Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 Meeting #89
Tdoc S4-160698
Kista, Sweden, 27th June – 1st July 2016

Agenda item:
8.12
Source:
ENENSYS Technologies
Title:
On a Rest API for the BMSC provisioning northbound interface
Document for
Discussion and Agreement
1 Introduction
The study item proposal on “MBMS Extensions for Provisioning and Content Ingestion” (FS_xMBMS) was agreed during SA4#88 and was later approved during SA#72. This document provides guidelines and principles that should apply while designing an industry wide standardized BMSC provisioning northbound interface, proposed to be studied as part of the FS_xMBMS study item.

2 Scope
According to the study item agreed at the last 3GPP SA4 and SA meetings (see S4-160563 / SP-16503), the interface shall support an API that allows third party content providers to provision and configure MBMS services in a BMSC. It is also proposed that the API covers the retrieval of statistics and alarms status related to file or media distribution (file status and/or reception reporting data) for a given User Service.
3 Principles

For interoperability and compatibility to most of industry’s equipments, we believe that this interface shall be RESTful and therefore respect the following architectural guiding principles:

· The interface shall be uniform in the sense that clients and servers architecture shall be decoupled and allowed to evolve independently. To that respect, clients and servers exchange information or commands related to resources in the server through their representation (which can be XML or JSON) where each individual resource is uniquely and unambiguously identified thanks to its associated URI. The representation of a resource is also called a resource state in the rest of the document. In general, in a HTTP request, URLs are used to pass resource URI to the remote equipment while HTTP body part contains the resource state or resource state change.

· The interface shall be stateless in the sense that the necessary data to handle a request is contained within the request itself. This means, more concretely, that each message shall provide all necessary information to describe how to process completely that message. In others words, there shall be no assumption regarding the remote equipment/node state at the time a message is transmitted.

· The interface allows “client / server” type of interaction, meaning that a client is not concerned with data storage at all. On the other hand, servers are not concerned with user interface or user state management.

4 Application to BMSC Provisioning interface

On this interface, the BMSC will act as a server while any application or equipment connecting to it through the provisioning interface in order to achieve actions encompassed in the scope discussed in section 2, will act as a client.
It is proposed that each action allowed on a given BMSC resource is implemented through a HTTP method. That is to say that:

· resource creation is achieved through HTTP POST,

· resource update is supported thanks to HTTP PUT,

· resource deletion is done through HTTP DELETE, and,

· resource status query through HTTP GET

Those principles then translate in the following HTTP transactions:

	Usage
	Command
	Answer

	Creating a new resource
	POST http://BaseURL/ResourceNames HTTP(S)/1.1

Accept: (API version and type of returned media) application/3GPP.bmsc.api.v1.0 + json|xml
	HTTP(S)/1.1 201 OK

Date: Mon, 27 June 2016 10:39:43 GMT

Content-Type: application/3GPP.bmsc.api.v1.0 + json|XML; charset=utf8

Content-Length: Size

Allow: DELETE

Location: http://BaseURL/ResourceNames/{ID}
Body

{“ID”:1, “URI”:BaseURL/ResourceNames/1}, or,

<ResourceName ID=“1” URI=”BaseURL/ResourceNames/1”/>

	Creating a new resource with a predefined {ID} (forbidden)
	POST http://BaseURL/ResourceNames/{ID} HTTP(S)/1.1

Accept: (API version and type of returned media) application/3GPP.bmsc.api.v1.0 + json|xml

	HTTP(S)/1.1 404 (Not found) if {ID} does not exist

Date: Mon, 27 June 2016 10:39:43 GMT

	
	
	HTTP 409 (conflict) if {ID} exists

Date: Mon, 27 June 2016 10:39:43 GMT

	Updating resource attributes
	PUT http://BaseURL/ResourceNames/{ID}/AttributePath HTTP(S)/1.1
Content-Type: application/3GPP.bmsc.api.v1.0 + json|XML; charset=utf8

Body: ResourceName’s attributes pointed by ‘AttributePath’, all collected in a XML or JSON
	HTTP(S)/1.1 200 OK

Date: Mon, 27 June 2016 10:39:43 GMT
Allow: GET, PUT

	
	
	HTTP(S)/1.1 404 (Not found) if {ID} does not exist

Date: Mon, 27 June 2016 10:39:43 GMT

	Updating a collection of resources

(forbidden)
	PUT http://BaseURL/ResourceNames/AttributePath HTTP(S)/1.1

Body: List of ResourceName’s attributes pointed by “AttributePath”, all collected in a XML or JSON
	HTTP(S)/1.1 404 (Not found)

Date: Mon, 27 June 2016 10:39:43 GMT

	Retrieving a resource state attributes
	GET http://BaseURL/ResourceNames/{ID}/AttributePath HTTP(S)/1.1

Accept: (API version and type of returned media) application/3GPP.bmsc.api.v1.0 + json|xml
	HTTP(S)/1.1 200 OK

Date: Mon, 27 June 2016 10:39:43 GMT

Content-Type: application/3GPP.bmsc.api.v1.0 + json|XML; charset=utf8

Content-Length: Size

Allow: GET, PUT

Body:

a XML or JSON representation of the resource attributes embedded in the body of the answer

	
	
	HTTP 404 (Not found) if {ID} does not exist or BaseURL is incorrect

	Retrieving the state of a collection of resources
	GET http://BaseURL/ResourceNames HTTP(S)/1.1

Accept: (API version and type of returned media) application/3GPP.bmsc.api.v1.0 + json|xml

In order to specify a ranking criteria, the user can also specify a query in the URL: ?sortBy=”Name” & order=”Ascending”
	HTTP(S)/1.1 200 OK

Date: Mon, 27 June 2016 10:39:43 GMT

Content-Type: application/3GPP.bmsc.api.v1.0 + json|xml; charset=utf8

Content-Length: Size

Allow: GET

Body

a XML or JSON representation of all resources URI attached to @BaseURL/ResourceNames embedded in the body of the answer and sorted accorded to the specified ranking criteria (if any).

	
	
	HTTP 404 (Not found) if BaseURL/ResourceNames is incorrect

	Deleting a resource
	DELETE http://BaseURL/ResourceNames/{ID} HTTP(S)/1.1
	HTTP(S)/1.1 200 OK

Date: Mon, 27 June 2016 10:39:43 GMT

	
	
	HTTP(S)/1.1 404 (Not found) if {ID} does not exist or BaseURL is incorrect

Date: Mon, 27 June 2016 10:39:43 GMT

HTTP POST and HTTP DELETE are not idempotent. That is to say that executing twice the same command will not give the same result. In the former case, two resources with same default content will be created while in the latter the second or subsequent execution of the command will return a 404 error (Not found).

HTTP POST command does not provide any parameters to the BMSC, it triggers the creation and the initialization of the resource in the BMSC. Any subsequent GET, performed on the returned URI allows to retrieve default parameters as initialized by the BMSC.

HTTP GET and HTTP PUT shall be idempotent and give exactly the result whatever the number of times they are called.

It is proposed that resources exposed through the BMSC northbound interface are hierarchically organized as follow:

· eMBMS User Service defining the MBMS service profile. Possible associated configuration parameters could be service identification, class, announcement methods and needed UE capabilities

· eMBMS Session defining mostly what content is going to be distributed, how it is distributed and when. Possible associated parameters could therefore be session identification, type, content, scheduling parameters, flute or reception reporting related parameters. One or several sessions can be attached to a User Service thus allowing in practise a user service having several delivery methods.

· eMBMS Bearer specifying characteristics of the MBMS tunnel that will transport the data across the EPC from the BMSC down to the eNodeBs. Possible associated parameters could be bearer identification, QoS and SAI mapping information. To be noted that one or several eMBMS bearers could be attached to a session, thus allowing the duplication of a data stream across several PLMNs.
5 Few usage examples

As a direct application of the above sections, the following message flow shows how a eMBMS service could be created and configured by an external provisioning system inside a BMSC:

[image: image1.png]
Figure 1: eMBMS Service Creation and Configuration
Still using the same principles, service deletion is also straightforward and writes as shown below:

[image: image2.png]
Figure 2: eMBMS Service Deletion

6 Conclusion
Based on the previous sections, we believe that the proposed principles enable a modern, well-defined and robust interface allowing third parties and content providers to independently develop equipment or applications that connect to a BMSC to exhaustively provision eMBMS service parameters.
In addition, this interface makes use of the well-known and already widely rolled out HTTP-REST technology.
7 Proposal
It is proposed to adopt the text in Sections 4 and 5 into “MBMS Extensions for Provisioning and Content Ingestion” TR.
- 6/6 -

