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5.1.11.1
First stage of noise energy update
…
After the two frames of initialization the total frame energy is smoothed by means of LP filtering. That is:
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The features 
[image: image2.wmf]tl
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and 
[image: image3.wmf]th

E

are envelope tracking features of the frame energy 
[image: image4.wmf]t

E

and are used to create the long-term minimum energy 
[image: image5.wmf]tl

E

and an estimate of the energy dynamics 
[image: image6.wmf]dyn

E

. That is
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To calculate 
[image: image9.wmf]tl

E

the following processing is applied:
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where 
[image: image11.wmf]]
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[
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harm

c

 is the number of frames since the last harmonic event from the previous frame. See clause 5.1.11.3.2 for details about its computation. The new value of 
[image: image12.wmf]tl

E

is then used to update its long-term value through an AR process. That is
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where the parameter 
[image: image14.wmf]tl

a

is set as follows
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The energy dynamics feature 
[image: image16.wmf]dyn

E

 is just an LP-filtered version of the difference between 
[image: image17.wmf]th

E

and 
[image: image18.wmf]tl

E

. That is
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5.1.11.2.5
Tonal stability

The tonal stability exploits the harmonic spectral structure of certain musical signals. In the spectrum of such signals there are tones which are stable over several consecutive frames. To exploit this feature, it is necessary to track the positions and shapes of strong spectral peaks. The tonal stability is based on a correlation between the spectral peaks in the current frame and the past frame. The input to the algorithm is an average logarithmic energy spectrum, defined as
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where 
[image: image22.wmf])
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 is defined in clause 5.1.5.2 and the superscripts [0] and [1] denote the first and the second spectral analysis, respectively. In the following text, the term "spectrum" will refer to the average logarithmic energy spectrum, as defined by the above equation.

…
5.1.11.3.2
Features related to last correlation or harmonic event

Two related features are created which relate to the occurrence of frames where correlation or harmonic events are detected. The first is a counter, 
[image: image23.wmf]harm

c

, that keeps track of how many frames that have passed since the last frame where correlation or harmonic event has occurred. That is if a correlation or harmonic event is detected the counter is reset otherwise it is incremented by one, according to:
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where 
[image: image25.wmf][.]

norm

C

 is the normalized correlation in the first or the second half-frame and 
[image: image26.wmf]tonal

p

 is the result of the tonal detection in clause 5.1.11.2.5. If the counter 
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 is larger than 1 it is limited to 1 if
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is 1. Depending on the estimated short term variance of the input frame energy the current value of the counter 
[image: image31.wmf]harm
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 can be reduced to one quarter of its value (or 1 if it was less than 4). The reduction is made for frames where 
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 where  
[image: image33.wmf]0
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 and the short therm variance estimate of the frame energy is larger than 8.0. The other feature is the long term measure of the relative occurrence of correlation or tonal frames. It is represented as a scalar value, 
[image: image34.wmf]ev
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, which is updated using a first order AR-process with different time constants depending on if the current frame is classified as a correlation/tonal frame or not according to:



[image: image35.wmf][

]

î

í

ì

==

=

==

+

-

=

-

otherwise

01

.

0

0

c

 

if

0.03

 

 where

)

0

(

)

1

(

1

harm

harm

ev

ev

c

c

c

a

a

a


(142)

where the test, 
[image: image36.wmf]0

==

harm

c

, represents a detection of a correlation/tonal event.
5.1.11.3.4
Long-term linear prediction efficiency

This section describes how the residual energies from the linear prediction analysis made in clause 5.1.9 can be used to create a long term feature that can be used to better determine when the input signal is active content or background noise based on the input signal alone.

The analysis provides several new features by analysing the linear prediction gain going from 0th-order to 2nd-order linear prediction and going from 2nd-order to 16th-order prediction. Starting with the 2nd order prediction residual energy that is compared to the 0th-order prediction residual energy, which is the energy of the input signal. For a more stable long term feature the gain is calculated and limited as
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where 
[image: image38.wmf])
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(
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is the energy of the input signal and 
[image: image39.wmf])
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 is the residual energy after the second-order linear prediction (see clause 5.1.9.4). The limited prediction gain is then filtered in two steps to create long term estimate of this gain. The first is made using
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and typically this will become either 0 or 8 depending on the type of background noise in the input once there is a segment of background only input. A second feature is then created using the difference between the first long term feature and the frame by frame limited prediction gain according to:
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This will give an indication of the current frames prediction gain compared to the long term gain. This difference is used to create a second long term feature, this is done using a filter with different filter coefficient depending on if the long term difference is higher or lower than the currently estimated average difference according to
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This second long term feature is then combined with the frame difference to prevent the filtering from masking occasional high frame differences, the final parameter is the maximum of the frame and the long term version of the feature
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The feature created using the difference between 2nd order prediction and 16th order prediction is analysed slightly differently. The first step here is also to calculate prediction gain as
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where 
[image: image45.wmf])
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represents the residual energy after a 2nd order linear prediction and 
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 is the residual energy after a 16th order linear prediction, see clause 5.1.9.4. This limited prediction gain is then used for two long term estimates of this gain, one where the filter coefficient differs if the long term estimate is to be increased or not as shown in
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The second long term estimate uses a constant filter coefficient, according to
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For most types of background signals both will be close to 0, but have different responses to content where the 16th order linear prediction is needed (typically for speech and other active content). The first 
[image: image49.wmf]16

_

2

_

LP

g

 will usually be higher than the second
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. This difference between the long term features is measured according to
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which is used as an input to the filter which creates the third long term feature according to



[image: image52.wmf][

]

[

]

ï

î

ï

í

ì

<

=

+

-

=

-

-

otherwise

05

.

0

 

if

0.02

 

     where

)

1

(

1

16

_

2

_

16

_

2

_

16

_

2

_

1

16

_

2

_

16

_

2

_

ad

ad

ad

ad

ad

g

g

g

g

g

a

a

a

.
(155)

Also, this filter uses different filter coefficients depending on if the third long term signal is to be increased or not. Also here the long term signal is combined with the input signal to prevent the filtering from masking occasional high inputs for the current frame. The final parameter is then the maximum of the frame and the long term version of the feature
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Note that also some of the other calculated features in this sub section are used in the combination logic for the noise estimation, 
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5.1.11.4
Decision logic for noise energy update

Already in the first step of the noise estimation (see clause 5.1.11.1), the current noise estimate has been reduced in sub-bands where the background noise energy was higher than the sub-band energy for the current frame. The decision logic described in this subsection shows how it is decided when to update the background noise estimate and how large that update should be allowed to be by setting the step size, 
[image: image60.wmf]size

step

. The update is adapted based on the earlier described features or combinations thereof.

Every frame an attempt is made to adjust the background noise estimate upwards, where it is important not to do the update in active content. Several conditions are evaluated in order to decide if an update is possible and how large an allowed update should be. As it is always allowed to make downwards updates it is equally important that possible updates are not prevented for extended times as this will affect the efficiency of the SAD. The noise update uses a flag to keep track of the number of prevented noise updates, 
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, the same flag is also used to indicate that no update has taken place. The counter 
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 is initialized to the value 0 to indicate that no update has been done so far. When updates are successful it is set to 1 and for failed updates the counter is incremented by 1.
The major decision step in the noise update logic is whether an update is to be made or not and this is formed by evaluation of the following logical expression
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where 
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 ensures that it is safe to do an update provided that any of the four pause detectors, 
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 indicate that an update is allowed. Note that the last term in the condition 
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 as it handles the noise estimation during initialization.
Starting with the mask which ensures that the normal updates only can occur when the current frame energy is close to the estimated long-term minimum energy,
[image: image73.wmf]tl

E

 (see clause 5.1.11.1), is adjusted with a level dependent scaling of the estimated frame energy variations, 
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The first pause detector 
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 is based on the metric 
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control logic described in subclause 5.1.11.2.7, when 
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is 0 updates are allowed, that is
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The second pause detector allows for updates for low energy frames if the estimated signal dynamics is high and a sufficient number of frames have passed since the last correlation event, that is
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The third pause detector allows updates when there are consecutive frames that are similar in energy to the current low level frames in a row,
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The last detector is itself a combination of a mask and two pause detectors and mainly uses the additional features described in subclause 5.1.11.3.4, the detector is evaluated using
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where 
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 is the mask for the detector and 
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 and 
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 are the additional detectors. For this detector the following seven flags are first evaluated. The first flag signals that the frame energy close to background noise energy where the threshold is adapted to the estimated frame to frame energy variations, as
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The second flag signals a high linear prediction gain with 2nd order model for a stationary signal, and is defined as follows:
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The third flag signals that there is a low linear prediction gain for 16th order linear prediction
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The fourth flag signals that the current frame has low spectral fluctuation
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The fifth flag signals that the long term correlation is low
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The sixth flag signals low long term correlation value including the current frame
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The seventh and last flag signals a non-speech like input signal
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Using the above flags it is possible to express the mask as
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The two additional detectors 
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, are also those built using sub detectors and additional conditions. Starting with 
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where the combination metrics 
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are combinations where the maximum of a number of metrics are used for the comparison
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For the 
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 sub detector
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where the combination metric 
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The last term 
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 handles the special conditions of noise update during the initialization, which occurs during the 150 first frames after the codec start. Also the initialization flag is evaluated as a combination of two flags according to
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where the first flag test for initialization period and a sufficient number of frames without correlation event, according to
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The second flag evaluates a number of earlier calculated features against initialization specific thresholds according to
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Every frame an attempt is made to adjust the background noise estimate upwards, as it is important not to do the update in active content several conditions are evaluated in order to decide if update is possible and how large an update that should be allowed. At the same time it is important that possible updates are not prevented for extended times. The noise update uses a flag to keep track of the number of prevented noise updates. The same flag is also used to indicate that no update has taken place. The flag 
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 is initialized to the value 0 to indicate that no update has been done so far. When updates are successful it is set to 1 and for failed updates the counter is incremented by 1.

If the above condition 
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is evaluated to 0, the noise estimation only checks if the current content might be music by evaluating the following condition
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If this is evaluated to 1 the sub-band noise level estimates are reduced. This is done to recover from noise updates made before or during music. The reduction is made per sub-band depending on if the current estimate is high enough, according to
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and 
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is updated according to the definition in equation (198) before noise estimation is terminated for this frame.
The following steps are taken when 
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 is evaluated to 1. First the step size, 
[image: image118.wmf]size

step

, is initially set to 0, before the process of determining if the noise update should be set to 1.0, 0.1, or 0.01. For the update 
[image: image119.wmf]size

step

 to be set to 1.0 the following condition
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and any of the following conditions
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needs to be evaluated to 1. When this happens 
 
[image: image125.wmf]updt
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is also set to 1 before the noise estimation for the current frame is updated using the previously calculated new value, according to
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where 
[image: image127.wmf])
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is the pre-calculated new noise estimate from subclause 5.1.11.1. The noise estimation procedure is done for the current frame after the 
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in equation (198) is updated.

If the above condition has failed then the 
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 is set to 0.1 if any of the four following conditions are met
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If the 
[image: image134.wmf]size

step

 has been set to 0.1 it will be reduced to 0.01 if
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and if the following condition is met
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If the 
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 is set to 0.1 or 0.01, 
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is set to 1 before the noise estimation for the current frame is made according to
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and the noise estimation procedure is done for the current frame after 
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 is updated in equation (198).

If the conditions to set the 
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 to 0.1 or 0.01 have failed, the step size is still
 0 and noise update has potentially failed. After testing if the following condition is true
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the variable 
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is incremented to keep track of potentially failed updates and the noise estimation is done after the following update of 
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.
In all cases the noise estimation updates end with an update of 
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 which is the long-term estimate of how frequent noise estimations could be possible according to


[image: image147.wmf][

]

(

)

2

.

0

 

  where

0

)

1

(

1

0

_

0

_

=

==

+

-

=

-

b

b

b

nup

nup

nup

p

c

c


(198)

and where 
[image: image148.wmf]nup

p

 is calculated in clause 5.1.11.2.6.
5.2.3.1.6.4
Refinement of target vector

The pre-quantizer contribution 
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and to refine the adaptive codebook gain using equation (502) with 
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 used instead of 
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where 
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 is the filtered pre-quantizer contribution, i.e. the zero-state response of the weighted synthesis filter to the pre-quantizer contribution 
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(

n

q

, and  
[image: image159.wmf]updt
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 is the refined adaptive codebook gain.

5.2.6.1.13
Post processing of the shaped excitation

…
Adaptive Gain Control (AGC) is applied to compensate for any gain difference between the synthesized speech signal[image: image160.wmf]4
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  and the post‑filtered signal[image: image161.wmf]4
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and the post processed shaped excitation
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where  [image: image167.wmf])
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 is updated in sample‑by‑sample basis and given by:
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and where [image: image169.wmf]a

 is an AGC factor with value of 0.85.
In order to smooth the evolution of the post-processed spectrally shaped highband excitation signal across frame boundaries, the look-ahead and the overlap samples are scaled based on the ratio of the current frame’s energy in the overlap region and the previous frame’s energy in the overlap region. The scale factor computation is performed as shown in equation (1579) in subclause 6.1.5.1.12.

The tenth-order LPC synthesis performed as described according to subclause 5.2.6.1.12 uses a memory of ten samples, thus there is at least an energy propagation over ten samples from the previous frame into the current frame. When calculating the energy scaling to be applied to the current frame, the first 10 samples of the current frame are considered as a part of previous frame energy. If the voicing factor 
[image: image170.wmf]0
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is greater than 0.75, the numerator in equation (1579) is attenuated by 0.25. The spectrally shaped high band signal is then modified by the scale factor as shown in equation (1580) in Clause 6.1.5.1.12.

5.2.6.1.14.2
Initialization estimation of temporal gain shape for SWB mode
The high band target frame (see subclause 5.2.6.1.1), [image: image171.wmf](
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. The gain shape parameters are calculated using an overlap of 20 samples from the previous frame to avoid transition artifacts during the reconstruction at the decoder.
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where the subframe energies in the target high band signal and the shaped excitation signal are calculated as
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and
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The window function [image: image180.wmf](
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 is a window signal is given by
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The variable [image: image182.wmf](

)

n

win

 for [image: image183.wmf]0,20

n

=¼

 is tabulated in table 60 below.

…
5.3.3.2.3.3
Applying LPC shaping gains to MDCT spectrum

The MDCT coefficients [image: image184.wmf]M

X

 corresponding to the CELP frequency range are grouped into 64 sub-bands. The coefficients of each sub-band are multiplied by the reciprocal of the corresponding LPC shaping gain to obtain the shaped spectrum [image: image185.wmf]M
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. If the number of MDCT bins corresponding to the CELP frequency range [image: image186.wmf](
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The remaining MDCT coefficients above the CELP frequency range (if any) are multiplied by the reciprocal of the last LPC shaping gain:
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For the configurations 9.6 kbit/s and 13.2 kbit/s SWB, the remaining spectral coefficients above the CELP frequency range are postprocessed:

First, the highest amplitudes of the MDCT spectrum 
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below and above 
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are determined. The search procedure returns the following values: 
a) max_low_pre: The maximum MDCT coefficient below 
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, evaluated on the spectrum of absolute values before the application of reciprocal LPC shaping gains
b) max_high_pre: The maximum MDCT coefficient above 
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, evaluated on the spectrum of absolute values before the application of reciprocal LPC shaping gains
max_low_pre = 0;
for(i=0; i<
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; i++)
{
    tmp = fabs(
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    if(tmp > max_low_pre)
    {
       max_low_pre = tmp;
    }
}

max_high_pre = 0;
for(i=0; i<
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    if(tmp > max_high_pre)
    {
       max_high_pre = tmp;
    }
}

Second, a peak-distance metric analyzes the impact of spectral peaks above above 
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 on the arithmetic coder. Thus, the maximum amplitude of the MDCT spectrum below and above 
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 are searched on the MDCT spectrum after the application of reciprocal LPC shaping gains, i.e. in the domain where also the arithmetic coder is applied. In addition to the maximum amplitude, also the distance from 
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 is evaluated. The search procedure returns the following values:
a) max_low: The maximum MDCT coefficient below 
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, evaluated on the spectrum of absolute values after the application of reciprocal LPC shaping gains
b) dist_low: The distance of max_low from 
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c) max_high: The maximum MDCT coefficient above 
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, evaluated on the spectrum of absolute values after the application of reciprocal LPC shaping gains
d) dist_high: The distance of max_high from 
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max_low = 0;
dist_low = 0;
for(i=0; i<
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    if(tmp > max_high)
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       max_high = tmp;
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}

Third, the peak-amplitudes in psycho-acoustically similar spectral regions are compared. Thus, the maximum amplitude of the MDCT spectrum below and above 
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 is searched on the MDCT spectrum after the application of reciprocal LPC shaping gains. The maximum amplitude of the MDCT spectrum below 
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 is not searched for the full spectrum, but only starting at 
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. This is to discard the lowest frequencies, which are psycho-acoustically most important and usually have the highest amplitude after the application of reciprocal LPC shaping gains, and to only compare components with a similar psycho-acoustical importance.  The search procedure returns the following values:
a) max_low2: The maximum MDCT coefficient below 
[image: image238.wmf])
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, evaluated on the spectrum of absolute values after the application of reciprocal LPC shaping gains starting from 
[image: image239.wmf])

(

*

5

.

0

celp

TCX

L


b) max_high: The maximum MDCT coefficient above 
[image: image240.wmf])
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, evaluated on the spectrum of absolute values after the application of reciprocal LPC shaping gains
max_low2 = 0;
for(i=
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; i++)
{
    tmp = fabs(
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 (i));
    if(tmp > max_low2)
    {
       max_low2 = tmp;
    }
}

max_high = 0;
for(i=0; i<
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; i++)
{
    tmp = fabs(
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 + i));
    if(tmp > max_high)
    {
       max_high = tmp;
    }
}

Finally, the relation of max_low, dist_low, max_high, dist_high, max_low2, max_high is evaluated and – if applicaple – a correction factor for 
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determined and applied:

if( (16.0 * max_low_pre > max_high_pre) &&
    (4.0 * dist_high * max_high > dist_low * max_low) &&
    (max_high > max_fac * max_low2)
  )
{
    fac = mac_fac * max_low2 / max_high;

    for(i = 
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; i< 
[image: image254.wmf])
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; i++)
    {
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 (i) = 
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 (i) * fac;
    }
}

where max_fac is set to 1.5 in case the Envelope based arithmetic coder is used, or max_fac is set to 3.0 for all other cases.

5.3.3.2.11.5.1
IGF tonal mask calculation

In case the TCX power spectrum [image: image261.wmf]P

 is not available, all spectral content above [image: image262.wmf](
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 is deleted:
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where [image: image264.wmf]R

 is the real valued TCX spectrum after applying TNS and [image: image265.wmf]n

 is the current TCX window length.

In case the TCX power spectrum [image: image266.wmf]P

 is available, calculate:
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where  [image: image270.wmf](
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 is the first spectral line in IGF range and 
[image: image271.wmf]HP
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 is 1.0 for 9.6 and 13.2 kbit/s SWB and 2.0 for all other configurations.
Given [image: image272.wmf]HP

E

, apply the following algorithm:
…

5.3.4.1.3.3.3
Differential Indices Modification

The modification of differential indices is done according to the value of the differential index for the preceding sub band and a threshold. Equation (1040) is used for modifying the span of differential indices. It should be noted that this modification is not applied to the first differential index, i.e. the case of "b = 1".
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Based on the new differential indices obtained from equation (1040), resized Huffman coding is applied, if any of the new differential indices lies outside [0 31] range, resized Huffman coding is not used for coding the differential indices.

…

5.3.4.1.4.3.3.3.1
Overview
This subclause is only applied to SWB and FB input signals. The spectral coefficients which belong to bands which are assigned zero bits from the bit‑allocation clause are not quantized. This means that not all transform coefficients are transmitted to the decoder. From the noise filled quantized spectrum, the gaps in the high frequency region [image: image275.wmf]1
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 which has zero bit allocation are identified and a predicted spectrum information is generated and the missing frequency bands (gaps) are filled with the predicted spectrum information.

In order to perform gap filling, the most similar match with the selected similarity criteria is searched from the coded and envelope normalized content and encodes the lag index [image: image276.wmf]i

LagIndex

parameter followed by encoding of the noise factor. The lag index [image: image277.wmf]i

LagIndex

and noise factor parameters are used in the decoder for generating the predicted spectrum, which will be used for filling the gaps. Figure 78 illustrates the overview of PFSC based gap filling for Harmonic mode.
[image: image278.emf]
Figure 78: Overview of the Harmonic mode PFSC based gap filling

5.3.4.2.4.2
Bit allocation
The band-energy limitation factor [image: image280.wmf]harmonic
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 is introduced before bit allocation to mitigate discontinuous core coding in the higher sub-band.
Initialize the band-energy limitation factor[image: image281.wmf]harmonic

f



[image: image282.wmf]î

í

ì

=

kbps

32

,

942

.

0

kbps

4

.

24

,

885

.

0

harmonic

f


(1211)
Calculate the energy of the first 10 sub-bands [image: image283.wmf]l
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, [image: image290.wmf]b

 is the index of the highest encoded sub-band.
Reorder the quantized norms with the index range[image: image291.wmf]]
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Then, the bit allocation is performed based on the adjusted norms to the sub-bands with the index range[image: image293.wmf]]
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 as described in subclause 5.3.4.2.1.2.2.
6.1.5.1.10
Post processing of the shaped excitation

Refer to subclause 5.2.6.1.13
6.2.2.3.8.3.8
Calculation of IGF gain factors

The IGF gain factors are used to finally shape the tiled subband values in order to adjust the spectral envelope of the synthesized signal above 
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where 
[image: image298.wmf]hop

 is the hop-size of the refinement in dependency of 
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Table 167: Maximal IGF hop-size

	Bitrate
	mode
	

[image: image302.wmf]mHop



	9.6 kbps
	WB
	4

	9.6 kbps
	SWB
	2

	13.2 kbps
	SWB
	4

	16.4 kbps
	SWB
	4

	24.4 kbps
	SWB
	4

	32.0 kbps
	SWB
	4

	48.0 kbps
	SWB
	4

	64.0 kbps
	SWB
	4

	16.4 kbps
	FB
	4

	24.4 kbps
	FB
	2

	32.0 kbps
	FB
	2

	48.0 kbps
	FB
	2

	64.0 kbps
	FB
	2

	96.0 kbps
	FB
	1

	128.0 kbps
	FB
	1


Second, a normalization term 
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 for normalizing the target energy 
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 is calculated as follows:
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Finally, the IGF gain factors have to be calculated according to the following formula:
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where 
[image: image308.wmf]gFac

 is the general adaption factor for all scale factor band energy according to table 166.

If hop-size 
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, the IGF gain factors in between a particular hop are hold beginning at the hop-start:
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6.2.3.1.3.3.1
Overview

The high-level decoder structure of the Harmonic mode is basically the same with the Normal mode. The main difference can be found in its detailed structure of the PFSC block, and it is shown in the following figure.
[image: image312.emf]

Figure 99: Block diagram of the Harmonic mode decoder overview
6.3.7.2.2
Multi-mode FD BWE mode

Predict the SHB signal of the current frame, and weight the SHB signal of the current frame and the previous frame to obtain the final SHB signal of the current frame. Then the SHB signal and the low frequency signal are combined to obtain the output signal.

The SHB signal of the current frame is generated as follows:

1) Predict the fine structure of the SHB signal of the current frame as described in subclause 6.1.5.2.1.5.

2) Predict the envelope of the SHB signal of the current frame, and weight the envelopes of the current frame and the previous frame to obtain the final envelope of the current frame.

3) Reconstruct the SHB signal of the current frame by the predicted fine structure and the weighted envelope.
In detail, the algorithm of predicting the envelope is described as follows:
…
6.7.2.1
LP-CNG decoding Overview

When the decoder is in the LP-CNG operation, a procedure to synthesize a comfort noise signal is applied.

For each received SID frame, the one bit indicating the bandwidth type of the SID frame is first decoded. WB SID frame is received if the bandwidth bit equals “0”, otherwise the SWB SID frame is received. The LP-CNG decoder only operates in WB mode if no SWB SID frame has been received, in which case the comfort noise is only generated for low-band. Otherwise, the LP-CNG decoder will switch to SWB mode upon the receiving of the SWB SID frame. Since the transmission of high-band CN parameter is not synchronized with the transmission of the low-band CN parameters, WB SID frames can be received even the LP-CNG decoder operates in SWB mode. In which case, the energy parameter for high-band CN synthesis is extrapolated from the low-band CN synthesis signal.  The low-band excitation energy is decoded from each LP-CNG SID frame based on which a smoothed low-bandexcitation energy used for low-band CNG synthesis is computed, as described in subclause 6.7.2.1.3. The low-band LSF vector is decoded from each LP-CNG SID frame then converted to LSP vector based on which a smoothed LSP vector is computed then converted to LP coefficients to obtain the low-band CNG synthesis filter, as described in subclause 6.7.2.1.4. If WB LP-CNG SID frame is received, from which the residual spectral envelope is decoded based on which a smoothed residual spectral envelope is computed, as described in subclause 6.7.2.1.5. A random excitation signal is generated from the smoothed low-band excitation energy which is combined with a second excitation signal generated from the smoothed residual spectral envelope to form the final excitation signal for the low-band CNG synthesis, as described in subclause 6.7.2.1.5. Low-band comfort noise is synthesized by filtering the low-band final excitation signal through the low-band CNG synthesis filter, as described in subclause 6.7.2.1.6.

In subclause 6.7.2.1.7, high-band decoding and synthesis is described if the decoder is operating in SWB mode. When SWB LP-CNG SID frame is received, the high-band energy of the frame is decoded from the SID frame. For other types of received frames, that is the WB LP-CNG SID frames and the NO_DATA frames, the high-band energy of the frame is generated locally at the decoder by extrapolating from the smoothed low-band energy of the frame which is obtained from the low-band CNG synthesis together with a high-band to low-band energy ratio calculated at the last received SWB LP-CNG SID frame. The high-band energy of the frame is further smoothed in each frame to be used for final high-band CNG synthesis. For each CN frame, the high-band LSF spectrum used to obtain the high-band CNG synthesis filter for each CN frame is interpolated from the LSF spectrum of the hangover frames. The high-band comfort noise is synthesized for each CN frame by filtering a random excitation through the high-band CNG synthesis filter, then scaled to the level corresponding to the smoothed high-band energy. The scaled high-band synthesis signal is finally spectral flipped to the bandwidth from 12.8 kHz to 14.4kHz, as described in subclause 6.1.5.1.12. The resulting spectral flipped high-band synthesis signal is added to the low-band synthesis signal so to form the final SWB comfort noise synthesis signal.

6.7.2.1.3
LP-CNG low-band energy decoding
The quantized low-band excitation energy in logarithmic domain is decoded from each LP-CNG SID frame and converted to linear domain using the procedure described in subclause 5.6.2.1.5. The resulting linear domain low-band excitation energy 
[image: image314.wmf]E

ˆ

 is used to obtain the smoothed low-band excitation energy 
[image: image315.wmf]CN
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 used for low-band CNG synthesis in the same way as described in subclause 5.6.2.1.6.
6.7.2.1.7
LP-CNG high-band decoding and synthesis
To enable high perceptual quality in the inactive portions of speech on the decoder side, during SWB mode operation of the codec, a high band comfort noise synthesis (SHB-CNG) (12.8 - 14.4 kHz) is added to the low bandwidth (0-12.8 kHz) LP-CNG synthesis output. This also helps to ensure smooth transitions between active and inactive speech.

However, this is being done without transmitting any extra parameters from the encoder to decoder to model the high-band spectral characteristics of the inactive frames. Instead, to model the high band spectrum (12.8 - 14.4 kHz) of the comfort noise, the high band LSF parameters of the active speech frames preceding the current inactive frames are used after interpolation as described below. The hangover setting in the SAD algorithm ensures the active speech segments used for the spectral characteristics estimation of the inactive frames, sufficiently capture the background noise characteristics without significant impact from the talk spurt.

The quantized LSF vectors of order 10 corresponding to active speech high band (subclauses 5.2.4.1.3.1 and 6.1.5.1.3.1) received at the decoder are buffered up to two past active frames (N-1) and (N), denoted by 
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where N+M is the current inactive frame. Using these, the LSF vector corresponding to SHB-CNG of (N+M) th inactive frame   
[image: image318.wmf]10

,

,

1

,

K

=

-

+

k

CNG

SHB

k

M

N

r

is interpolated as
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where interpolation factor T is computed as
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using the number of inactive frames M leading up to the current inactive frame (N+M) since the last active frame N.

This interpolated LSF vector 
[image: image321.wmf]CNG

SHB

M

N

-

+

r

is then converted to LPC coefficients and used as the coefficients of LP synthesis filter to generate a synthesized signal. The energy of the high-band signal is obtained for each CN frame by either directly decoding from the SID frame if the SID frame is a SWB SID frame or by extrapolating for other received frame types. If SWB SID frame is received, the high-band energy of the frame which is the quantized high-band log average energy, 
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where 
[image: image324.wmf]I

 is the high-band energy index decoded from the SWB SID frame. If 
[image: image325.wmf]I

 is 0, 
[image: image326.wmf]I

 is set to -15 for a lower noise floor. If WB SID frame or NO_DATA frame is received, the high-band energy of the frame is generated locally at the decoder by extrapolating from the smoothed low-band energy of the frame together with the high-band to low-band energy ratio at the last received SWB LP-CNG SID frame. The smoothed low-band energy of the frame is a weighted average of the low-band energy of the current frame and the smoothed low-band energy of the previous frame. The low-band energy of the current frame which is the log average energy of the low-band signal is calculated from the low-band synthesis signal
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where 
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 is the low-band synthesis signal as obtained in subclause 6.7.2.1.6, 
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= 640 is the length of the low-band synthesis signal. If the low-band energy 
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 of the current frame is deviating from the smoothed low-band energy of the previous frame 
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 is set to 1 indicating the permission of step update, otherwise is set to 0. If the flag 
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 is set to 1, the smoothed low-band energy at the current frame, 
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, is set to the current frame’s low-band energy 
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. Otherwise, if the flag 
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 is set to 0, the smoothed low-band energy is updated at the current frame as
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where 
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 denotes the smoothed low-band energy of the previous frame. The high-band energy of the frame,
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, for received WB SID or NO_DATA frame is thus extrapolated as the sum of 
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 denotes the high-band to low-band energy ratio at the last received SWB SID frame i frames ago. The high-band energy of the frame is then smoothed for final use according to 
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where 
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is the smoothed high-band energy of the current frame, 
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 denotes the smoothed high-band energy of the previous frame, 
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 is the forgetting factor which is set to 0 if 
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 is set to 1 or the current frame is the first frame after an active burst, otherwise 
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 is set to 0.75. 







The high-band comfort noise is synthesized by filtering a 320-point white noise excitation signal through the LP synthesis filter derived earlier in this subclause. The synthesized comfort noise signal is then level adjusted to match the calculated smoothed high-band energy 
[image: image358.wmf]h

E

. A smoothing period is setup for the first 5 frames after an active burst of more than 3 frames and if the core technology used in the last active frame is not HQ-core. Within the smoothing period, the synthesized comfort noise is not level adjusted to the calculated smoothed high-band energy 
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E

, but to an interpolated energy between 
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 and the high-band log average energy calculated at the last active frame. The interpolated energy is calculated as
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where 
[image: image362.wmf]i

hs

E

,

 denotes the interpolated high-band energy of the 
[image: image363.wmf]i

-th CN frame in the smoothing period, 
[image: image364.wmf]act

h
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,

 denotes the high-band log average energy of the last active frame, 
[image: image365.wmf][

]

×
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 denotes the sine function. Finally, the level adjusted synthesized high-band comfort noise is spectral flipped to the bandwidth from 12.8kHz to 14.4kHz as described in subclause 6.1.5.1.12. The resulting high-band synthesis signal is later added to the low-band synthesis signal to form the final SWB comfort noise synthesis signal.
*** End of changes ***
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