
3GPP TSG-SA WG4 Meeting #91
S4-161236
Bangalore, India, 24th – 28th Oct 2016

Agenda item:
8.6
Source:
Expway

Title:
TRAPI: RTP APIs
Document for
Discussion and Agreement

1 Introduction

This Document is the first version on an API for RTP-over-MBMS Streaming Service. It has been written with the previous rules. Its purpose is to expose basic principles. These principles, if accepted, will be reused in order to write the specification in a more 3GGP manner.

This set of APIs is very similar with the one already agreed. The set has been just adapted to answer to constraints implied by a RTP-over-MBMS Streaming Service.

2 Service API

2.2 Graphical Presentation

This figure is just a reminder of the global application interface as defined in the other APIs document.

Figure 1 provides a graphical overview of how the MBMS Application Programming Interface (API) fits into the UE architecture of delivering MBMS content to applications.

[image: image1.emf]MBMS URL

Handler

MBMS-Aware

Application

Application

URL Dispatch

MBMS API

HTTP URL

Handler

HTTP

Function

MBMS Client

 Figure 1 Application to MBMS function API

2.3 Services Provided

eMBMS Service API provides interfaces for different types of eMBMS services defined in 3GPP 26.346(or add a spec to the reference document and use the reference here). Each of the services is exposed as a self-contained interface (IDL interface). This document focus on the third service (i.e. RTP-over-MBMS Streaming Service).
1. File Delivery Application Service
Defined in another document
2. DASH Streaming Service

Defined in another document
3. RTP-over-MBMS Streaming Service

RTP-over-MBMS Streaming Service provides the application with interfaces to access RTP eMBMS Service. The application may request start or stop any available RTP streaming service. Application will receive information about the RTP data.

2.4 File Delivery Application Service API

In another contribution

2.5 DASH Streaming Service API

In another contribution

2.6 RTP-over-MBMS Streaming Service API

2.6.1 RTP-over-MBMS Streaming Use Cases and Message Flows
2.6.1.1 Intro

Editor’s note: Need to add brief description of notation on how the parameters are described in this clause and how they refer to the IDL in clause XXX. Maybe just describe the element and not the type.

2.6.1.2 RTP-over-MBMS Application Service Registration

[image: image2.png]MBMS Aware
Application

MBMS Client

Figure 21 Application Registration sequence diagram

An MBMS Aware Application calls a registerRTPApp() API to register with the MBMS client to consume RTP-over-MBMS Application Services. The registerRTPApp() interface has two purposes:

1) It signals to the MBMS Client that an application is interested to consume MBMS content. This allows the MBMS Client to check for updates to the RTP-over-MBMS Application Services defined.

2) It allows the application to identify its callback listeners defined in the RTP-over-MBMS Application Service API for the MBMS Client to provide asynchronous notifications to the application on relevant events associated with the reception of RTP content.

Note: Since some application development frameworks do not support callback functions, an MBMS Aware Application for these frameworks will not provide callback listeners in the registerRTPApp() interface. Instead, the application will implement the necessary approach available on these frameworks to receive event notifcations from the MBMS Client in place of callback functions. These notification will include the same information content as defined on the structures for the IDL callback functions.
The parameters for the registerRTPApp() API are:

· string appId – provides a unique ID for the application registerting with the MBMS client, which uses this identity to maintain state information for a particular MBMS Aware Application.

· any platformSpecificAppContext – a platform-specific context for the registering application that enables the MBMS client to get extra information about the application that may be need to enable the application to have access to MBMS services, e.g., to enable application authentication or to enable the application to cummunicate with the MBMS client via platform services.

· For Android this is Context class, see https://developer.android.com/reference/android/content/Context.html for details.

· sequence<string> serviceClassList – provides the list of service classes which the application is interested to register. This also signals to the MBMS client to only report to the application via the getRTPServices() the serviceIDs for the RTP-over-MBMS Application Services that are associated to one of the service classes in this list.

· The application will be pre-configured with the set of service classes that allows it to consume the RTP-over-MBMS Application Services associated with these service classes.

· The application may change the list of active service classes it has registered via a new registerRTPApp(), after a deregisterRTPApp(), or via setRTPServiceClassFilter() while the application is registered with the MBMS client to consume RTP-over-MBMS Application Services.

· ILTERTPServiceCallback callBack – provides the MBMS client with the call back functions associated with RTP-over-MBMS Application Service APIs for the registering MBMS Aware Application. The callback element is optional and only included when the application development framework supports programmatic callback interfaces. If callbacks are not supported, the same information content as defined on the callback structures is to be provided to the application via the notification method available with the development framework when the respective condition is met.
· The MBMS client uses the interfaces in the callback parameter of the registerRTPApp() interface to send notification of event occurences to the MBMS Aware Application. For example, as the MBMS client periodically checks for service announcement updates, and it sends a notification of rtpServiceListUpdate() to the application to signal that the list of services previously retrieved is updated. The callback interface provides an efficient method to give instantaneous service updates to the application.

As a result of registration, the MBMS client will start periodic monitoring and download of service announcement data over the broadcast channel and caches the eMBMS services definition.

Once registered, the application may start making calls on the RTP-over-MBMS Application Service API interfaces. For example, application may request retrieval of the eMBMS RTP-over-MBMS Application Service list. The getRTPServices() interface returns the complete list of available RTP-over-MBMS Application Services information, including service_id, service name, lang, file URIs, etc.

When application is no longer interested in consuming RTP-over-MBMS Application Services, it calls deregisterRTPApp() interface.

2.6.1.3 RTP-over-MBMS Application Service Registration Response

As illustrated in figure 21, the MBMS client responds to an Application call to the registerRTPApp() API with a registerRTPResponse() call back providing the result of the registration request. The parameters for the registerRTPResponse() API are:

· EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

· REGISTER_SUCCESS – indicates that the registration has been processed and the application can proceed with other API interactions with the MBMS client for RTP-over-MBMS Application Services.

· FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the RTP-over-MBMS Application Service API implementation did not find an MBMS client available on the device on which the application is running and no eMBMS service will be available to the application.

· String message – provides an associated text description of the error message.

2.6.1.4 Getting information on available RTP-over-MBMS Application Services

As illustrated in figure 21, after a successful registration with the MBMS client, the MBMS Aware Application can use the getRTPServices() API to discover the available RTP-over-MBMS Application Services associated with the service classes registered via the registerRTPApp (). The getRTPServices() API returns a list describing the available RTP-over-MBMS Application Service, where each service is described by the following parameters:

· sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.

· string name – offers a title for the user service on the language identified in the lang parameter.

· string lang – identifies a natural language identifier per [xx].

· string serviceClass – identifies the service class which is associated with the service.

· string serviceId – provides the unique service ID for the service.

· string serviceLanguage – indicates the available language for the service and represented as an identifier per [xx].

· EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.

· The possible values are:

· BROADCAST_AVAILABLE – if content for the service broadcast at the current device location.

· SERVICE_UNAVAILABLE – if content for the service is at all available at the current device location.

· string sdpUri – provides an HTTP URL where the SDP for the RTP-over-MBMS Application Service is hosted and available for RTP clients access.

· EmbmsCommonTypes::Date activeBroadcastPeriodStartTime – signals the current/next active RTP-over-MBMS Application Service start time, when RTP data starts being broadcast over the air. This allows the application to determine the current broadcast state for the service as follows:

· If the current time is such that activeBroadcastPeriodStartTime ≤ current time ≤ activeBroadcastPeriodEndTime, RTP content is being broadcast for the service at the current time.

· If the activeBroadcastPeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

· If the activeBroadcastPeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.

· EmbmsCommonTypes::Date activeBroadcastPeriodEndTime – signals the current/next active RTP-over-MBMS Application Service stop time, when RTP data stops being broadcast over the air. This allows the application to determine the current broadcast state for the service as follows:

· If the current time is such that activeBroadcastPeriodStartTime ≤ current time ≤ activeBroadcastPeriodEndTime, RTP content is being broadcast for the service at the current time, but transmissions will end at activeBroadcastPeriodEndTime.

· If the activeBroadcastPeriodEndTime is in the past, there is currently no broadcast being made for the service, and there is no currently scheduled broadcast time for the service.

· sequence<long> SAIList – present when the serviceBroadcastAvailability parameter indicates BROADCAST_AVAILABLE. It defines a list of Service Area IDs [x] in the current UE location that match the SAIs defining the broadcast availability for the service.

2.6.1.5 Updating the registered service classes

[image: image3.png]/

MBMS Aware

MBMS Client
Application

= > -
£ \
/ |
[registerRTPApp()
| 7 » }
| |
‘ registerRTPResponse()
. |- }
| |
| |
| |
\
| l
} setRTPServiceClassFilter() > }
| |
‘ rtpServiceListUpdate() ‘
| |
‘ getRTPServices() !
} <« >
| l
| |
} deregisterRTPApp() o
\ /\
\\ 7777777 P

Figure 22 Sequence diagram for updating the registered service classes for an application

While an application is actively registered with the MBMS client to consume RTP-over-MBMS Application Services, the MBMS Aware Application can call the setRTPServiceClassFilter() API to update the list of service classes the application wants to be registered with, see figure 22. The MBMS Aware Application updates the list of registered service class by invoking the setRTPServiceClassFilter() API with a new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes defined when the registerRTPApp() or an earlier setRTPServiceClassFilter() was called. The parameters for the setRTPServiceClassFilter() API are:

· sequence<string> serviceClassList – provides the complete list of service classes which the application is interested to be registered with.

· The MBMS client will dis-associate the service classes previously associated with the MBMS Aware Application that are not included on this list.

· The MBMS client will associate the service classes not previously associated with the MBMS Aware Application that are newly included on this list.

· Since the list of service classes associated with the MBMS Aware Application has changed, the corresponding list of services the application should have access to has also changed. The MBMS client issues a rtpServiceListUpdate() notification to the application to alert it of this effect. The MBMS Aware Application should involke the getRTPServices() API to update the list of File Delivery Application Services the application can consume given the updated service class registration. This is illustrated in figure 22.
2.6.1.6 Start RTP-over-MBMS Service

[image: image4.png]\

/

N e N\ /

\ !/ \ [M - .
. ‘ ‘ ultimedia
HLEVAS TS MBMS Client .
Application \ | \ RTP Client)
// N\ V4 AN y.

) e T - T

y startRTPService()

[

|

I

|

: receive RTP data

I and perform FEC decode

I

|

|

I

I serviceStarted()

I

|

: Start Playback (SDP url) N

>

|

I

| > Get RTP data

|

| stopRTPService()

I

| g

I

: ‘ Stop RTP data reception

|

I

: < Stop Playback q

\\\

Figure 23 Application starts RTP-over-MBMS services

After the RTP-over-MBMS Application Service registration, the MBMS Aware Application can make calls on the startRTPService() API for the MBMS client to start reception of RTP content received over broadcast.

The parameter for the startRTPService() API is:

· string serviceId – identifies the RTP-over-MBMS Application Service which the MBMS client is to start reception of RTP content.

2.6.1.7 Notification that RTP-over-MBMS for a Service has started

As figure 23 illustrates, after the MBMS Aware Application requests the start of RTP streaming for a RTP-over-MBMS Application Service via a startRTPService(), the MBMS client will signal that RTP streaming playback for that service is ready via the serviceStarted() API. This is the indication for the MBMS Aware Application to initiate the RTP client with the SDP URL in the sdpUri for the service.

The parameter for the serviceStarted() API is:

· string serviceId – identifies the RTP-over-MBMS Application Service for which the MBMS client is ready to enable access to the RTP content for that service.

2.6.1.8 Stop RTP-over-MBMS Service

As figure 23 illustrates, when an MBMS Aware Application that issued a startRTPService() for a service is no longer interested in consuming the RTP content for that service, it will call the stopRTPService() API, which will stop reception of data for the service over broadcast. The application should also stop the stream playback by the RTP client.

The parameter for the stopRTPService() API is:

· string serviceId – identifies the RTP-over-MBMS Application Service which the MBMS client is to stop reception of RTP content.

2.6.1.9 RTP-over-MBMS Application Service De-registration

An MBMS Aware Application registers services classes with the MBMS client to request the start of RTP streaming for RTP-over-MBMS Application Services. The MBMS Aware Application that registered with the MBMS client via the registerRTPApp() API should involke the deregisterRTPApp() before exiting. The MBMS clients stops monitoring for Service Announcement updates when there are no applications registered. There are no parameters for the registerRTPApp() API.

2.6.1.10 Notification that RTP-over-MBMS for a Service has stalled

[image: image5.png]" MBMS Aware

\) Multimedia |
S AW MBMS Client S
Application |) RTP Client
— 7
/// startRTPService()
serviceStarted()
<€
Start Playback (SDP url) J
< Get RTP data
Mobility out of broadcast
coverage
serviceStalled() ‘
| 7‘
Stop Playback
€ p Flay | >
Mobility into broadcast
coverage
serviceStarted() ‘
47 —|
Start Playback (SDP url) ‘
< i >
\ 4
\\ J€$ M |

Figure 24 Signaling that a RTP-over-MBMS service stalled

The MBMS client will enable consumption of a RTP-over-MBMS Application Service if the current setting for serviceBroadcastAvailability is BROADCAST_AVAILABLE. However, due to UE mobility in and out of broadcast coverage for some RTP-over-MBMS Application Services, the serviceBroadcastAvailability for those services may change to SERVICE_UNAVAILABLE (i.e., the UE moves out of coverage for that service). Other circunstances may also prevent the broadcast reception of that service (e.g., a frequency conflict). In these circumstances, the MBMS client will signal the application that the service is temporarily not available for playback by invoking the serviceStalled() API. When broadcast reception of the service is re-established, the MBMS client will signal the application that the service is again available for playback by invoking the serviceStarted() API. This is illustrated in figure 24.

The MBMS Aware Application can stop the RTP client playback on reception of the serviceStalled() call, but it should not stop the MBMS client from trying to collect RTP content over broadcast for the requested service. This will enable the MBMS client to signal that content is available via broadcast again once the UE moves back into the broadcast coverage for the service, as described above. The application should also properly represent the service interruption to the user.

The parameter for the serviceStalled() API are:

· string serviceId – identifies the RTP-over-MBMS Application Service for which broadcast receptions have temporarily stalled.

· StalledReasonCode reason – provides specific information on what caused the service to stall. Valid options are:

· RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startRTPService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

· END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeBroadcastPeriodEndTime time has been reached.

· OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service with streamingSubtype set to STREAMING_BC_ONLY is not available via broadcast.

· STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.

2.6.1.11 Notification of RTP-over-MBMS Application Service errors

[image: image6.png]MBMS Aware
Application

MBMS Client

startRTPService() validation
errors detected

Figure 25 Signaling errors with the startRTPService() request from the RTP-over-MBMS Application

[image: image7.png]MBMS Aware
Application

MBMS Client

stopRTPCapture() validation
errors detected

Figure 26 Signaling errors with the stopRTPService() request from the RTP-over-MBMS Application

As illustrated in figure 25, the startRTPService() request from an MBMS Aware Application may not be served, so the MBMS client will send a failure indication via the rtpServiceError() to signal the error code for the result of processing the application’s startRTPService(). Figure 26 also illustrates that the rtpServiceError() is used to signal the error code for the result of processing the application’s a stopRTPService() request. The parameters for the rtpServiceError() API are:

· string serviceId – identifies the RTP-over-MBMS Application Service on which the MBMS client failed to process the startRTPService() or the stopRTPService() request.

· RTPErrorCode errorCode – identifies the error code for the reason causing the startRTPService() or the stopRTPService() request for the serviceId to fail. The available error codes are:

· RTP_INVALID_SERVICE – signals that serviceID defined on the startRTPService() or the stopRTPService() request is not currently defined or it is not associated with the service classes with the MBMS Aware Application is registered.

· RTP_UNKNOWN_ERROR – signals an error codition not explicitly identified.

· string errorMsg – may provide additional textual description of the error condition.

2.6.1.12 Checking the version for RTP-over-MBMS Application Service interface

In order for the MBMS Aware Application to know the version of the RTP-over-MBMS Application Service interface, the getVersion() API is provided. In this version of the specification the getVersion() API is to return version 1.0.

2.6.2 RTP-over-MBMS Streaming Service IDL

#include "EmbmsCommonTypes.idl"
module RTPService

{

 //Forward Declaration
 interface ILTERTPServiceCallback;

 /**
 * @name RTPErrorCode
 * @brief List of the errors for RTP service
 */
 enum RTPErrorCode

 {

 RTP_INVALID_SERVICE, /**< Invalid service ID */
 RTP_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name StalledReasonCode
 * @brief List of the reasons for RTP service stalled notification
 */
 enum StalledReasonCode

 {

 RADIO_CONFLICT, /**< Radio frequency conflict */
 END_OF_SESSION, /**< End of session schedule */
 OUT_OF_COVERAGE, /**< Out of EMBMS coverage */
 OUT_OF_SERVICE, /**< Out of service */
 BEARER_UNAVAILABLE, /**< Bearer not available */
 STALLED_UNKNOWN_REASON /**< Unknown reason */
 };

 /**
 * @name RegisterRTPAppData
 * @brief RTP app registration information
 */
 struct RegisterRTPAppData

 {

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides
 a platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 };

 /**
 * @name RTPServiceClassList
 * @brief ServiceClass information which the app is interested in. It is for setRTPServiceClassFilter API.
 */
 typedef sequence<string> RTPServiceClassList;

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name RTPServiceInfo
 * @brief RTP service information
 */
 struct RTPServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service availability */
 string sdpUri; /**< SDP URI used by RTP player */
 EmbmsCommonTypes::Date activeBroadcastPeriodStartTime; /**< The current/next active RTP service start time, when RTP data
 starts being broadcast over the air */
 EmbmsCommonTypes::Date activeBroadcastPeriodEndTime; /**< The current/next active RTP service end time, when RTP data
 stops being broadcast over the air */
 sequence<long> SAIList; /**< Servcie Area IDs based on current location of the device*/
 };

 /**
 * @name RTPServices
 * @brief List of RTP service info objects
 */
 typedef sequence<RTPServiceInfo> RTPServices;

 /**
 * @name StartRTPServiceData
 * @brief Start RTP service information. It is used by StartRTPService API.
 */
 struct StartRTPServiceData

 {

 string serviceId; /**< Streaming service Id from RTPServiceInfo */
 };

 /**
 * @name StopRTPServiceData
 * @brief Stop RTP service information.
 * It is used by the StopRTPService API.
 */
 struct StopRTPServiceData

 {

 string serviceId; /**< Streaming service ID from RTPServiceInfo */
 };

 /**
 * @name ServiceStartedNotification
 * @brief RTP service started information. It is used by the ServiceStartedNotification API.
 */
 struct ServiceStartedNotification

 {

 string serviceId; /**< Streaming service Id from RTPServiceInfo */
 };

 /**
 * @name ServiceStoppedNotification
 * @brief RTP service stopped information. It is used by the ServiceStoppedNotification API.
 */
 struct ServiceStoppedNotification

 {

 string serviceId; /**< Streaming service Id from RTPServiceInfo */
 };

 /**
 * @name RTPServiceErrorNotification
 * @brief RTP service error information. It is used by the RTPServiceErrorNotification API.
 */
 struct RTPServiceErrorNotification

 {

 string serviceId; /**< RTP service Id from RTPServiceInfo */
 RTPErrorCode errorCode; /**< RTP service error Id */
 string errorMsg; /**< error message */
 };

 /**
 * @name ServiceStalledNotification
 * @brief RTP service stalled information. It is used by the ServiceStalledNotification API.
 */
 struct ServiceStalledNotification

 {

 string serviceId; /**< RTP service ID from RTPServiceInfo */
 StalledReasonCode reason; /**< RTP service stalled reason ID */
 };

 /**
 * @name RegisterRTPResponseNotification
 * @brief RTP app registeration response information
 */
 struct RegisterRTPResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registeration value as defined in RegResponseCode */
 string message; /**< message described the result */
 };

 interface ILTERTPService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current RTP service interface implementation
 @return Interface version
 **/
 string getVersion();

 /**
 @name registerRTPApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo information required for application registration.
 @param[in] cb callback listener
 @see RegisterRTPAppData
 @see registerRTPResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerRTPApp(in RegisterRTPAppData regInfo, in ILTERTPServiceCallback callBack);

 /**
 @name deregisterRTPApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls register
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterRTPApp();

 /**
 @name startRTPService
 @brief Start receiving RTP data over broadcast
 @param[in] StartRTPService Parameters for starting the RTP services API
 @pre Application is registered for RTP service
 @see StartRTPServiceData
 @see serviceStarted()
 @see rtpServiceError()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startRTPService(in StartRTPServiceData serviceInfo);

 /**
 @name stopRTPService
 @brief Stop receiving RTP data over broadcast
 @param[in] StopRTPService Parameters for stoping the RTP services API
 @pre Application is registered for RTP service
 @see serviceStopped()
 @see StopRTPServiceData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopRTPService(in StopRTPServiceData serviceInfo);

 /**
 @name setRTPServiceClassFilter
 @brief Application sets a filter on RTP services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with RTP service
 @see serviceUpdate()
 @see getRTPServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setRTPServiceClassFilter(in RTPServiceClassList serviceClassList);

 /**
 @name getRTPServices
 @brief Retrieves the list of RTP services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application.
 @param[out] RTPServices List of filtered RTP services
 @pre Application is registered for RTP service and received rtpServiceListUpdate notification
 @see RTPServices
 @see rtpServiceListUpdate()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getRTPServices(out RTPServices services);

 };

 interface ILTERTPServiceCallback

 {

 /**
 @name registerRTPResponse
 @brief The response to the application RTP service register API.
 @param Notification Parameters for registering a RTP response
 @pre Application called registerRTPApp
 @see RegisterRTPResponseNotification
 @see registerRTPApp()
 **/
 void registerRTPResponse(in RegisterRTPResponseNotification info);

 /**
 @name serviceStarted
 @brief Notification to application that RTP service is started and
 media player may be initialized for playback
 @param Notification Parameters for service started notification.
 ServiceStartedNotification previously defined.
 @pre Application is registered for RTP service and called startRTPService
 @see ServiceStartedNotification
 **/
 void serviceStarted(in ServiceStartedNotification notification);

 /**
 @name serviceStopped
 @brief Notification to application that RTP service is stopped and
 media player may be stopped for playback
 @param Notification Parameters for service started notification
 @pre Application is registered for RTP service and called stopRTPService
 @see ServiceStoppedNotification
 **/
 void serviceStopped(in ServiceStoppedNotification notification);

 /**
 @name rtpServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for RTP service and called startRTPService
 @see RTPServiceErrorNotification
 **/
 void rtpServiceError(in RTPServiceErrorNotification notification);

 /**
 @name serviceStalled
 @brief Notification to application when there is a temporary disruption of
 the broadcast download of service
 @param Notification Parameters for RTP service stalled notification
 @pre Application is registered for RTP service and called startRTPService
 @see ServiceStalledNotification
 **/
 void serviceStalled(in ServiceStalledNotification notification);

 /**
 @name rtpServiceListUpdate
 @brief Notification to application on an update that is available for RTP services.
 Update may be due to the received USD or the network configuration.
 @pre Application is registered for RTP service.
 @post call getRTPServices()
 **/
 void rtpServiceListUpdate();

 };

};

3 Proposal

It is proposed to use this proposal as a basis for the designed for the APIs for RTP services.

_1534745899.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

stopStreamingCapture()

startStreamingService()

stopFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

stopFdCapture() validation
errors detected

