
3GPP TSG SA4#90 meeting
(S4-161274
24 - 28 October, 2016, Bangalore, India

revision of S4-161171
	CR-Form-v9.9

	 PSEUDO CHANGE REQUEST

	

	(

	26.347
	CR
	
	(

rev
	1
	(

Current version:
	0.3.1
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Service APIs

	
	

	Source to WG:
(

	Qualcomm Incorporated, Expway

	Source to TSG:
(

	

	
	

	Work item code:
(

	TRAPI
	
	Date: (

	10/18/2016

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)

	
	

	Reason for change:
(

	Provides the API for file delivery services following S4-161035

	
	

	Summary of change:
(

	Detailed semantics
Note that the CR is not yet complete and requires further updates.

	
	

	Consequences if
(

not approved:
	

	
	

	Clauses affected:
(

	3, 4.2, 6 (new and not shown in markup)

	
	

	
	Y
	N
	
	

	Other specs
(

	
	
	 Other core specifications
(

	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
(

	The document is not considered complete and many updates are necessary. A revised version will be provided.

=== FIRST CHANGE ===
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [x] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [x].

MBMS-aware Application: an application in the user space that communicates with the MBMS client through APIs as defined in this specification.

Application Service: A service for which all associated resources are delivered through an MBMS User Service including broadcast and unicast. The service may have an entry point document defined in the User Service Description.

MBMS Client: a function that implements functionalities defined in TS26.346 and provides APIs and protocol-related methods to expose relevant functionalities to an MBMS-aware application.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

API
Application Programming Interface

HLOS
High-Level Operating System

IDL
Interface Definition Language
JSON
JavaScript Object Notation
USD
User Service Description

=== SECOND CHANGE ===
4.3
MBMS Application Services

Editor’s Note: This clause is targeted primarily for the MBMS Client developer.
Editors Note: the title needs to clarify. We use “service” for now and service is not referring to the MBMS User Service, but to the Application Service as defined in TS26.346.
4.3.1
Introduction
A service for which all associated resources are delivered through an MBMS User Service including broadcast and unicast. The service may have an entry point document defined in the User Service Description.
The specification may be extended to add other application services.

The MBMS Application Services that are covered by this specification are defined in this clause.

4.3.2
File Delivery Application Service

The File Delivery Application Service API provides MBMS Aware Applications with interfaces to manage the reception of files delivered over File Delivery Application Services. Some of the interfaces defined allow an application to get information on the available eMBMS File Delivery Application Services and possibly on the files scheduled to be carried on these services; to start and stop the capture of files on these services; and to allow the MBMS Client to provide notifications associated with the reception of files. Clause 6.2 provides a complete description and the associated uses for the interfaces in the File Delivery Application Service API and includes an abstract IDL definition for these interfaces.

4.3.3
DASH-Over-MBMS Application Service

The DASH Streaming Service API defined in clause 6.3 provides MBMS Aware Applications with interfaces to manage the reception DASH streaming content (as defined in TS 26.247) delivered over DASH Streaming Services (as defined in TS26.346, clause 5.6). Some of the interfaces defined allow an application to get information on the available DASH Streaming Services; to start and stop the reception of DASH streaming content on these services; and to allow the MBMS Client to provide notifications associated with the receptions of DASH streaming content. Clause TBD provides a complete description and the associated uses for the interfaces in the DASH Streaming Service API and clause TBD includes an abstract IDL definition for these interfaces.

4.3.4
Generic Application Service

Tbd: describe the mandatory service configuration in the USD. File Delivery Application Service, except that there us a pointer to appService which is not DASH. MPD (add MIME Type to the service).
Editor’s Note: Should 4.3.3 and 4.3.4 to be combined! Likely yes as the service type is announce through MIME Type and we should hide the complexity to the app developer.
4.3.5
RTP-over-MBMS Streaming Service

RTP-over-MBMS Streaming Service provides the application with interfaces to access RTP eMBMS Service. The application may request start or stop any available RTP streaming service. Application will receive information about the RTP data.
Editor’s note:

-
other elements, attributes, fragments as used below should be mentioned (mandatory, optional), e.g. service ID
=== THIRD CHANGE (NOT SHOWN IN MARKUP) ===
6
Application Service API

6.1
Overview
6.1.1
Background
Figure AAA provides a graphical overview of how the MBMS Application Programming Interface (API) fits into the UE architecture of deliverying MBMS content to applications.

[image: image1.emf]MBMS URL

Handler

MBMS-Aware

Application

Application

URL Dispatch

MBMS API

HTTP URL

Handler

HTTP

Function

MBMS Client

 Figure AAA Application to MBMS function API

The MBMS API implementation on some High-Level Operating Systems (HLOSs) and some application development frameworks (e.g, smartphone HLOS applications) is realized as a programmatic library that is linked to the application code and that runs in the application context. That library implementation communicates with a particular MBMS Client implementation and abstracts from the application the implementation-specific interactions with the MBMS Client. The MBMS API exposes to the application a set of simple interfaces described in the IDL definitions in clauses of this specification; in particular, the IDL makes use of callback functions as the means for the MBMS Client to notify applications of events relevant to the reception of content delivered over MBMS user services. The programmatic library communication with the MBMS Client is implementation-specific, it is not in the scope of this specification, and it can be implemented using different solution approaches (e.g., smartphone HLOS services, WebSockets, etc.).

It is understood that in some application development frameworks (e.g., HTML/Web Applications), linking a programmatic library to the application is not a solution that is available. In these cases, the callback functions in the IDL definitions as defined in this specification may not be realized programmatically as function calls. In particular, the application may need to implement the necessary approach available on these frameworks (or the selected solution approach) to receive event notifcations from the MBMS client in place of callback functions. For such frameworks, the implementation of callback functions described in the IDL of this specification is not required. However, the information structures defined on the IDL callback functions are to be communicated to the application when the MBMS Client generates the corresponding event notification to the application using the available (or selected) notification mechanism.
Figure XXX provides an overview of the graphical representation of multiple application connecting to MBMS Service API.

[image: image2.emf]MBMS-Aware

Application

MBMS Client

MBMS API

MBMS-Aware

Application

Figure XXX Multiple Applications connecting to MBMS Client
6.1.2
Parameter description notation

In each Application Service API described in clause 6, the parameters in the API interfaces will be described in the following format:
· dataType parameterName – description of the parameter.
Each interface parameter is defined via a separate item in the list of parameters. The dataType on the item defines the programmatic data type for the parameter named parameterName, as described on the IDL for the API; the dataType may be a complex structure on the IDL. The parameterName provides a name for a parameter on the API interface. A description follows to provide information on the meaning and use for the parameter.
6.2
File Delivery Application Service API

6.2.1
Introduction

The File Delivery Application Service API provides MBMS Aware Applications with interfaces to manage the reception of files delivered over File Delivery Application Services. This API is intended to support applications that are running while files are being delivered through MBMS user services as well as applications that are not running to receive information on files received through an MBMS User service, for example as the user may have quit/exited the application.

In order to support applications that may not be currently running while files are being received, the MBMS client may keep received files for a period of time configured by the application, which includes means to collect received files even if the user does not actively interact with the application to consume the received files.
When the application is currently running and can collect the files received over MBMS delivery, the MBMS client moves the files to the application space. It is ultimately the application’s responsibility to manage the storage of requested files, especially the amount of storage to be used.

Any persistant storage of received files by the MBMS client is only intended to ensure that the received files are made available to the respective requesting application. Once files are move/copied to the application space, the application is responsible for managing those files.
6.2.2
MBMS Client State Model (Informative)
6.2.2.1

Overview

Figure 1 provides an informative MBMS client state model in order to provide description on the appropriate messages on the service API. Four different states are defined as listed in Table 1. Note that the state model describes the state per MBMS aware application and per service. This means that the MBMS client may have to maintain multiple states, namely for each service for each registered application. Note that this does not imply any implementation requirements, but is used as a conceptual model to support the description of the APIs.
State changes may happen based on

· Callback or action from App
· Timer expiration in the MBMS client

· Information provided by the MBMS User Service (USD, schedule, FDT, file complete)

[image: image4]
Figure 1: State Diagram
Table 1 describes the states for the MBMS client.
Table 1 States and Parameters of MBMS Client

	States and Parameters
	Definiton

	IDLE
	In this state the MBMS client does not have any registered application and it may not keep the servide definition up to date.

	NON_AVAILABLE
	In this state an application cannot register with the MBMS client.

	REGISTERED
	In this state the MBMS client has registered the application, it may keep the servide definition up to date, and it may be providing file capture services to the application(s).
For each registered application with appId, the MBMS client maintains the following internal parameters. In this state the MBMS client sends callback notifications to the application.

	
	
	

	
	
	

	
	
	

	
	
	

	CAPTURE_NOTIFY
	In this state the MBMS client provides file capture for one specific service to a registered application and notifies the application on any received file.

	CAPTURE_BACKGROUND
	In this state the MBMS client provides file capture for one specific service to an application without notifiying the application on any received file for some agreed time.

	
	
	

	
	
	

	
	
	

	
	
	

6.2.2.3
MBMS Client Internal parameters

The MBMS client maintains internal parameters as defined in Table 2. Note that the parameters are conceptual and internal and only serve for the purpose to describe message generation on the API calls.
Table 2 Parameters of MBMS Client

	States and Parameters
	Definiton

	Preconfigurations
	

	
	
	_maxRegistrationValidityDuration
	MBMS client parameter that provides the maximum time after deregistration that a client still captures files on behalf of an application.

	
	
	_defaultAvailabilityDeadline
	the time a file that is kept in the MBMS client owned storage location

	_app[]
	The MBMS client maintains a parameter list per registered app

	
	_appId
	A unique ID provided by the application and assigned to the app.

	
	_serviceClass[]
	A list of service classes identifying the services the application will have access to.

	
	_registrationValidityDuration
	A period of time following the application de-registration over which the MBMS client continues to capture files for the application, see clause.

	
	_locationPath
	The storage location where the application want to have files the MBMS client collects to be stored, see clause xx.

	
	[_expiryTime]
	

	
	_service[]
	The MBMS client maintains a parameter list per service. In this context the list is assigned also to one app, but an implementation may share the internal parameter list assigned to a service across multiple apps.

	
	
	_serviceID
	The service ID for a File Delivery Application service over which the MBMS client collects files for application(s).

	
	
	_serviceClass
	The service class associated with the File Delivery Application service assigned the Service ID, see clause xx.

	
	
	_serviceLanguage
	The language of the service

	
	
	_serviceName[]

 _name

 _lang
	The service name

	
	
	_serviceBroadcastAvailability
	The service broadcast availability

	
	
	_fileCaptureRequest[]
 - _fileURI

 - _disableFileCopy

 - _captureOnce
	A sequence of requested file captures from the application.

The _fileURI names the files as they will also be used on the FLUTE FDTs for the File Delivery Application Service Allowed values for the _fileURI include:
· The empty string signals that the application is interested in receiving all new files and updates to previously received files.
· A BaseURL, i.e., a complete path for subdirectory (a prefix) identifying a group of files under that directory.
· An absoluteURL, i.e., a complete URL that identifies a single file resource.
 _disableFileCopy – when set to true, this signals that the application does not want the MBMS client to make the file available on the application space.
captureOnce – when set to true, signals that the file requested via the _fileURI (or a file matching a BaseURL in fileURI, or any file if the fileURI is empty) is to be captured only once.

	
	
	_fileURIStatus[]
 _URI
 _contentType
 _deliveryState
 _md5
 _deliverySchedule[]

 _start

 _stop
 _appState
 _notified
 _fileLocation
	A sequence of _fileURI[] that states the status of files the application may be interested or the the service provides, possibly using scheduling information. The internal parameters store relevant information on the file such as content type or MD5, if the information is available yet.
The delivery state can be scheduled, received, reception in progress, failed. The delivery schedule records the current upcoming delivery schedules.

The application state may be moved to express that the file was moved to the application, failed if the move failed or internal if the location path is internal to the MBMS client.
A notified flag is provided to indicate if the application has been notified on the reception of the file.

	
	
	_sessionSchedule[]

 _start

 _stop
	Documents the session schedule for this session. Only sessionSchedule records is included for which the value of the _stop time is in the future.

6.2.2.3
MBMS Client Operation in IDLE Mode

The MBMS client may listen to the User Service Bundle Description and may collect information.
6.2.2.4
MBMS Client Operation in REGISTERED Mode
For a registered app and the assigned parameters according to Table 2, the MBMS client uses the information in the User Service Description as well as its internal state information for the app in _app[] in the service class list _serviceClass[] to collect and keep up-to-date all internal information on the services of interest for the app, i.e. those that are member of any service class for which the application has interest.
For each MBMS user service for which the USD as defined in TS26.346 [XXX] is available in the MBMS client for the service classes registered by the application in _serviceClass [] one service record in the internal parameter _service[] is defined internally in the client and continuously updated whenever a new USD is available:

· For each userServiceDescription.name element, a (name, lang) pair is generated and added to the _serviceName[] list with _name set to the value of the USD element, and if present, the _lang set to the value of the associated @lang attribute. If no @lang attribute is present, the _lang parameter is set to an empty string.
· If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to _serviceClass. If not present, the _serviceClass is set to an empty string.

· The value of the attribute userServiceDescription@serviceId is assigned to _serviceId.

· If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to _serviceLanguage. If not present, the _serviceLanguage is set to an empty string.

· The _serviceBroadcastAvailability is continuously updated set it to BROADCAST_AVAILABLE, if broadcast is available, if not, it is set to BROADCAST_UNAVAILABLE.
· If the userServiceDescription.schedule element is present then the MBMS client uses the information in the schedule description fragment to generate the internal _fileURI[] and _sessionSchedule[] list and keep up to date. The MBMS client should only include _fileUri[] list if there is a current or a future scheduled transmission of that file. The MBMS client shall only include _sessionSchedule[] records if the _stop value is in the future.
· Editor’s Note: More details may be added
6.2.2.5
MBMS Client Operation in CAPTURE_NOTIFY Mode
The MBMS client carries out all actions as in the REGISTERED state.
For one MBMS user service identified with one service record in the internal parameter _service[] with a specific _serviceID the MBMS client continuously updates the the internal parameters for this service.
In addition, for each fileCaptureRequest[] record in the service record
· If the _fileUri is empty then the MBMS client receives all files delivered on this MBMS service with service ID serviceId.
· If the _fileUri is a complete absolute URI, then the MBMS client receives only files delivered on the MBMS service with service ID serviceId which having a matching URL as the fileURI parameter.
· If the _fileUri is a Base URI as defined in RFC 3986 [add reference], then the MBMS client receives all files delivered on the MBMS service with service ID serviceId which are delivered through the MBMS user service with a matching BaseURL of the one defined in the fileURI parameter.
Furthermore, the MBMS Client in this performs the actions in the following sub-clauses.
· For each file announced in the session schedule and matching any of the capture requests in _fileCaptureRequest[], the MBMS client create an entry in the _fileURIStatus[] adding the _URI and delivery schedules _deliverySchedule[] and sets the _deliveryState to scheduled.
· For each file announced in the FDT and matching any of the capture requests in fileCaptureRequest[], the MBMS client
· updates or creates an entry adding the _URI
· sets the _deliveryState to reception in progress.
· may optimize the procedures and for example not download the same version of the file, for example check by the Content-MD5 in the File element of the FDT Instance.
· If a MIME type was defined via the FDT describing that file transmission, the _contentType parameter is set to the value of the Content-Type as in the File entry of the FDT. If the MIME type is not defined, the _contentType parameter is set to an empty string. The MD5 may be extracted from the FDT or may be generated.
· For each successfully received file announced in the FDT and matching any of the capture requests in fileCaptureRequest[],
· the MBMS client updates sets the _deliveryState to failed and
· If the _locationPath is defined and if the MBMS client is successful in copying/moving the collected file to the directory in _locationPath, the MBMS client sets the _appState to moved and the _fileLocation pointing to the file in the _locationPath
· If the _locationPath is empty (_appState is set to internal) or if the MBMS client is not successful in copying/moving the collected file to the directory defined in _locationPath (_appState is set to failed) then the _fileLocation is set to:
· a complete file name (including the directory path) on the UE local file system where the file can be accessed. The file may be stored under an MBMS client defined directory that is accessible to the application.
· An HTTP URL where the MBMS Aware Application can retrieve the file using the HTTP GET method. This format may be used when the file is stored on a location that is not directly accessible to the application.
· the MBMS client announces it through fileAvailable() notification as defined in clause 6.2.3.13 to the app. The internal _notified flag is set to true.
· If the _captureOnce is set to true, the file is excluded/removed from the _fileCaptureRequest[] and from the internal _fileURIStatus[] list.
· For each non-successfully received file announced in the FDT and matching any of the capture requests in fileCaptureRequest[],
· the MBMS client updates sets the _deliveryState to failed
· the MBMS client announces it through fileDownloadFailure() notification as defined in clause 6.2.3.10 to the app.
· The file is excluded/removed from the _fileCaptureRequest[]
Editor’s Note: Does fileDownloadFailure() notification always mean that you give up?
The MBMS client moves to REGISTERED state if the _fileCaptureRequest[] is empty.
Note: while an MBMS Aware application is deregistered and files are received for that application, if multiple versions of the same file (i.e., the same fileURI but different Content-MD5 in the FDT for a File Delivery Application Service) are received, only the last file version received is kept by the MBMS client and made available to the application after the new registration.
6.2.2.6
MBMS Client Operation in CAPTURE_BACKGROUND Mode
Editor’s Note: Some duplication with the above, may be updated.
Once the time for the registration validation has expired, the MBMS client clears all context for the app and returns to IDLE state for the app. Until this is the case, the MBMS client performs the following actions.
The MBMS client carries out all actions as in the REGISTERED state.

For one MBMS user service identified with one service record in the internal parameter _service[] with a specific _serviceID the MBMS client continuously updates the the internal parameters for this service.
In addition, for each fileCaptureRequest[] record in the service record

· If the _fileUri is empty then the MBMS client receives all files delivered on this MBMS service with service ID serviceId.
· If the _fileUri is a complete absolute URI, then the MBMS client receives only files delivered on the MBMS service with service ID serviceId which having a matching URL as the the fileURI parameter.
· If the _fileUri is a Base URI as defined in RFC 3986 [add reference], then the MBMS client receives all files delivered on the MBMS service with service ID serviceId which are delivered through the MBMS user service with a matching BaseURL of the one defined in the fileURI parameter.

Furthermore, the MBMS Client in this state does the following actions:

· For each file announced in the session schedule and matching any of the capture requests in _fileCaptureRequest[], the MBMS client create an entry in the _fileURIStatus[] adding the _URI and delivery schedules _deliverySchedule[] and sets the _deliveryState to scheduled.
· For each file announced in the FDT and matching any of the capture requests in fileCaptureRequest[], the MBMS client

· updates or creates an entry adding the _URI
· sets the _deliveryState to reception in progress.
· may optimize the procedures and for example not download the same version of the file, for example check by the Content-MD5 in the File element of the FDT Instance.
· If a MIME type was defined via the FDT describing that file transmission, the _contentType parameter is set to the value of the Content-Type as in the File entry of the FDT. If the MIME type is not defined, the _contentType parameter is set to an empty string. The MD5 may be extracted from the FDT or may be generated.
· For each successfully received file announced in the FDT and matching any of the capture requests in fileCaptureRequest[],
· the MBMS client updates sets the _deliveryState to received
· If the _locationPath is defined and if the MBMS client is successful in copying/moving the collected file to the directory in _locationPath, the MBMS client sets the _appState to moved and the _fileLocation pointing to the file in the _locationPath
· If the _locationPath is empty (_appState is set to internal) or if the MBMS client is not successful in copying/moving the collected file to the directory defined in _locationPath (_appState is set to failed) then the _fileLocation is set to:
· a complete file name (including the directory path) on the UE local file system where the file can be accessed. The file may be stored under an MBMS client defined directory that is accessible to the application.
· An HTTP URL where the MBMS Aware Application can retrieve the file using the HTTP GET method. This format may be used when the file is stored on a location that is not directly accessible to the application.
· The internal _notified flag is set to false.
· If the _captureOnce is set to true, the file is excluded/removed from the _fileCaptureRequest[]
· For each non-successfully received file announced in the FDT and matching any of the capture requests in fileCaptureRequest[],
· the MBMS client updates sets the _deliveryState to failed
· The internal _notified flag is set to false.
· The file is excluded/removed from the _fileCaptureRequest[]
6.2.3
Methods

6.2.3.1
Overview

Table 2 provides an overview over the methods defined for the File Delivery Application Service API. Different types are differentiated, namely state changes triggered by the app, status query of the app to the client, parameter updates as well as notifications from the client. The direction of the main communication flow is provided between the application (A) and the MBMS client (C).
Table 2 Methods defined for File Delivery Application Service API
Editor’s Note: Table references need checking
	Method
	Type
	Direction
	Brief Description
	Clause

	registerFdApp
	State change
	A -> C
	Application registers a callback listener with the MBMS client
	6.2.3.2

	deregisterFdApp
	State change
	A -> C
	Application deregisters with the MBMS client
	6.2.3.3

	startFdCapture
	State change
	A -> C
	Start download of files over file delivery service
	6.2.3.4

	stopFdCapture
	State change
	A -> C
	Stop download of files for the file Delivery service
	6.2.3.5

	getFdActiveServices
	Status query
	C <-> A
	Get list of currently active services
	6.2.3.6

	getFdAvailableFileList
	Status query
	C <-> A
	Retrieves the list of files previously captured for the application
	6.2.3.7

	getFdServices
	Status query
	C <-> A
	Retrieves the list of File Delivery services defined in the USD
	6.2.3.8

	getFdDownloadStateList
	Status query
	C <-> A
	Retrieves the state of files pending download
	6.2.3.9

	setFdServiceClassFilter
	Update to parameter list
	A -> C
	Application sets a filter on file delivery services in which it is interested
	6.2.3.10

	setFdStorageLocation
	Update to parameter list
	A -> C
	Sets the storage location to store the application downloaded files
	6.2.3.11

	registerFdResponse
	Update to parameter list
	A -> C
	The response to the application streaming service register API
	6.2.3.12

	fileAvailable
	Notification
	C -> A
	Notification to application when a new file is downloaded per application capture request
	6.2.3.13

	fdServiceListUpdate
	Notification
	C -> A
	Notification to application on an update of the available for file delivery services
	6.2.3.14

	fdServiceError
	Notification
	C -> A
	Notification to application when there is an error with broadcast download of service
	6.2.3.15

	fileDownloadFailure
	Notification
	C -> A
	Notification to application that download of a requested file failed
	6.2.3.16

	storageError
	Notification
	C -> A
	Notification to application that the storage location set by the application is not accessible by the eMBMS Client or the storage is insufficient.
	6.2.3.17

	fileDownloadStateUpdate
	Notification
	C -> A
	Notify application of a change in the state of pending file downloads
	6.2.3.18

	fileListAvailable
	notification
	C -> A
	Notify application when the list of downloaded files is available to retrieve
	6.2.3.19

6.2.3.2

Registration

6.2.3.2.1
Overview

This clause defines registerFdApp() interface.
An MBMS Aware Application calls the registerFdApp() interface to register with the MBMS Client to consume File Delivery Application Services. The registerFdApp() interface has two purposes:

1) It signals to the MBMS Client that an application is interested to consume MBMS services. This registration may be considered as pre-condition for the MBMS Client to keep checking for updates to the File Delivery Application Services defined.

2) It allows the application to identify its callback listeners defined in the File Delivery Application Service API for the MBMS Client to provide asynchronous notifications to the application on relevant events associated with the reception of files.
Note: Since some application development frameworks do not support callback functions, an MBMS Aware Application for these frameworks will not provide callback listeners in the registerFdApp() interface. Instead, the application will implement the necessary approach available on these frameworks to receive event notifcations from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.
Figure 3 shows a call flow and the usage of the registerFdApp() interface.

[image: image5.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerFdApp()

deregisterFdApp()

getFdServices()

registerFdResponse()

Figure 3 Application Registration sequence diagram
6.2.3.2.2
Parameters
The parameters for the registerFdApp() API are:

· string appId – provides a unique ID for the application registering with the MBMS client, which uses this identity to maintain state information (e.g., capture requests and captured files) for a particular MBMS Aware Application. The uniqueness of the ID is in the context of any application that may possibly register with MBMS client. Uniqueness is typically provided on platform level.
· any platformSpecificAppContext – a platform-specific context for the registering application that enables the MBMS client to get extra information about the application that may be need to enable the application to have access to MBMS services, e.g., to enable application authentication or to enable the application to communicate with the MBMS client via platform (e.g., HLOS) services.
· sequence<string> serviceClassList – provides a comma-separated list of service classes which the application is interested to register. Each service class string can be any string or it may be empty.
· StorageLocation locationPath – identifies a local directory available on the device storage, which the application can access and where successfully collected files can be copied/moved before notifying that the file is available to the application. The storage location is a string pointing to a directory, or it may be empty, if no location is provided.
· unsigned long registrationValidityDuration – the period of time in seconds following the application de-registration (via the application call to deregisterFdApp(), or when the MBMS client detects that the application is no longer running), and possible exit, over which the eMBMS client still considers the application registered for the purpose of fulfilling any outanding startFileCapture() requests. The default value of this option is 0 (zero) which signals to the the eMBMS client to clear any outstanding startFdCapture() requests for that application upon its de-registration, and possible exit.
Note: The registrationValidityDuration is provided via the registerFdApp(), rather then via a deregisterFdApp(), to handle abnormal application termination conditions (e.g., application crash or termination by the HLOS) before the application has a chance to invoke the deregisterFdApp().
· ILTEFileDeliveryServiceCallback callBack – provides the MBMS client with the call back functions associated with File Delivery Application Service APIs for the registering MBMS Aware Application.
Note: The callback element in the IDL description is optional and only included when the application development framework supports programmatic callback interfaces. If callbacks are not supported on a given application development framework, the same information content as defined on the callback structures is to be provided to the application via the notification method available with that development framework when the respective condition is met.

6.2.3.2.3
Pre-Conditions

The application has assigned a unique application ID appId in the context of its operation (e.g., a smartphone HLOS) with the MBMS client.

The application is pre-configured with the set of service classes that allows it to consume the File Delivery Application Services associated with these service classes.
The application manages the storage of requested files, especially the amount of storage to be used.

The application may use this method at launch or after a deregisterFdApp() has been called.
The application assumes the client in IDLE state.
The MBMS client may be configured to support a maximum _maxRegistrationValidityDuration.
6.2.3.2.5
Usage of Method for Application
The application uses the method registerFdApp() to register with the MBMS Client to consume File Delivery Application Services.
The application provides its appId and, if applicable, some platform specific application context, platformSpecificAppContext.

The application provides the set of service classes which the application is interested to register.

Setting the registrationValidityDuration enables the application to allow the MBMS client to capture files in the background when the application is not currently running; typically after invoking the deregisterFdApp()or after crashing. The application developer should be aware that received files belong to the application and that the MBMS client does not provide content management functions beyond reception and temporary storage of received files in between consecutive runs of the application.
When the application is not interested in receiving files from File Delivery Application Services while the application is not running, the application should set the registrationValidityDuration to 0 (zero). When the application is interested in receiving files from File Delivery Application Services while the application is not running, the application should set the registrationValidityDuration to a non-zero value and it should call the deregisterFdApp() interface before stop running to disable notifications from the File Delivery Services APIs (see XXX). If the MBMS client can determine that an application has crashed and exited without invoking the deregisterFdApp() interface , the MBMS client will assume that the application had called the deregisterFdApp() before exiting.
The application should define a local directory locationPath on the device, which the MBMS client can access and where successfully collected files will be copied/moved before making the file available to the application. If no directory is defined, the locationPath should be an empty string.
The application selects a value for the parameter registrationValidityDuration to constrain the amount of storage the MBMS client will use to collect and keep application-requested files in the MBMS client storage space while the application is not currently running (e.g., has de-registered or crashed). The amount of files cached for an application that does not collect its files may impact the MBMS client’s ability to collect files for other applications. In selecting a value for the registrationValidityDuration the following should consider:

· The frequency and amount of files received during the selected registrationValidityDuration. For instance, assuming that 100MB worth of files are delivered every day:
· The appplication could select a registrationValidityDuration of Nx24h (e.g., N=10) to request the MBMS client to store at most Nx100MB (e.g., 1GB) if the application is not run by the user in Nx24h.
· The application could ask its user (or have a preconfigured behavior on) how long the user wants files to be collected in-between the user’s access to files delivered to the application. If the user selects a long period (e.g., 2months) the application should not use that large values as the registrationValidityDuration (e.g., this could mean 6GB in the example above). Instead, the application should include behaviors to periodically re-register (e.g., every 5days) and collect received files to manage storage of its application files. Leaving those files in the MBMS client storage space (e.g., 6GB) could exceed the MBMS client storage space allowance and impact the reception of files for other applications.
· The relevance of older vs. newer files when managing the storage for files received if the user does not access the application over a long period of time.
· The application could ask the user how much storage to use for reived files and whether to delete older files (newer files preferred), or stop new downloads (older preferred), or however else the application choses to support managing received files.

· As described above, in the absence of the user launching the application for File Delivery Application Services with outstanding startFdCapture() requests, that application should automatically re-register (e.g., every 5days as discussed above) with the MBMS client with a periodicity not greater than registrationValidityDuration and retrieve files captured during the period the application was not currently registered.

· The application should then manage the downloaded files with respect to the amount of storage consumed by files of that application. For instance, the application may prioritize retaining newer versues older files or let the registrationValidityDuration expire (therefore causing the MBMS client to stop continued file downloads for that application) if the user does not consume file contents for that application.

· Examples 1: Daily headline news application allows the user to collect files from two File Delivery Application Services with new/updated video clip files downloaded twice every day.

· The application registrationValidityDuration is 2days, it re-registers wth the MBMS client every 1.5 days and it keeps only the files that are no more than two days old, e.g., as configured by the user.

· Examples 2: Weekly magazine application allows the user to collect files from a File Delivery Application Service with new/updated files for selected electronic versions of weekly magazines downloaded once a week.
· The application registrationValidityDuration is 15days, it re-registers wth the MBMS client every 7days and it keeps only the files that are no more than three weeks old, e.g., as configured by the user.
6.2.3.2.5
Operation of Method (MBMS Client requirements)

When this method is invoked, the MBMS client runs the following steps:

1. The MBMS client checks the input parameters for consistency and sets the internal variable
a. If appId is an empty string then the MBMSthrow a MISSING_PARAMETER result code in the registerFdResponse()and abort these steps. If not, the MBMS client sets the internal variable _appId to the value of the parameter.
b. The MBMS client adds each entry in the serviceClassList parameter to its _serviceClass[] record. Note that the serviceClassList parameter may contain an empty service class entry. If an empty service class is provided the MBMS client considers the application to be registered with a service class that is also empty and only allow the application to have access to File Delivery Application Services that are not associated with a serviceClass (i.e., the USD for these services do not have a serviceClass defined). (MOVE DOWN)
c. If locationPath is not defined, the MBMS client provides means such that the application has access to the files the MBMS Client received on behalf of the application. If the locationPath is defined, the internal variable _locationPath to the value of the parameter.
d. If registrationValidityDuration is not defined, the value of the internal parameter _registrationValidityDuration is set to 0 (zero) . If the registrationValidityDuration is defined, the internal variable _ registrationValidityDuration to the value of the parameter (COPY FROM BELOW TO USE THE SMALLER ONE)
e. If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerFdApp() interface to send notification of event occurences to the Application.
2. generates a response registerFdResponse() as defined in 6.2.3.3.
3. if the MBMS client does have an _fileURIStatus[] entry for which the _notified flag is set to false, it issues a fileListAvailable() notification as defined in 6.2.3.19.
6.2.3.2.6
Post-Conditions

The MBMS client sends a registerFdResponse() as defined in 6.2.3.3.

·
·
·
·
·
·
·
·
·
·
·
6.2.3.3

File Delivery Application Service Registration Response
6.2.3.3.1
Overview

This subclause defines the registerFdResponse() call.

As illustrated in Figure 3, the MBMS client responds to an Application call to the registerFdApp() API with a registerFdResponse() call back providing the result of the registration request.
6.2.3.3.2 Parameters
The parameters for the registerFdResponse() API are:
· EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

· REGISTER_SUCCESS – indicates that the registration has been processed successfly and the application can proceed with other API interactions with the MBMS client for File Delivery Application Services.
· FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the the registration has failed since the File Delivery Application Service API did not find an MBMS client available on the UE on which the application is running and no MBMS service will be available to the application.
· MISSING_PARAMETER – indicates that the registration has failed since one or more of the required parameter was missing.

· string message – provides an associated text description of the error message. The message may be empty.

· unsigned long acceptedFdRegistrationValidityDuration – when returning REGISTER_SUCCESS, this parameter indicates the registration validity duration the MBMS client will provide to the registering application.
6.2.3.3.3
Pre-Conditions

The MBMS client has received a call via the registerFdApp() API with the parameters documented in 6.2.3.2.2.

6.2.3.3.4
Operation of Method (MBMS Client requirements)

Based on the parameters of the registerFdApp(), the MBMS client shall provide a response registerFdResponse() as follows:

1) If the MBMS client functions cannot be activated, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide a message and may set acceptedFdRegistrationValidityDuration to any arbitrary value.

2) If the application did not provide a mandatory parameter the MBMS client functions cannot be activated, the MISSING_PARAMETER registration response code is sent. The MBMS client may provide a message and may set acceptedFdRegistrationValidityDuration to any arbitrary value.

3) If the MBMS client functions can be activated, then

a. the RegResponseCode is set to REGISTER_SUCCESS registration response code

b. a message may be generated

c. the MBMS client sets the value of acceptedFdRegistrationValidityDuration to the smaller of _maxRegistrationValidityDuration, if configured on the MBMS client, and the _registrationValidityDuration.

4) Sends the response with the above parameters
If the MBMS client functions can be activated and the response is sent, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching file delivery services using the information in the User Service Description (USD).
6.2.3.3.5
Usage of Method for Application

Once the application receives a the registerFdResponse() with the RegResponseCode set to REGISTER_SUCCESS, the application can proceed with other API interactions with the MBMS client, for instance, by issuing startFdCapture() requests.

Based on the response in acceptedFdRegistrationValidityDuration the application should adjust its expectations accordingly if the value returned is not what was requested.
If the MBMS client is temporarily in NOT_AVAILABLE , the application may periodically recheck if the state of the MBMS client changes by retrying the registerFdRequest() API.
6.2.3.3.6
Post-Conditions

If the MBMS client functions cannot be activated and once the response is sent, then MBMS client is at least temporarily in NOT_AVAILABLE state.
If the MBMS client functions can be activated and respective response is sent, then MBMS client is in REGISTERED state with the REGISTERED state parameters as set above.

6.2.3.4
Getting information on available File Delivery Application Services

6.2.3.4.1
Overview

This clause defines the getFdServices() interface.

The getFdServices() interface returns the complete list of available File Delivery Application Services information. As illustrated in Figure 3, after a successful registration with the MBMS client, the MBMS Aware Application can use the getFdServices() API to discover the available File Delivery Application Services associated with the service classes registered via the registerFdApp(). Also as illustrated in Figure 3, the MBMS client may use the getFdServices() API after receiving a fdServiceListUpdate() call back notification to changes to the available File Delivery Application Services.
6.2.3.4.2
Parameters
The getFdServices() API does not have any input parameters.
The getFdServices() API returns a list describing the available File Delivery Application Service, where each service is described by the following output only parameters:
· sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.
· string name – offers a title for the user service on the language identified in the lang parameter.
· string lang – identifies a natural language identifier per [xx].

· string serviceClass – identifies the service class which is associated with the service.
· string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC.
· string serviceLanguage – indicates the available language for the service and represented as an identifier per [xx].

· EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.
· The possible values are:
· BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.
· BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.
· sequence<string> fileUriList – optionally provides a list of file names for the files that are currently scheduled to be transmitted.
· EmbmsCommonTypes::Date activeDownloadPeriodStartTime – signals the current/next active File Delivery Application Service start time, when files start being broadcast over the air.

· EmbmsCommonTypes::Date activeDownloadPeriodEndTime – signals the current/next active File Delivery Application Service stop time, when files stop being broadcast over the air.
Note that the list may be empty.

6.2.3.4.3
Pre-Conditions

The MBMS client is in REGISTERED state or in CAPTURE_NOTIFY state and may or may not have acquired any USD information for services that are included in the service class list.
The application should use this call right after the registerFdResponse() notification as defined in XXX is received or after the fdServiceListUpdate() notification as defined in xxx is received.

The application shall use the serviceId to identify the service in subsequent communication with the MBMS client to manage the files to be captured on that service for the application.
The MBMS client has an updated internal _service[] list.

·
·
·
·
6.2.3.4.4
Operation of Method (MBMS Client requirements)

When this method is invoked, the MBMS client sets the parameters as follows:

· If the _service[] list is empty, the list is empty
· For each MBMS user service in the service[] list, one service record is generated as follows:

·
·
· The value of the attribute _serviceId is assigned to serviceId.
· The value of the attribute _serviceClass is assigned to serviceClass.

· The value of _serviceLanguage is assigned to serviceLanguage.
· For each record in the _serviceName[] one serviceNameList entry is generated and
· the name is set to the value _name,
· the name is set to the value _name,
· The value of _serviceBroadcastAvailability is assigned to serviceBroadcastAvailability.
· If at least one _sessionSchedule[] record is present then
· The activeDownloadPeriodStartTime is set to the value of earliest _start time of any entry in the _sessionSchedule[].
· The activeDownloadPeriodStopTime is set to the value of the _stop time of the entry selected earliest start time.
· If no _sessionSchedule[] record is present

· The activeDownloadPeriodStartTime is set to 0.
· The activeDownloadPeriodStopTime is set to 0.
·
·
·
·
·
6.2.3.4.5
Usage of Method for Application (Application Requirements)
The usage of the parameters serviceNameList, serviceClass, serviceBroadcastAvailability, and serviceLanguage is typically up to the application.

The fileUriList may be used by the application for selective file reception, e.g. when used together with startFdCapture() as defined in XXX.

The parameters activeDownloadPeriodStartTime and activeDownloadPeriodEndTime provides the application the ability to determine the current broadcast state for the service as follows:

· If the current time is such that activeDownloadPeriodStartTime ≤ current time ≤ activeDownloadPeriodEndTime, files may be captured for the service at the current time.

· If the activeDownloadPeriodStartTime is in the future, there is currently file capturing expected for the service, but delivery is currently scheduled to start at this advertised time.

· If the activeDownloadPeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.
· If the activeDownloadPeriodEndTime is in the past, or there are no activeDownloadPeriodStartTime and no activeDownloadPeriodEndTime defined for the service, then there is currently no broadcast being made for the service, and there is no currently scheduled broadcast time for the service.
6.2.3.4.6
Post-Conditions

This call does not change the MBMS client state.

The application uses the serviceId to identify the service in subsequent communication with the MBMS client.

6.2.3.5
Getting information on available File Delivery Application Services

6.2.3.5.1
Overview

This clause defines setFdStorageLocation().
While an application is actively registered with the MBMS client to consume File Delivery Application Services, the MBMS Aware Application can call the setFdStorageLocation() API to set or update the location where files collected for the application are to be stored. This message flow is shown in Figure 4.

[image: image6.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

setFdStorageLocation()

registerFdResponse()

Figure 4 Sequence diagram for updating the storage location for collected files
6.2.3.5.2 Parameters
The parameters for the setFdStorageLocation() method are:
· StorageLocation locationPath – see see 6.2.3.2.2
6.2.3.5.3 Pre-Conditions

The application is registered with the MBMS client to consume File Delivery Application Services, and MBMS client is in REGISTERED or CAPTURE_NOTIFY state.
6.2.3.5.4
Usage of Method for Application

The MBMS Aware Application may invoke the setFdStorageLocation() API to update the previously defined storage location. This includes the case that the storageLocation was not set previously.
It may also use this information if it receives and insufficient storage notification as defined in XXX.

6.2.3.5.5
Operation of Method
When this method is invoked, the MBMS client runs the following steps:

· It updates the internal variable _locationPath to the parameter value of locationPath provided in the call.

Note: The MBMS client provides any new files for that application at the locationPath, but not ongoing file capture. This is inherent from the capture description in XXX.
· If the storage location is empty the MBMS client selects a local directory on the device, which the application can access. (PROVIDE HTTP Location)
Call backs for this information
6.2.3.5.6
Post-Conditions

The MBMS client internal variable _locationPath for this application is updated.

6.2.3.6
Updating the registered service classes

6.2.3.6.1
Overview
This clause defines setFdServiceClassFilter().
While an application is actively registered with the MBMS client to consume File Delivery Application Services, the MBMS Aware Application can call the setFdServiceClassFilter() API to update the list of service classes the application wants to be registered with, see figure 5.

[image: image7.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

setFdServiceClassFilter()

registerFdResponse()

fdServiceListUpdate()

getFdServices()

Figure 5 Sequence diagram for updating the registered service classes for an application
6.2.3.6.2
Parameters
The parameters for the setFdServiceClassFilter() method are:
· sequence<string> serviceClassList – see 6.2.3.2.2
6.2.3.6.3
Pre-Conditions

The application is actively registered with the MBMS client to consume File Delivery Application Services, and MBMS client is in REGISTERED state or CAPTURE_NOTIFY for the application.
6.2.3.6.4
Usage of Method for Application

The MBMS Aware Application may invoke the setFdServiceClassFilter() API to update the previously defined list of service classes that includes additional service classes or includes fewer service classes than the list of service classes.

The application should be aware that the updates are only active once an an fdServiceListUpdate() notification is received that confirms the new service class filters.
6.2.3.6.5
Operation of Method (MBMS Client requirements)

When this method is invoked, the MBMS client shall runs the following steps:

· It replaces the internal variable _serviceClass[] with the parameter values provided in serviceClassList.
· Note that this does not necessarily change the ongoing MBMS client operation, e.g. capturing
·
·
· The MBMS client issues a fdServiceListUpdate() notification as defined in XXXX to the application to notify it of this effect.

6.2.3.6.6
Post-Conditions

The MBMS client issues an fdServiceListUpdate() notification as defined in XXXX.

6.2.3.7
Start File Delivery Capture

6.2.3.7.1
Overview

This clause defines the startFdCapture() API.

Once the File Delivery Application Service registration is complete, the MBMS Aware Application can make calls on the startFdCapture() API to selected fileURIs for the files to be received through the MBMS service as shown in Figure 6.

[image: image8.emf]startFdCapture()

fileAvailable()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive file(s) and

perform FEC decode

stopFdCapture()

Figure 6 File Delivery Application Start Capture (REPLACE FLUTE SESSION)
6.2.3.7.2 Parameters
The parameters for the startFdCapture() API are:

· string serviceId – see 6.2.3.4.2. The service ID for the service for which the files are captured.

· string fileUri – identifies the files to be captured on the service identified in serviceId. Allowed values include:
· The empty string signals that the application is interested in receiving all new files and updates to previously received files.
· A BaseURL, i.e., a complete path for subdirectory (a prefix) identifying a group of files under that directory.
· An absoluteURL, i.e., a complete URL that identifies a single file resource.
· boolean disableFileCopy – when set to true, this signals that the application does not want the MBMS client to make the file available on the application space
· boolean captureOnce – when set to true, signals that the file requested via the fileURI (or a file matching a BaseURL in fileURI, or any file if the fileURI is empty) is to be captured only once.
6.2.3.7.3 Pre-Conditions

The application is registered with the MBMS client to consume File Delivery Application Services.

The fileURI format is not validated by the MBMS client.
6.2.3.7.4
Usage of Method for Application

The MBMS Aware Application can make calls on the startFdCapture() API to the select file URIs for the files to be received through the MBMS service with service ID serviceId. It is recommended that http:// or file system names c:/user/… be used as file URIs.

An application may set the fileURI parameter to different values:

· An empty string signals that the application is interested in receiving all new files and updates to previously received files.
· If the fileURI is set to a Base URL as defined in RFC 3984 [add reference], the application may organize its files in a structured way (in a directory) such as to allow the identification of a group of files. For instance, a headline news clips application may group files under a …\sports\, a …\politics\, etc. folder and allow the user to select what type of headline news of interest and therefore request the MBMS client to capture all the files under …\sports\ if the user is only in terested in sports headline news.
· An absolute URL, i.e., a complete URL that identifies a single file resource. A software update application on a given OEM device model may be preconfigured with an absolute URL for the file name that identifies the software image for that device model. That application would use that absolute URL as the file URI when resquest that its software image be received on a FOTA File Delivery Application Service.
The application should avoid overlap requests, e.g. requesting a fileURI and at the same time the Base URL that matches the fileURI.
The application may use the getFdActiveServices() API as defined in XXX to get back in synch with fileURI in remaining outstanding startFdCapture() requests.
When application is no longer interested in capturing specific files, it should call the stopFdCapture() interface as defined in XXX.
A software update application on a given OEM device model may be preconfigured with an absolute URL for the file name that identifies the software image for that device model. That application would use that absolute URL as the file URI when resquest that its software image be received on a FOTA File Delivery Application Service.
6.2.3.7.4 Operation of Method (MBMS Client requirements)

When this method is invoked, the MBMS client shall run the following steps:
· If the requested fileURI matches an existing outstanding startFdCapture() request as recorded on the _fileCaptureRequest[, the internal error code is set to FD_DUPLICATE_FILE_URI and the fdServiceError() notification as defined in XXX is initiated.

· If the requested fileURI is ambiguous in the following manner
· The fileURI is an absolute URL or a Base URL and there is an existing outstanding startFdCapture() with an empty fileURI, or

· fileURI is an absolute URL and there is an existing outstanding startFdCapture() with an Base URL in the fileURI that is base URL for the aboluteURL.
then , the internal error code is set to FD_AMBIGUOUS_FILE_URI and the fdServiceError() notification as defined in XXX is initiated.

· Otherswise, The fileURI is added to the internal list of the MBMS client _fileCaptureRequest[]. Any overlapping entry should be avoided.
·

·
·
·
·
·

· If the requested fileURI is ambiguous in the following manner
· The fileURI is an absolute URL or a Base URL and there is an existing outstanding startFdCapture() with an empty fileURI, or

· fileURI is an absolute URL and there is an existing outstanding startFdCapture() with an Base URL in the fileURI that is base URL for the aboluteURL.
then , the internal error code is set to FD_AMBIGUOUS_FILE_URI and the fdServiceError() notification as defined in XXX is initiated.

· The MBMS client removes existing outstanding startFdCapture() requests from _fileCaptureRequest[] when the requested fileURI on a startFdCapture() is broader (i.e., superceding older requests) than these existing outstanding startFdCapture() requests; this request consolidation will not impact ongoing file downloads, specifically,

· When fileURI is empty on the new startFdCapture(), all existing outstanding startFdCapture() are removed.

· When fileURI is a Base URL, existing outstanding startFdCapture() requests with an absolute URL are removed if the new fileURI in the request is a base URL for the absolute URL on these existing outstanding startFdCapture().
· The _disableFileCopy is set to the value of disableFileCopy.
· The _captureOnce is set to the value of captureOnce.
·
·
6.2.3.7.6
Post-Conditions

The MBMS client is in CAPTURE_NOTIFY state for the requested serviceID.

The parameters of the MBMS client are updated,

After capturing the files requested on a startFdCapture() request, the MBMS Client prepares to send fileAvailable() notification as defined via the registered callback listener.

6.2.3.8
File Available Notification

6.2.3.8.1
Overview

This clause defines the fileAvailable() callback function.
As illustrated in Figure 6, once the MBMS client has successfully collected a file that matches an outstanding startFdCapture() request from an MBMS Aware Application, the MBMS client invokes the fileAvailable() callback function.
6.2.3.8.2 Parameters
The parameters for the fileAvailable() API are:

· string serviceId – definition see above.
· The following is the file information for the received file:
· string fileUri – identifies the file captured on the service identified in serviceId.
· string fileLocation – identifies the location where the MBMS Aware Application can find the collected file.
· string contentType – indicates the MIME type for the file identified in the fileUri,
· unsigned long availabilityDeadline – signals a deadline in seconds when the file stored at the fileLocation will be removed from the MBMS client storage location.
6.2.3.8.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY state for the serviceId.

The MBMS client has successfully received a file that is included in a _fileCaptureRequest[] record. Reception may be through broadcast only or may include unicast repair.
The MBMS client internal variable _locationPath may be defined or may not be defined.
The MBMS client has pre-configured an internal parameter defaultAvailabilityDeadline defining the time a file that is kept in the MBMS client owned storage location.
6.2.3.8.4
Operation of Method (MBMS Client requirements)

The MBMS client invokes the fileAvailable() function for each successfully received file that matches a _fileCaptureRequest[] and is included in the _fileURIStatus[] record with the following parameters
· The serviceId is set to the _serviceID.

· The fileUri is set to the value of _URI.
· The fileLocation is set to the value of the _fileLocation.
·

·
· The contentType is set to the _contentType.

·

· If the _appState is failed or internal, the MBMS client sets the value of the availabilityDeadline to the internal variable _defaultAvailabilityDeadline, otherwise sets the value to 0.
·
6.2.3.8.5
Usage of Method for Application

Once the application receives the callback, the application may access the file that is announced by the parameters in the callback function. If the storage is not defined by the locationPath application should access the file before the announced availabilityDeadline.

An
MBMS Aware Application can retrieve the file using the HTTP GET method if the fileLocation is an HTTP URL.
6.2.3.8.6
Post-Conditions

The file is available at the location defined by the fileLocation parameter.

6.2.3.9
File Delivery Application Service De-registration

6.2.3.9.1
Overview

This clause defines the deregisterFdApp() call.
An MBMS Aware Application registers services classes with the MBMS client to request the capture of files on File Delivery Application Services, but the application does not have to be currently registered while files are being captured as discussed earlier. The app may deregister using the deregisterFdApp() call.
6.2.3.9.2
Parameters
none
6.2.3.9.3
Pre-Conditions

The MBMS client is in REGISTERED or in CAPTURE_NOTIFY state for this application.
6.2.3.9.4
Usage of Method for Application

MBMS Aware Application registered with the MBMS client via the registerFdApp() API should involke the deregisterFdApp() before exiting.
6.2.3.9.5
Operation of Method (MBMS Client requirements)

If the method is invoked and the MBMS client is in REGISTERED mode for this application, it moves to IDLE mode.

If the method is invoked and the MBMS client is in CAPTURE_NOTIFY mode for this application the MBMS client moves to CAPTURE_BACKGROUND.
Note that in CAPTURE_NOTIFY mode the _fileCaptureRequest[] record contains one or more entries whereas in REGISTERED mode this record is empty.
· if the _fileCaptureRequest[] record contains no more entries, the MBMS client moves to IDLE state.
· if the _fileCaptureRequest[] record contains one or more entries,
6.2.3.9.6
Post-Conditions

The app is no longer registered with the MBMS client.
The MBMS client is either in IDLE mode or in CAPTURE_BACKGROUND mode.

6.2.3.10
File Download Failure Notification

6.2.3.10.1
Overview
This clause defines the fileDownloadFailure()callback function.
As illustrated in figure 7, once the MBMS client has attempted to collect symbols for a file (possibly even via the unicast file repair procedure), that matches an outstanding startFdCapture() request from an MBMS Aware Application, the MBMS client may still not be able to recover the file. Once the MBMS client detects that it failed FEC decoding the file, the MBMS client invokes the fileDownloadFailure() callback function (which the application registerd with the MBMS client.

[image: image9.emf]startFdCapture()

fileDownloadFailure()

MBMS Aware

Application

MBMS Client

Open FLUTE session and receive a file but fail FEC

decoding or fil repair for the file

stopFdCapture()

Figure 7 Signaling download failures
6.2.3.10.2 Parameters
The parameters for the fileDownloadFailure() API are:

· string serviceId – identifies the File Delivery Application Service on.
· string fileUri – identifies the file which failed being received.
6.2.3.10.3
Pre-Conditions

The MBMS client is in CAPTURE_NOTIFY state for the serviceId.

6.2.3.10.4
Operation of Method (MBMS Client requirements)

The MBMS client invokes the fileAvailable() function for each non-successfully received file that matches a _fileCaptureRequest[] and is included in the _fileURIStatus[] record with the following parameters
· The serviceId is set to the _serviceID.

· The fileUri is set to the value of _URI.
·
·
6.2.3.10.5
Usage of Method for Application

The application may use this information to identify other ways to access the file, or initiate actions to operate without this file.
6.2.3.10.6
Post-Conditions

The MBMS client may remain in CAPTURE_NOTICE state or if this was the last outstanding capture request it may move to REGISTERED state for the serviceId.

6.2.3.11
File List Available Notification

6.2.3.11.1
Overview
This clause defines the fileListAvailable()callback function.

As illustrated in figure 6, an MBMS Aware Application that is registered when a requested file is successfully received is notified of the availability of the new file via the fileAvailable() API.
Figure 8 illustrates what happens when an application registers to consume File Delivery Application Services with a non-zero registrationValidityDuration, asks different files to be captured (possibly from different File Delivery Application Services), and then de-registers.
During the registration validity duration period following the application de-registration, the MBMS client collects files matching the outstanding capture requests from the applicatioin and keeps the files in its cache while the application is not currently registered.

[image: image10.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

registerFdResponse()

startFdCapture(S1,fileURI1)

startFdCapture(S2,fileURI2)

Collect Files Matching

startCapture(S2,fileURI2) requests

registerFdApp()

fileListAvailable(S2)

getFdAvailableFileList(S2)

Figure 8 Sequence diagram for notifying the application about collected files

6.2.3.11.2
Parameters
The parameters for the fileListAvailable() API are:

· string serviceId – identifies the File Delivery Application Service on.
6.2.3.11.3
Pre-Conditions
The MBMS client is in CAPTURE_NOTIFY mode.
The MBMS client does have an _fileURIStatus[] entry for which the _notified flag is set to false

6.2.3.11.4
Operation of Method (MBMS Client requirements)
The MBMS client invokes the fileListAvailable() notification with the following parameters
· The serviceId is set to the _serviceID.

6.2.3.11.5
Usage of Method for Application
The application receiving this notification may then ask the client on the status of the file list using the getFdDownloadStateList() method defined in clause 6.2.3.12.
6.2.3.11.6
Post-Conditions
No state change is involved.

6.2.3.12
Getting the List of Available Files

6.2.3.12.1
Overview
This clause defines the getFdAvailableFileList() request.
As illustrated in figure 8, once the MBMS Aware Application re-registers with the MBMS client, the MBMS client may indicate through the fileListAvailable() callback function to the application know that a list of files have been received for a service and are now ready to be accessed.
That application can then invoke the getFdAvailableFileList() API to retrieve information on these received files.

6.2.3.12.2
Parameters
The parameters for the getFdAvailableFileList() API are:
· Input parameters
· string serviceId – identifies the File Delivery Application Service on for which the application requests the available file list.

· Output parameters

· A list for records, each containing:
· string fileUri – identifies the file captured on the service identified in serviceId.
· string fileLocation – identifies the location where the MBMS Aware Application can find the collected file.
· string contentType – indicates the MIME type for the file identified in the fileUri,
· unsigned long availabilityDeadline – signals a deadline in seconds when the file stored at the fileLocation will be removed from the MBMS client storage location, if applicable.
6.2.3.12.3
Pre-Conditions
The MBMS client is in CAPTURE_NOTIFY state for the serviceId.

The MBMS client has indicated through the fileListAvailable() callback function to the application know that a list of files have been received for a service and are ready to be accessed.
The MBMS client has pre-configured an internal parameter defaultAvailabilityDeadline defining the time a file that is kept in the MBMS client owned storage location.

6.2.3.12.4
Operation of Method by MBMS Client
When this method is invoked, the MBMS client runs the following steps:
For each each successfully received file that matches a _fileCaptureRequest[] and is included in the _fileURIStatus[] record with an internal status _notified set to false, the following parameters
· The serviceId is set to the _serviceID.

· The fileUri is set to the value of _URI.
· The fileLocation is set to the value of the _fileLocation.

· The contentType is set to the _contentType.

· If the _appState is failed or internal, the MBMS client sets the value of the availabilityDeadline to the internal variable _defaultAvailabilityDeadline, otherwise sets the value to 0.
6.2.3.12.5
Usage of Method for Application

Once the application receives the response, the application may access the files that are announced by the parameters in the callback function. If the storage is not defined by the locationPath the application should access the file before the announced availabilityDeadline.

6.2.3.12.6
Post-Conditions

6.2.3.12.7
Implementation and Usage Guidelines
6.2.3.13
Stop File Delivery Capture

6.2.3.13.1
Overview

[image: image11.emf]startFdCapture()

fileAvailable()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive file(s) and

perform FEC decode

stopFdCapture()

Figure 9 File Delivery Application Stop Capture
As indicated in clause XXX, the application can make startFdCapture()calls to the select fileURIs for the files to be received over broadcast. These startFdCapture() calls identify the file (via an absolute URL) or files (via a BaseURL or not specifying a specific fileURL) to be received. The application should cache the requested fileURIs and use the stopFdCapture() API to signal to the MBMS client when the application no longer wishes to receive files matching the fileURIs on earlier capture requests. Upon receiving a stopFdCapture() request that matches the fileURI of an earlier startFdCapture() request, the MBMS client will stop any on-going and future file receptions that match that particular request.

The parameters for the stopFdCapture() API are:

· string serviceId – identifies the File Delivery Application Service where the MBMS client is to stop capturing the files indicated in fileUri.

· string fileUri – identifies the files from a previous startFdCapture() request for the service identified in serviceId. Allowed values include:

· The empty string signals that the application is canceling a previous startFdCapture() request with an empty string.

· A BaseURL signals that the application is canceling a previous startFdCapture() request with the same BaseURL.

· An absolute URL signals that the application is canceling a previous startFdCapture() request with the same abdolute URL.

· Guideline: As described in clause XXX, the MBMS client will either reject ambuguous startFdCapture() requests from the application or consolidate new and outstanding startFdCapture() requests. As such, the MBMS client will keep records of outstanding startFdCapture() requests that are unambiguous and that can be separately stopped via a stopFdCapture() request. Similarly:

· The MBMS client will also send a failure indication via the fdServiceError() with the FD_AMBIGUOUS_FILE_URI error code when the requested fileURI on a stopFdCapture() is more specific than an existing outstanding startFdCapture() requests that is broader:

· When fileURI is an absoluteURL or a BaseURL and there is an existing outstanding startFdCapture() with an empty fileURI.

· When fileURI is an absoluteURL and there is an existing outstanding startFdCapture() with an BaseURL in the fileURI that is base URL for the aboluteURL.

· The MBMS client will send a failure indication via the fdServiceError() with the FD_STOP_FILE_URI_NOT_FOUND error code to any stopFdCapture() request that does not match an outstanding startFdCapture() request.

Note: If the MBMS Aware application has not properly cached the list of fileURIs on its outstanding startFdCapture() requests, the application should invoke the getFdActiveServices() API described in clause TBD to re-syncrhonize on its outstanding startFdCapture() requests.
6.2.3.13.2
Parameters
6.2.3.13.3
Pre-Conditions

6.2.3.13.4
Usage of Method for Application

6.2.3.13.5
Operation of Method (MBMS Client requirements)

6.2.3.13.6
Post-Conditions

6.2.3.13.7
Implementation and Usage Guidelines
6.2.3.14
Getting the list of outstanding fileURIs being captured

6.2.3.14.1
Overview

[image: image12.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

registerFdResponse()

startFdCapture(S1,BaseURL1)

registerFdApp()

stopFdCapture(S1,BaseURL1)

getFdActiveServices()

Figure 10 Sequence diagram for an application to collect info on outstanding startFdCapture() requests
An MBMS Aware application should keep track of its outstanding startFdCapture() requests and only issue stopFdCapture() with a fileURI that matches an outstanding startFdCapture() request. Figure 10 illustrates that the application may also invoke the getFdActiveServices() API to reteieve the fileURI for these outstanding startFdCapture() requests, especially after a new registration or if a more recent startFdCapture() with a BaseURL superseded an earlier startFdCapture() with an AbsoluteURLs as discussed in clause TBD. The parameter for the getFdActiveServices() API are:

· A list of service IDs and the associated fileUri for each of the outstanding startFdCapture() for which the MBMS client is actively trying to collect files. Each entry in such a list includes:

· string serviceId – identifies the File Delivery Application Service over which the MBMS client is to try capture files from outstanding startFdCapture() requests.

· sequence<string> fileUriList – identifies the fileURI(s) for outstanding startFdCapture() requests for the service identified by the serviceId.
6.2.3.14.2
Parameters
6.2.3.14.3
Pre-Conditions

6.2.3.14.4
Usage of Method for Application

6.2.3.14.5
Operation of Method (MBMS Client requirements)

6.2.3.14.6
Post-Conditions

6.2.3.14.7
Implementation and Usage Guidelines
6.2.3.15
Notification on state change for files

6.2.3.15.1
Overview

[image: image13.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

fileDownloadStateUpdate(S1)

registerFdResponse()

startFdCapture(S1,BaseURL1)

fdServiceListUpdate()

getFdDownloadStateList()

getFdServices()

getFdDownloadStateList()

Figure 11 Sequence diagram for notifying the application about changes to the state of files being collected
As illustrated in figure 11, after an MBMS Aware Application registers with the MBMS client and requests that files are to be captured, the MBMS client may issue fileDownloadStateUpdate() notifications to an application to signal that the state the MBMS client maintains for file(s) received or being received for the application has changed. The parameter for the fileListAvailable() API is:

· string serviceId – identifies the File Delivery Application Service for whichthe state the MBMS client maintains for file(s) received or being received for the application has changed.

6.2.3.15.2
Parameters
6.2.3.15.3
Pre-Conditions

6.2.3.15.4
Usage of Method for Application

6.2.3.15.5
Operation of Method (MBMS Client requirements)

6.2.3.15.6
Post-Conditions

6.2.3.15.7
Implementation and Usage Guidelines
6.2.3.16
Getting the state on file(s) received or being received
6.2.3.16.1
Overview

An MBMS Aware application may be interested to retrieve the current state for files downloaded or being downloaded by the MBMS client on behalf of that application. As illustrated in Figure 11, the application may choose to request this information in response to a notification from the MBMS client of such state change via a fileDownloadStateUpdate() notification.

The application may also detect via updated service definition information (i.e., via a fdServiceListUpdate() followed by a getFdServices()) that a file previously advertised on an earlier getFdServices() and which the application requested to be capture is no longer described on the information retrieved via the latest getFdServices(), and the application did not receive a fileAvailable() or a fileDownloadFailure() reporting the successful or failed reception of the requeste file, respectively. This could happen because the requested file is no longer advertised as available for request (there is no current of future transmission for the file described on a fileSchedule in the scheduled description fragment), but the file is still pending file repair.

An interested application can request information on the current state for files requested to be downloaded by the MBMS client on behalf of that application by involking the getFdDownloadStateList() API. The getFdDownloadStateList() API includes the following parameters:

· string serviceId [input parameter] – identifies the File Delivery Application Service for which the application wants the MBMS client to report on the state on files downloaded or being downloaded on behalf of the application over that service.

· A list of fileUri and the associated download state information [output parameter] for files downloaded or being downloaded on behalf of the application. For each entry on this list the following is described:

· string fileUri – identifies one fileURi matching an outstanding startFdCapture() requests for the service identified by the serviceId.

· If an entry is not defined for a file of interest that the application previously requested to be captured by the MBMS client, the application is to assumed that the MBMS client has not started collecting symbols for that file.

· If the file of interest is not advertised in the fileUriList of the getFdServices() API, see clause TBD, the application is to assume that there is no currectly defined transmission schedule for the service.

· If the file of interest is not advertised in the fileUriList of the getFdServices() API, but it was advertised on an earlier call to the getFdServices() API, the application is to assume that the previously scheduled reception of that file has been cancled or it has failed.

· DownloadState state – identifies the download state for the file being described in fileURI.

· The MBMS client will signal the state to be FD_IN_PROGRESS if when the MBMS client has started collecting the file in fileUri. In particular, the MBMS client will report this state when there are no current or future transmissions schedules for the file and the MBMS client is pending completion of the unicast file repair procedure.
6.2.3.16.2
Parameters
6.2.3.16.3
Pre-Conditions

6.2.3.16.4
Usage of Method for Application

6.2.3.16.5
Operation of Method (MBMS Client requirements)

6.2.3.16.6
Post-Conditions

6.2.3.16.7
Implementation and Usage Guidelines
6.2.3.17
Notification of updates to the service definition

6.2.3.17.1
Overview

As illustrated in figure 10, after an MBMS Aware Application registers with the MBMS client and possibly requests that files are to be captured, the MBMS client may issue fdServiceListUpdate() notifications to an application to signal that there have been changes to the definition of File Delivery Application Services associated with the service classes the application has registered with the MBMS client.

The MBMS client will invoke the fdServiceListUpdate() whenever there has been a change to the parameters reported to the application in response to a getFdServices() API, as defined in clause TBD, for any of the services associated with the registered service classes. This will include additions and removals of File Delivery Application Servicesassociated with registered service classes; changes to the serviceBroadcastAvailability state for service(s); updates to the fileUriList, including changes to the current or a future scheduled transmission of file(s); and changes to the current activeDownloadPeriodStartTime and activeDownloadPeriodEndTime.

There are no parameter for the fdServiceListUpdate() API. In response to a fdServiceListUpdate() API notification from the MBMS client, the MBMS Aware application should invoke a getFdServices() API and process the updated information accordingly.
6.2.3.17.2
Parameters
6.2.3.17.3
Pre-Conditions

6.2.3.17.4
Usage of Method for Application

6.2.3.17.5
Operation of Method (MBMS Client requirements)

6.2.3.17.6
Post-Conditions

6.2.3.17.7
Implementation and Usage Guidelines

6.2.3.18
Notification of File Delivery Application Service errors
6.2.3.18.1
Overview

[image: image14.emf]startFdCapture()

fdServiceError()

MBMS Aware

Application

MBMS Client

startFdCapture() validation

errors detected

Figure 12 Signaling errors with the startFdCapture request from the MBMS Aware Application

[image: image15.emf]stopFdCapture()

fdServiceError()

MBMS Aware

Application

MBMS Client

stopFdCapture() validation

errors detected

Figure 13 Signaling errors with the stopFdCapture request from the MBMS Aware Application
As illustrated in figure 12, the startFdCapture() request from an MBMS Aware Application may not be served, so the MBMS client will send a failure indication via the fdServiceError() to signal the error code for the result of processing the application’s startFdCapture(). Figure 13 also illustrates that the fdServiceError() is used to signal the error code for the result of processing the application’s stopFdCapture() request. The parameters for the fdServiceError() API are:

· string serviceId – identifies the File Delivery Application Service on which the MBMS client failed to process the startFdCapture() or the stopFdCapture() request and for the requested fileURI indicated via the fileUri in this API.

· string fileUri – identifies the requested fileURI indicated in the startFdCapture() or the stopFdCapture() request which the MBMS client failed to process.

· FdErrorCode errorCode – identifies the error code for the reason causing the startFdCapture() or the stopFdCapture() request for the serviceId and fileUri to fail. The available error codes are:

· FD_INVALID_SERVICE – signals that serviceID defined on the startFdCapture() or the stopFdCapture() request is not currently defined or it is not associated with the service classes with the MBMS Aware Application is registered.

· FD_DUPLICATE_FILE_URI – signals that fileUri defined on the startFdCapture() request has already been requested on a previous startFdCapture() request. This is a duplicate request and the previous request is still in effect, i.e., impact to that earlier request. The MBMS client will not signal this error for the same condition on a stopFdCapture() request.

· FD_AMBIGUOUS_FILE_URI – signals that fileUri defined on the startFdCapture() or the stopFdCapture() request creates ambiguity with a previously issued startFdCapture() or stopFdCapture() request. See clauses XXX and YYY for details on the conditions when this error code is generated for the startFdCapture() and the stopFdCapture() request, respectively.

· FD_STOP_FILE_URI_NOT_FOUND – signals that the indicated fileURI does not match an outstanding startFdCapture() request. The MBMS Aware application may invoke the getFdActiveServices() API described in clause TBD to re-syncrhonize on its outstanding startFdCapture() requests.

· FD_UNKNOWN_ERROR – signals an error codition not explicitly identified.

· string errorMsg – may provide additional textual description of the error condition.
6.2.3.18.2
Parameters
6.2.3.18.3
Pre-Conditions

6.2.3.18.4
Usage of Method for Application

6.2.3.18.5
Operation of Method (MBMS Client requirements)

6.2.3.18.6
Post-Conditions

6.2.3.18.7
Implementation and Usage Guidelines
6.2.3.19
Notification on storage limitations

6.2.3.19.1
Overview

[image: image16.emf]startFdCapture()

insufficientStorage()

MBMS Aware

Application

MBMS Client

Not enough storage is available to capture the

file of size as described on the FDT

Figure 13 Signaling a low storage level condition impacting a file download
As illustrated in figure 13, once a file is to be received for an MBMS Aware Application (at a scheduled transmission time for the respective File Delivery Application Service), the FDT for the FLUTE session for that service will signal the size for that file. When the MBMS client detects that not enough storage is available on the UE to receive the file, the MBMS client will send the warning indication via the storageError() API to signal the application of the low storage condition. The application may be able to clean up some of its own files or alert the user to clean up storage space on the UE.

The storageError() API is only invoked for the applications that are currently registered at the time that the low storage condition is detected. If the application is not currently registered at the time, the application will not be notified. The download for that file may eventually fail if the application does not get this notification or cannot clean up storage space in time to enable the successful download.

The parameters for the storageError() API are:

· string serviceId – identifies the File Delivery Application Service on which the MBMS client has started to capture the file in fileUri and that will fail download because of insufficient storage on the UE.

· string fileUri – identifies the file being transmitted on the File Delivery Application Service in serviceId which the MBMS client has started to capture and that will fail download because of insufficient storage on the UE.

· StorageLocation storagePath – indicates the storage location where the file is being stored.

· unsigned long storageNeeded – indicates the additional storage space that needs to be cleared on the storagePath to enable the download of the file in fileURI to succeed.
6.2.3.19.2
Parameters
6.2.3.19.3
Pre-Conditions

6.2.3.19.4
Usage of Method for Application

6.2.3.19.5
Operation of Method (MBMS Client requirements)

6.2.3.19.6
Post-Conditions

6.2.3.19.7
Implementation and Usage Guidelines

6.2.3.20
Notification on storage access issues

6.2.3.20.1
Overview

[image: image17.emf]startFdCapture()

inaccessibleLocation()

MBMS Aware

Application

MBMS Client

The storage location is not accessible for the

MBMS client to copy files

Figure 14 Signaling a storage access condition limitation impacting file download
As illustrated in figure 14, the locationPath where the MBMS Aware Application registered to have its requested files copied may not be available (e.g., SD card not inserted/locked). When the MBMS client detects that the register locationPath is not accessible, the MBMS client will send the warning indication via the inaccessibleLocation() API to signal the application of the storage access limitation; this can be done at different times, e.g., following a startFdCapture() as illustrated in figure 14. The application may select an alternatie locationPath, or prompt the user to choose another locationPath. The application can notify the MBMS client of the new locationPath via the setFdStorageLocation() API.

The inaccessibleLocation() API is only invoked for the applications that are currently registered at the time that the storage inaccessible condition is detected. If the application is not currently registered at the time, the download of files for that application may fail, or the MBMS client may be able to receive files but these file receptions may impact file downloads for other application.

The parameters for the inaccessibleLocation() API are:

· string serviceId – identifies the File Delivery Application Service on which the MBMS client will fail to download files because of the inaccessibility of the registered locationPath.

· string message – may provide additional textual description of the error condition.

· StorageLocation storagePath – indicates the storage location where files are to be stored per the registered locationPath at the time that the download started, which is not accessible by the MBMS client.
6.2.3.20.2
Parameters
6.2.3.20.3
Pre-Conditions

6.2.3.20.4
Usage of Method for Application

6.2.3.20.5
Operation of Method (MBMS Client requirements)

6.2.3.20.6
Post-Conditions

6.2.3.20.7
Implementation and Usage Guidelines

6.2.3.21
Checking the version for File Delivery Application Service interface
6.2.3.21.1
Overview

In order for the MBMS Aware Application to know the version of the File Delivery Application Service interface, the getVersion() API is provided. In this version of the specification the getVersion() API is to return version 1.0.
6.2.3.21.2
Parameters
6.2.3.21.3
Pre-Conditions

6.2.3.21.4
Usage of Method for Application

6.2.3.21.5
Operation of Method (MBMS Client requirements)

6.2.3.21.6
Post-Conditions

6.2.3.21.7
Implementation and Usage Guidelines
The application may change the list of active service classes it has registered via a new registerFdApp(), after a deregisterFdApp(), or via setFdServiceClassFilter() while the application is registered with the MBMS client to consume File Delivery Application Services.
The application may change the selected locationPath it has registered via a new registerFdApp(), after a deregisterFdApp(), or via setFdStorageLocation() while the application is registered with the MBMS client to consume File Delivery Application Services. o
Any updates to the currently defined locationPath for an application only take effect for the next new file the MBMS client receives for that application.
For example, as the MBMS client periodically checks for service announcement updates, and it sends a notification of fdServiceListUpdate() to the application to signal that the list of services previously retrieved is updated. The callback interface provides an efficient method to give instantaneous service updates to the application. (add reference below)
1. Move the methods from above to here

2. Guideline: As described in clause TBD, the application will use a stopFdCapture() API to stop the reception of files requested on a startFdCapture() request. The application should avoid having ambiguous startFdCapture() requests, for instance one requesting files that match http://example.com/servicex/sport/ (using a BaseURL) and another requesting a file that matches http://example.com/servicex/sport/file5.mp4 (using an absolute URL).
6.2.4
IDL

#include "EmbmsCommonTypes.idl"
module FileDeliveryService

{

 //Forward Declaration
 interface ILTEFileDeliveryServiceCallback;

 /**
 * @name DownloadState
 * @brief List of the file download state
 */
 enum DownloadState

 {

 FD_IN_PROGRESS /**< File download is in progress */
 };

 /**
 * @name FdErrorCode
 * @brief List of the errors for File Delivery service
 */
 enum FdErrorCode

 {

 FD_INVALID_SERVICE, /**< Invalid service ID */
 FD_DUPLICATE_FILE_URI, /**< There is another pending capture request for the specified file URI. */
 FD_AMBIGUOUS_FILE_URI, /**< The specified file URI cannot identify a pending capture request. */

FD_STOP_FILE_URI_NOT_FOUND, /**< The file URI specified on a stopFdCapture does not match an outstanding startFdCapture() request. */
 FD_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name cacheControl
 * @brief List of the errors for File Delivery service
 */
 enum cacheControlMode

 {

 FD_NO_CACHE, /**< The application uses Cache directives to manage how long to retain files.
 When FD_NO_CACHE is selected, the file (or set of files)
 won't be cached, which can be useful when the file is expected to be
 highly dynamic (changes to the file occur quite often) or if the file
 will be used only once by the receiver application. */
 FD_MAX_STALE, /**< The application uses Cache directives to manage how long to retain files.
 When FD_MAX_STALE is selected, the file (or set of files)
 won't be cached, which can be useful when the file is expected to be
 highly dynamic (changes to the file occur quite often) or if the file
 will be used only once by the receiver application. */
 FD_EXPIRES /**< The application uses Cache directives to manage how long to retain files.
 When FD_EXPIRES is selected, indicates the file has expected expiry time.
 In that case cacheControlExpires value is the expiry time*/
 };

 /**
 * @name RegisterFdResponseNotification
 * @brief Fd app registration information
 */
 struct RegisterFdResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registration value as defined in RegResponseCode */
 string message; /**< Message described the result */
 unsigned long acceptedFdRegistrationValidityDuration; /**< Accepted registeration validity duration */
 };

 /**
 * @name FileInfo
 * @brief Downloaded file information
 */
 struct FileInfo

 {

 string fileUri; /**< File URI */
 string fileLocation; /**< The physical location of the file or HTTP URL where the file can be accessed */
 string contentType; /**< MIME type as described in FDT of the file */
 unsigned long availabilityDeadline; /**< The maximum time that embms client guarantees to keep the file in its storage */
 };

 /**
 * @name RegisterFdAppData
 * @brief File delivery app registration information
 */
 struct RegisterFdAppData

 {

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides a
 platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 StorageLocation locationPath; /**< Local storage location on the device where collected files are copied */

 unsigned long registrationValidityDuration; /**< The period of time in seconds that the eMBMS client honors
 the app registration and file capture requests
 after the app deregisters and exits.
 This enables the app to let the eMBMS client capture
 files in the background when the application is not currently registered.
 Default value of this option is 0 which means middleware clears
 any outstanding startFdCapture requests.* /
 };
 /**
 * @name StartFdCaptureData
 * @brief File delivery start capture information. It is used in StartFdCapture API
 */
 struct StartFdCaptureData

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI for the file(s) to be captured.
 If empty, this implies capture all files. If an absolute URL,
 this implies only the capture of that particular file.
 If a Base URL, this implies the capture of all files that have that Base URL. */
 boolean disableFileCopy; /**< Disables copying of files to register locationPath */
 boolean captureOnce; /**< Capture the file only once and the bearer would be deactivated after file gets downloaded*/
 };

 /**
 * @name StopFdCaptureData
 * @brief File delivery stop capture information. It is used in StopFdCapture API
 */
 struct StopFdCaptureData

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI. If empty, then it stops capture on all files.
 The path of the URI should contain the complete folder or file name. */
 };

 /**
 * @name FileList
 * @brief List of file URIs
 */
 struct FileList

 {

 sequence<string> fileUriList; /**< List of file URIs */
 };

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name FdServiceInfo
 * @brief File delivery service information
 */
 struct FdServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service broadcast availability */
 sequence<string> fileUriList; /**< List of file URIs */
 EmbmsCommonTypes::Date activeDownloadPeriodStartTime; /**< The current/next active file download service start time, when files start being broadcast over the air */
 EmbmsCommonTypes::Date activeDownloadPeriodEndTime; /**< The current/next active file download service end time, when files stop being broadcast over the air */
 };

 /**
 * @name FdServices
 * @brief List of FD service info objects
 */
 typedef sequence<FdServiceInfo> FdServices;

 /**
 * @name FdServiceClassList
 * @brief ServiceClass information that the app is interested in. It is for the SetFdServiceClassFilter API.
 */
 typedef sequence<string> FdServiceClassList;

 /**
 * @name ActiveFdService
 * @brief Information about active file capture
 */
 struct ActiveFdService

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 sequence< string > fileUri; /**< File URI list */
 };

 /**
 * @name ActiveFdServiceList
 * @brief List of File delivery service ID from FdServiceInfo
 * @see getFdActiveServices()
 */
 typedef sequence< ActiveFdService > ActiveFdServiceList;

 /**
 * @name StorageLocation
 * @brief Local storage location on the device where collected files are copied.
 * It is used in the SetStorageLocation and registerFdApp API.
 */
 typedef string StorageLocation;

 /**
 * @name FileAvailableNotification
 * @brief Information about the downloaded file.
 */
 struct FileAvailableNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 FileInfo downloadedFileInfo; /**< Downloaded file information */
 };

 /**
 * @name FdServiceErrorNotification
 * @brief File delivery service error information. It is used by the FdServiceErrorNotification API.
 */
 struct FdServiceErrorNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 FdErrorCode errorCode; /**< File delivery service error ID */
 string errorMsg; /**< error message */
 };

 /**
 * @name FileDownloadFailureNotification
 * @brief File download failure information.
 * @see FileDownloadFailureNotification()
 */
 struct FileDownloadFailureNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 };

 /**
 * @name StorageError
 * @brief Insufficient storage notification information
 * @see StorageError()
 */
 struct StorageErrorNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 StorageLocation storagePath; /**< Storage path that does not have sufficient storage to complete the file download */
 unsigned long storageNeeded; /**< Storage needed to complete the file download */
 };

 /**
 * @name InaccessibleLocationNotification
 * @brief Inaccessible storage notification information
 * @see InaccessibleLocation()
 */
 struct InaccessibleLocationNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string message; /**< Message with additional information */
 StorageLocation locationPath; /**< The path that is not accessible */
 };

 /**
 * @name FdDownloadStateInfo
 * @brief Information returned by getFdDownloadStateList().
 * @see getFdDownloadStateList()
 */
 struct FdDownloadStateInfo

 {

 string fileUri; /**< File URI */
 DownloadState state; /**< State of files from DownloadState. */
 };

 /**
 * @name FileDownloadStateInfoList
 * @brief List of FdDownloadStateInfo
 * @see getFdDownloadStateList()
 */
 typedef sequence<FdDownloadStateInfo> FileDownloadStateInfoList;

 /**
 * @name FileDownloadStateUpdateNotification
 * @brief File download state update notification information
 * @see fileDownloadStateUpdate()
 */
 struct FileDownloadStateUpdateNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 };

 /**
 * @name GetFdDownloadStateListData
 * @brief Information needed to call getFdDownloadStateList(). The returned list of getFdDownloadStateList() is filtered based on the options set in GetFdDownloadStateList.
 * @see getFdDownloadStateList()
 */
 struct GetFdDownloadStateListData

 {

 string serviceId; /**< Active file delivery service ID from FdServiceInfo. */
 };

 /**
 * @name AvailableFileList
 * @brief List of FileInfo
 * @see getFdAvailableFileList()
 */
 typedef sequence < FileInfo > AvailableFileList;

 /**
 * @name FileListAvailableNotification
 * @brief File List Available notification information
 * @see fileListAvailable()
 */
 struct FileListAvailableNotification

 {

 string serviceId; /**<File delivery service ID from FdServiceInfo. */
 };

 interface ILTEFileDeliveryService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current File delivery service interface implementation
 @return Interface Version
 **/
 string getVersion();

 /**
 @name registerFdApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo Information required for application registration
 @param[in] cb Callback listener
 @see RegisterFdAppData
 @see registerFdResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerFdApp(in RegisterFdAppData regInfo, in ILTEFileDeliveryServiceCallback callBack);

 /**
 @name deregisterFdApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls registerFdApp
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterFdApp();

 /**
 @name startFdCapture
 @brief Start download of files over file delivery service over broadcast
 @param StartFdCapture Struct includes parameters for StartFdCapture request
 @pre Application is registered for File Delivery service
 @see fileAvailable()
 @see StartFdCaptureData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startFdCapture(in StartFdCaptureData info);

 /**
 @name stopFdCapture
 @brief Stop download of files for the file Delivery service over broadcast
 @param stopFdCapture Struct includes parameters for stopFdCapture
 @pre Application is registered for File Delivery service
 @see StopFdCaptureData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopFdCapture(in StopFdCaptureData info);

 /**
 @name getFdActiveServices
 @brief Get list of currently active services
 @param[out] ActiveFdServiceList The list of services the app has
 @pre Application is registered for File delivery service
 @see ActiveFdServiceList
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdActiveServices(out ActiveFdServiceList services);

 /**
 @name getFdAvailableFileList
 @brief Retrieves the list of files previously captured for the
 application.
 @param[in] File delivery service ID from FdServiceInfo
 @param[out] FileList List of files previously captured and filtered based on serviceId
 @pre Application is registered for File delivery service and received fileListAvailable() notification
 @see fileListAvailable()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdAvailableFileList(in string serviceId, out AvailableFileList files);

 /**
 @name getFdServices
 @brief Retrieves the list of File Delivery services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application
 @param[out] FDServices List of filtered File delivery services
 @pre Application is registered for File delivery service and received fdServiceListUpdate() notification
 @see fdServiceListUpdate()
 @see FdServices
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdServices(out FdServices services);

 /**
 @name getFdDownloadStateList
 @brief Retrieves the state of files pending download
 @param GetFileDownloadState Includes parameters for getFileDownloadState
 @pre Application is registered for File Delivery service and received fileDownloadStateUpdate() notification
 @see fileDownloadStateUpdate()
 @see GetFdDownloadStateListData
 @see FileDownloadStateInfoList
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdDownloadStateList(in GetFdDownloadStateListData info, out FileDownloadStateInfoList fdStateList);

 /**
 @name setFdServiceClassFilter
 @brief Application sets a filter on file delivery services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with file delivery service
 @see SetFdServiceClassFilterData
 @see fdServiceListUpdate()
 @see getFdServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setFdServiceClassFilter(in FdServiceClassList serviceClassInfo);

 /**
 @name setFdStorageLocation
 @brief Sets the storage location to store the application downloaded files
 @param[in] StorageLocation Includes parameters for setStorageLocation request
 @pre Application is registered for File Delivery service
 @see StorageLocation
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setFdStorageLocation(in StorageLocation locationPath);

 };

 interface ILTEFileDeliveryServiceCallback

 {

 /**
 @name registerFdResponse
 @brief The response to the application streaming service register API.
 @param Notification Parameters for register File delivery response
 @pre Application called registerFdApp
 @see RegisterFdResponseNotification
 @see registerFdApp()
 **/
 void registerFdResponse(in RegisterFdResponseNotification info);

 /**
 @name fileAvailable
 @brief Notification to application when a new file is downloaded per
 application capture request
 @param FileAvailableNotification Includes parameters for the downloaded file
 @pre Application is registered for File Delivery service and application called startFdCapture()
 @see FileAvailableNotification
 **/
 void fileAvailable(in FileAvailableNotification notification);

 /**
 @name fdServiceListUpdate
 @brief Notification to application on an update of the available for file delivery services.
 Update may be due to the received USD or the network configuration
 @pre Application is registered for file delivery service
 @post Call getFdServices()
 **/
 void fdServiceListUpdate();

 /**
 @name fdServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for streaming service and called startFdServiceCapture
 @see FdServiceErrorNotification
 **/
 void fdServiceError(in FdServiceErrorNotification notification);

 /**
 @name fileDownloadFailure
 @brief Notification to application that download of a requested file
 failed
 @param FileDownloadFailureNotification Includes information about the failed file download
 @pre Application is registered for File Delivery service and application called startFdCapture()
 @see FileDownloadFailureNotification
 **/
 void fileDownloadFailure(in FileDownloadFailureNotification notification);

 /**
 @name storageError
 @brief Notification to application that the storage location set by the
 application does not have enough storage for the file download
 @param StorageError Includes parameters to specify the file and
 storage requirement
 @pre Application is registered for file delivery service and application called startFdCapture()
 @see StorageError
 **/
 void storageError(in StorageErrorNotification info);

 /**
 @name inaccessibleLocation
 @brief Notification to application that the storage location set by the
 application is not accessible by the eMBMS Client
 @param InaccessibleLocation Includes the inaccessible storage path
 @pre Application is registered for File delivery service
 @see InaccessibleLocation
 Application calls setStorageLocation
 **/
 void inaccessibleLocation(in InaccessibleLocationNotification info);

 /**
 @name fileDownloadStateUpdate
 @brief Notify application of a change in the state of pending file
 downloads
 @param FileDownloadStateUpdate Includes parameters for fileDownloadStateUpdate()
 @pre Application is registered for File delivery service
 @post call getFdDownloadStateList()
 @see FileDownloadStateUpdate
 **/
 void fileDownloadStateUpdate(in FileDownloadStateUpdateNotification info);

 /**
 @name fileListAvailable
 @brief Notify application when the list of downloaded files is available to retrieve
 @param[in] FileListAvailable Includes parameters for fileListAvailable
 @pre Application is registered for File Delivery service
 @post call getFdAvailableFileList()
 **/
 void fileListAvailable(in FileListAvailableNotification info);

 };

};

module EmbmsCommonTypes

{

 //Common types
 typedef unsigned long long Date;

 /**
 * @name ResultCode
 * @brief The return value of the API
 */
 enum ResultCode

 {

 SUCCESS, /**< Success */
 REGISTRATION_IN_PROGRESS, /**< Failed due to registration in progress */
 NO_VALID_REGISTRATION, /**< Failed due to no valid registration */
 MISSING_PARAMETER, /**< A mandatory parameter is missing */ UNKNOWN_ERROR /**< Failed with unknown error */
 };
	

 /**
 * @name ServiceAvailabilityType
 * @brief Indicates service availability state
 */
 enum ServiceAvailabilityType

 {

 BROADCAST_AVAILABLE, /**< Service is available via broadcast */
 BROADCAST_UNAVAILABLE, /**< Service is unavailable via broadcast */

SERVICE_UNAVAILABLE /**< Service is unavailable */
 };

 /**
 * @name RegResponseCode
 * @brief Indicates app registration response
 */
 enum RegResponseCode

 {

 REGISTER_SUCCESS, /**< Registration was successful */
 FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE /**< Registration failed because LTE eMBMS is unavailable on device */
 };

};
�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this clause only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected and the CRs which are linked. This is particularly important where the affected specs belong to a different working group than that which will agree the present CR.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�Some of the response code description seems duplicate with what is described in clause 6.2.3.3.4. Please check if we the duplicate description.

�Please update the references list. From CR161035: Editor: Add appropriate reference notation when compiling the reference list. This needs to refer to RFC3066.

��Please update the references list. From CR161035: Editor: Add appropriate reference notation when compiling the reference list. This needs to refer to RFC3066.

�Need to check further

[image: image19.png]_1533645604.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1534745899.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

stopStreamingCapture()

startStreamingService()

stopFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

stopFdCapture() validation
errors detected

_1534746120.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

stopStreamingCapture()

startStreamingService()

stopFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

stopFdCapture() validation
errors detected

_1533738595.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

_1534653047.vsd
startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1534663231.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

stopFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

stopFdCapture() validation
errors detected

_1533714662.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

_1533720265.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

_1533712200.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

_1532773212.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533236913.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533370273.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533127499.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525522162.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525522200.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

