the service customer or service provider. (This can be designed using set by create capability available with CMIP-GDMO).

Associated with the service request object is a state transition diagram shown in Figure I.5. The definition of the states can be found in Rec. M.3208.1 with some slight differences to adapt to UML notation. To avoid repetition the description of the states and the transition events are not provided in this appendix and the readers are referred to Rec. M.3208.1. In order to show that cancel can be issued when the request is any one of the three states, a super state called “in progress” has been introduced. Without this, the diagram would have cancel event from each of these states.

[image: image14.wmf]LCS Administrative Function Set

Link Administrative Function Set

service customer

Configure LCS

<<extends>>

Link Configuration Function Set

<<extends>>

sevice provider

Service Provisioning

<<include>>

<<include>>

Figure I.4 Class structure for Create LCS and Link Connection

Figure I.5 shows the states and transition between the states for the service request.

[image: image15.wmf] : sevice provider

 : service customer

[input vaild] new

service request

service request

created if input valid

[input valid]:create

response

(accepted/modified input

parameters)

service request

(subclass)

response to modify

(accepted/modified/reject

[accept request]:

create response

 service request

[invalid input]:create

request reject

modify request of service request

parameters

report service request

state/parameter value changes

service (subclass)

report service creation

Figure I.5 State Diagram for Service Request Class

The state diagram support the requirements identified in the text following Figure I.1. The transitions show that the availability of the requested service, if not available on real time can result in moving to different states. The extension provided by cancel LCS request use case is supported by the event and state called “cancelled”.

I.2.2.3.2
Sequence Diagram

When a service customer sends a request for creating a service, the sequences of message flows are shown in the sequence chart in Figure I.6. The service provider and customer are actors but shown as object (the tool support for depicting actor is not available **Can this be fixed ? Editor’s note). It should be noted that an exhaustive identification all sequences possible when requesting a service is not included here. Some illustrative cases are shown. The sequence diagram includes messages that are part of different use cases. Some messages specify condition evaluation and depending on the result of evaluating the condition determines if the message is exchanged.

A service customer issues a request for a new service. If the service provider determines the input parameters are valid, then the request is accepted and a service request subclass is created. Instead of defining a constructor or an object factory, the notes feature is used to explain the creation of service request object if the request is accepted by the service provider. Note that accepting the service request does not imply all requested values associated with creating the new service would be available with the new service. This is clarified when the parameters included in create request are identified later in detail (see Table I.1). The response after creating the request object includes the values of the parameters. As noted below, the response includes values for the parameters that may be modified relative to the original request. It is assumed that the service customer, by default, accepted the modifications offered by the service provider. If this is not true, the customer can issue a cancel to the service request. The policies associated with the cancellation should be available in a SLA. In addition, based on the service level agreement, the provider may retain a history of requested changes. If the service is created in real time, there is no need to create a service request object. This case is treated as follows: a service request object is created and deleted immediately and the service customer is notified of the created new service. The service customer will not be able to perform the sequence of messages (e.g. modify service request) indicated below.

Once the service request object is created, the service customer can monitor the progress of the request, request changes to the parameters and be informed autonomously of the progress. Even though the sequence diagram is used to represent the time domain, the report of the status is asynchronous and can be issued by the service provider asynchronously as long as the service request object is created.

After the service request object state changes to closed (assuming successful creation), a notification issued by the service provider indicting the creation of the service with relevant values for the associated parameters. The reporting messages correspond to functions that are supported by the LCS administrative function set use case (which is further refined into other use cases for reporting state changes and attribute value changes along with monitoring function).

[image: image16.wmf]link service request

LCS request

service request

<<mandatory>> provider request number : Single

LCS

service ID : Single

service customer

customer name

1..1

0..*

1..1

0..*

0..*

0..*

link connection

<<frozen>> link connection ID : Single

0..*

0..*

Figure I.6 Sequence Diagram: Successful Creation of Service

I.2.2.3.3
Collaboration Diagrams

Corresponding to the sequence diagram depicting the flow of message with respect to time, the collaboration diagram for successful creation of a service is shown in Figure I.7. The interaction between the objects and the messages exchanged by them are shown using sequential order of the messages in the sequence diagram. The actual events corresponding to the numbers in the figure are defined inside the notes.

Note – In general it is enough to show sequence diagram in order to illustrate message flows. In this example, the collaboration diagram is included to show that in some cases these diagrams may include additional information and therefore may be necessary. For this simple case, the collaboration diagram does not add any new information beyond the sequence diagram.

[image: image19.wmf]Invalid Parameters Encountered

Cancel LCS Request

service customer

Modify LCS

<<

extends>>

Create LCS

<<

extends>>

<<

extends>>

sevice provider

Delete LCS

<<

extends>>

LCS

Configuration

Function Set

Figure I.7 Collaboration Diagram: Successful Creation of Service

I.2.2.3.4
Information Flow

The diagram provides information on the message flows at a high level. If the parameters passed with the messages are to be shown in the diagram, it will be difficult to read. In addition to listing the parameters, often it is necessary to identify whether a parameter is always required in an exchange (mandatory) or may be included if a condition is met or at the discretion of the user. In order to explain the parameters and conditions for their presence or absence, a tabular approach is used. The table below is an extract from Recommendation M.3208.1. Depending on the complexity of the application, such a table can provide details not possible to show in a diagram. The convention for “m” etc. is defined in Rec. M.3208.1.

A second advantage to creating such a table is reuse of the definition in another management service for a managed area. For example, the service called “Connection management” can be used by a customer to crate LCS in real time. In this case, most of the parameters for creating a leased circuit are common with the non-real time case. Some restriction and augmentation of the parameters may be necessary. By using the same table and explaining the constraints facilitates reuse of the parameter definitions.

Table I.1 Information Flow for create service request:

Service Customer Request and SP Response
Service Customer
Service Provider
Notes

Service Name
m
o
The type of leased circuit service offered by the SP. Service names are not subject to standardization and are defined by the contract between the SC and the SP.

Service Class
o
c
The name of a profile of service characteristics (associated with the service name) defined and supported by the SP. Examples of the service characteristics that may be included in the profile are directionality, channelization, signalling options, protection, quality of service objectives, application, etc.) Service Class names are not subject to standardization are defined by the Contract.

c- If the requested service class is not equal to the class of service provided by the SP, then the SP must supply the value, else it is optional.

Bandwidth
o
c
Requested bandwidth, actual bandwidth returned.

c - If the requested bandwidth cannot be provided by the SP, the SP shall return the value together with a reason code indicating that the bandwidth is not available. If the response is not indicating a completion, the SP may report an error condition with a reason code indicating that the available service differs from the customers initial service request.

Quantity
o
c
The number of Leased Circuit Services to be generated by the SP. Following the processing of the LCS function, the SP shall return unique circuit numbers for each LCS generated by the processing of this command by the SP.

I.2.2.3.5
Activity Diagrams

To explain the workflow when creating a new service, the activity diagram is used as shown in Figure I.8. The activity diagram shows where synchronization can take place between multiple activities. In this example the workflow being the representation of activities in a service provider, use of notation such as swim lanes (defines concurrent activities corresponding to multiple objects) are not required.

The service provider receives the request, validates it and then creates the service request if it is accepted. The customer is informed of the successful creation and the synchronization bar indicates that processing the request can start concurrently with informing the customer. Only after the customer receives the report of the service request object creation, any modification request to the values of the parameters can be issued. Similarly, the cancel can also be sent because as will be noted later, to cancel the service request, the reference to the created service request object is necessary. Even though not shown in the figure, once that synchronization bar is encountered, changes to the progress of the request may also be reported. The activities resulting from successful or failed request are shown along with the end of the workflow in all cases.

[image: image2.wmf]Receive create

Service order

Valid

request

Reject

service

order

no

yes

Create

Service

request

Inform customer of

service order request

creation

Process Service

order request

Receive modify

Service order

request

[

service creation

succeeded]

Cancel

Service

order

[

service

creation

failed]

Report service

creation

Report service

creation failure

Request

cancelled

Figure I.8 Activity Diagram: Workflow for creating service

Note – This example illustrates use of some of the visual-modeling notation from UML to describe the behaviour and activities for the management service. The object classes shown here may have a m:n relation with those in the design phase (for example managed object class with CMIP paradigm and interface in CORMA/IDL). These figures may be referenced in the design to explain the behaviour of the protocol specific entities.

I.2.3
Design

The GDMO definitions for this example are provided in M.3108.1. The behaviour of the managed object classes can reference the state chart diagram shown in the analysis.

In the context GDMO, the managed object class hierarchy and naming diagrams expressed in UML are shown below. The tracability of the various elements of the GDMO models are shown in Recommendation M.3108.1.

I.2.3.1
UML class diagrams for inheritance of M.3208.1 object classes

In these diagrams, classes are shown as boxes with three sections, including: object class name in the top section: the attribute names in the second section (not filled in these figures for readability); and access operations in the bottom section.

The operation "get()" is used in the class diagrams to denote that the class attributes are readable after an instance of that class is created.

The operation "set() is used to denote that some (at least one) of the class attributes may be modified after an instance of that class is created.

UML class diagrams use large open headed arrows to indicate inheritance relationships. When a class is related to another by inheritance, the operations from the superclass (the one which has the large arrowhead touching it) are also supported for the inherited class, but are not repeated in the operation section of the class box.

[image: image3.wmf]T0410070-98

serviceRequestHistoryRecord

get()

currentServiceRequest

serviceModifyRequest

top

get()

delete()

get()

updateServiceRequest()

delete()

Figure I.9.1

Inheritance relationships for generic service request fragment

[image: image4.wmf]T0410080-98

serviceRequestHistoryRecord

get()

currentServiceRequest

serviceModifyRequest

currentLcsRequest

lcsRequestHistoryRecord

lcsModifyRequest

get()

delete()

get()

updateServiceRequest()

delete()

Figure I.9.2

Inheritance relationships for LCS request fragment

[image: image5.wmf]T0410110-98

lcs

top

transportService

get()

set()

delete()

linkConnectionService

Figure I.9.3

Inheritance relationships for service fragment

I.2.3.2
UML class diagrams for modeling relationships

The possible relationships between instances are shown in UML class diagrams with associations. Containment relationships are denoted by a diamond headed line touching the parent (UML aggregation). Simple associations are shown with lines with roles indicates on the line ends. Relationship cardinalities are indicated by "0 .. *" or "1 .. *" tags on the end of the line representing a relationship. The account object represents the service customer actor shown in the analysis section.

[image: image6.wmf]T0410130-98

account

currentLcsRequest

get()

lcsRequestHistoryRecord

0..*

1..*

Figure I.9.4

Containment relationships for LCS request with history records

I.2.3.3
UML class diagrams for modeling agent functionality

Some UML classes are introduced (factories and notification dispatcher) to model the actions for creating objects and distributing notifications from objects. Instances of these agent functionality classes appear in the sequence diagrams. When a notification operation invocation is made onto a notification dispatch object, all destinations that have registered interest will receive a copy of that notification. These final delivery flows are not shown in the sequence diagrams in I.9.5, since many objects may be interested in receiving them.

[image: image7.wmf]T0410150-98

objectFactory

Factory with operations for customer to create service and request objects

notificationDispatcher

Notification Dispatcher to receive and distribute notifications

create_currentLcsServiceRequest()

create_currentLinkConnectionServiceRequest()

create_lcsModifyRequest()

create_linkConnectionServiceModifyRequest()

create_lcs()

create_linkConnectionService()

create_serviceAccessDomain()

create_serviceAccessGroup()

create_serviceAccessEquipmentView()

For OSI Systems

Management these

capabilities are provided

by the Agent

objectCreation()

attributeValueChange()

objectDeletion()

lcsModifyProgressProblemReport()

lcsRequestProgressProblemReport()

linkConnectionModifyProgressProblemReport()

linkConnectionRequestProgressProblemReport()

For OSI Systems

Management these

capabilities are

provided by Event

Forwarding

Figure I.9.5

UML model for agent functions (creating objects and disseminating notifications)

I.2.3.4
UML sequence diagrams to illustrate scenarios of object usage

The message flows from the notification dispatcher to the ultimate registered destinations are not shown in these diagrams. It would be normal for the customer (as well as other objects) to be a registered recipient for the notifications shown in these sequence diagrams).

Figure I.6 describes the message exchanges for creating automatic termination of the LCS. The flow in this diagram uses the object classes representing the agent functionality. Steps 1-3 can be expanded into the steps shown in Figure I.6. The intermediate steps that are permitted (modifying the parameter values of the requested service) can be noted by referencing the figure in analysis section. The analysis section explains the criteria for successfully creating the requested service and informing the customer. Step 3 in I.9. 6 show the name of the notification applicable for this design. Other message name may be used with another design.

[image: image8.wmf]T0410160-98

objectFactory

lcs

1: create_lcs()

2: createResponse

3: objectCreation()

4: get()

5: getResponse

6: set()

7: setResponse

8: objectDeletion()

notification

Dispatcher

successful

creation of LCS

customer reads

attribute values

customer sets

service

termination date

provider terminates

lcs at termination

date

customer

Figure I.9.6

Sequence diagram for explicit LCS create and automatic termination

Figure I.9.7 expands Figure I.6 in the analysis with specific managed object classes defined in the GDMO model. The service request object in Figure I.6 is realized in the design using the current and history lcs service request objects. The sequence diagram in this design case shows how the history object is created as a result of updates to the original request. The model in the design phase refines further the service request object in the analysis phase so that history of the requested changes can be retained. This meets the optional requirement identified in I.2.2.3.2 as being relevant to SLA. Figure I.9.8 describes the case where history of the changes is not retained. In addition, it shows the interaction between the managed objects in the design phase when the service creation is not successful (note the corresponding figure for unsuccessful creation is not shown in the analysis section).

[image: image9.wmf]T0410180-98

customer

lcs

1: create_currentLcsServiceRequest()

2: createResponse

4: get()

5: getResponse

9: updateServiceRequest()

10: updateResponse

11: attributeValueChange()

6: attributeValueChange()

7: get()

8: getResponse

3: objectCreation()

12: objectCreation()

13: objectCreation()

14: objectDeletion()

15: objectDeletion()

16: objectDeletion()

17: get()

18: getResponse

notification

Dispatcher

object

Factory

currentLcs

Request

lcsRequest

HistoryRec1 :

lcsRequest

HisotryRec2

successful

creation of LCS

request and history

record 1

customer reads

request

provider changes a

requested value

customer reads

original request

customer updates

request causing

history record 2

provider

instantiates lcs

then destroys

request and

history records

customer reads

lcs attributes

Figure I.9.7

Sequence diagram for instantiation of LCS using request and history records

[image: image10.wmf]T0410200-98

customer

objectFactory

1: create_currentLcsServiceRequest()

2: createResponse

3: get()

4: getResponse

5: lcsRequestProgressProblemReport()

6: updateServiceRequest()

7: updateResponse

8: lcsRequestProgressProblemReport()

9: delete()

10: deleteResponse

11: objectDeletion()

notification

Dispatcher

currentLcs

Request

customer creates

request

customer reads

current request

progress problem

notification

customer updates

request

progress problem

notification

customer cancels

request

Figure I.9.8

Sequence diagram for unsuccessful LCS instantiation using request without history

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

40
17

[image: image17.wmf]in-progress

pre-preocessing

open/active

pending

pre-preocessing

open/active

pending

start-processing

waiting for information

de-activate

activate

service-request received

cancelled

cancel request

closed

completed/error encountered

[image: image18.wmf]Service Provisioning

sevice provider

service customer

Maintenance

Trouble Administration

Customer Admin LCS

<<

include>>

<<

include>>

<<

include>>

_994580337.doc

Invalid Parameters Encountered

Cancel LCS Request

service customer

Modify LCS

<<extends>>

Create LCS

<<extends>>

<<extends>>

sevice provider

Delete LCS

<<extends>>

LCS Configuration

Function Set

_994581888.doc

T0410070-98

serviceRequestHistoryRecord

get()

currentServiceRequest

serviceModifyRequest

top

get()

delete()

get()

updateServiceRequest()

delete()

_983272656.doc

Receive create Service order

Valid request

Reject service order

no

yes

Create Service request

Inform customer of service order request creation

Process Service order request

Receive modify Service order request

[service creation succeeded]

Cancel Service order

[service creation failed]

Report service creation

Report service creation failure

Request cancelled

_994579660.doc

Service Provisioning

sevice provider

service customer

Maintenance

Trouble Administration

Customer Admin LCS

<<include>>

<<include>>

<<include>>

