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1 Introduction
The study item proposal on “Server and Network Assisted DASH” (FS_SAND) was agreed during SA4#87 and was later approved during SA#71.
During the FS_SAND telco on June 7th, a use case on consistent QoE/QoS for DASH users was agreed to be included in TR 26.957. 

A network operator deploying DASH services or a network operator supporting the delivery of DASH services of an OTT service provider has the ambition to provide consistent quality for users in its network. For this purpose, the network operator wants to provide sufficient QoE to all users that have been granted acquisition to the network and the service. It may also have the ambition to provide certain premium users to maintain a certain service quality when the user plane is congested. The operator may want to influence its QoS control and resource allocation to actively support such use cases, e.g., communicate with the UEs to decrease the bitrate for the video to a certain value that would allow the cell to accommodate the load. Here are some more specific examples around this use case:
1-    Jari (regular user) and Jarison (premium user) enter a congested radio area. The mobile operator wants to restrict the required bitrate, but ensure that a basic video quality is maintained for its regular users (Jari) and some higher quality for premium users (Jarison). For this purpose, the operator assigns certain bitrate quality levels to different users on their HTTP connections carrying DASH-content.
2-    Jari wishes to watch high-definition video content over his tablet, while Jarison would like to watch standard-definition video content over this smartphone. The operator is able to influence its QoS control and resource allocation to ensure that both Jari and Jarison are simultaneously able to watch their desired content with consistent quality of experience, e.g., with sufficient video quality and without any rebuffering or playback interruption. 
This contribution provides performance evaluation results on streaming enhancements from QoE-aware resource allocation.

2 Streaming Enhancements from QoE-Aware Resource Allocation
2.1 Introduction

This section describes simulation methodology and results on the evaluation of streaming enhancements from QoE-aware resource allocation over an LTE-based system-level simulation platform with DASH clients. In particular, an analysis is presented quantifying the performance benefits of intelligent QoS control and resource allocation mechanisms that take advantage of the awareness of client / device characteristics and real-time QoE measurements reported by the clients. 
2.2 Simulation Methodology and Setup

Re-buffering has been identified as one of the most critical QoE metrics for streaming video. In a 3GPP DASH-based implementation of QoE metrics in the client device, this metric can be computed via monitoring the buffer status and/or play list metrics. Given the key importance of re-buffering in dictating the QoE delivered to the user, the service capacity of an LTE system is defined based on an outage criterion that is centered around the re-buffering percentage, i.e. the percentage of the total presentation time in which the user experiences re-buffering due to buffer starvation. In particular, a user is designated to be satisfactorily supported if its re-buffering percentage is smaller than a re-buffering outage threshold Aout. The service capacity is then defined as the maximum number of users that can be supported in the network such that the percentage of satisfied users is greater than the network coverage threshold Acov. i.e.
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where E[.] is denotes the expectation over multiple user geometry realizations and 1(.) denotes the indicator function. 

Five VBR-encoded video clips (Sony, Citizen Kane, Die Hard, NBC News, Matrix Part1) are considered with different bitrate requirements hosted at the HTTP server with multiple versions of each video clip available at different quality levels in the PSNR range of 26-39 dB, as shown in Figure 1 and Table 1. Two video traces for each video representation level contain content information with regards to – i) size and quality information for each video frame and ii) offset traces which give information of the video quality obtained by concealing lost video frames with previous frames. PSNR was used to model video quality as a representative although other advanced metrics could also be used. 

A cellular deployment is assumed based on an IMT-Advanced urban macro-cell (UMa) test environment with an inter-site distance (ISD) of 500 m, where each user in the LTE network randomly requests one of the five available video clips. A 19-cell scenario is considered, where the center cell generating video traffic is surrounded by two layers of interfering cells generating full buffer traffic. Users are randomly dropped in the center cell. The simulation parameter settings and assumptions on the LTE air interface are provided in Table 2 below. The additional assumptions include the following: 1) For the link to system mapping, Mutual Information Effective SINR Metric (MIESM) is used, 2) AWGN PER versus SINR curve corresponding to that modulation, code rate are used to determine the probability of error, 3) Channel Quality Indicator (CQI) are delayed by 5ms, 4) HARQ retransmissions are delayed by 8 ms with a maximum of 4 retransmissions. 5) The base stations in all other cells generate interference patterns corresponding to a full buffer mode of operation. 6) 100,000 sub-frames were simulated to generate LTE link statistics, 7) Users were picked randomly from a user population of 684 dropped uniformly in the sector. 8) For each configuration, statistics were collected from thirty different random drops of users in the network. 9) Packet fragmentation based on the maximum MTU size of 1500 bytes is considered, and HTTP/TCP/IP layer protocol behaviour and overheads are also incorporated in the analysis - 40 bytes of header was included in each TCP segment (10 bytes for NALU prefix + 12 bytes for HTTP header + 8 bytes for TCP header). 10) All the main features of TCP Reno flavour were implemented in the simulator including flow control, slow start, congestion avoidance, RTT estimation, timeout, re-transmission, fast re-transmit and fast-recovery to account for the presence of TCP. 11) The Backhaul Network (BN) between the eNodeB (eNB) and S-GW is modelled with a fixed bandwidth of 1 Gbps. 12) Core Network (CN) from video servers to the S-GW was modelled using a fixed delay of 50 ms. 13) Core and back-haul networks are assumed to lossless and radio access network is considered as the main bottleneck. 14) Uplink transmissions are assumed to be errorless. 15) The delay involved in establishment of the dedicated bearer (e.g. GBR bearers) was not included in the assumed system model. 

Multiuser resource allocation over the OFDMA-based downlink LTE air interface is performed based on the well-known proportional fair scheduling principles. Only half of the available bandwidth of the 10 MHz LTE system is assumed to be reserved for the DASH-based video streaming service while the remaining half is assumed to be dedicated for other services, e.g. voice and data services. 
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Figure 1: Rate-PSNR Curves of Sample Videos

Table 1: Details on the video content used in the evaluation 

[image: image3.png]Video Source

Quantization
Parameter Range

PSNR Range (dB)

Average Bitrate
Range (kbps)

Sony_1080 28-48 24.5-36.94 44.23-508.24
Citizen Kane 28-42 30.25-40.25 60.11-351.91
Die Hard 34-48 29.00-39.00 32.38-103.24
NBC News 28-48 24.90-37.07 54.08-519.82
Matrix-1 34-48 31.45-40.05 30.98-118.64





Table 2: LTE Air Interface configuration
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Channel Model Video requests are sequential: subsequent
request is made after receiving previous video
segment
Downlink Transmit Power 46 dBm
MIMO Mode 4x2 SU-MIMO for the downlink
Cellular Layout Hexagonal grid, 19 cell sites, 3 sectors per site
Distance-dependent path loss  Loss L= I + 37.6log10(.R), R in kilometers,
1=128.1
Lognormal Shadowing Similar to UMTS 30.03, B 1.141
Shadowing standard deviation 8dB
Number of antennas at UE 2
Number of antennas at cell 4
Antenna configuration at UE Co-polarized antennas
Antenna configuration at eNB Co-polarized (0.5 spacing)
Outer-loop for target FER 10% FER for 15t HARQ transmission
control
Link adaptation MCSs based on LTE transport formats according
to TR 36.213
HARQ scheme Chase combining
DL overhead 3 for PDCCH
UE speed 3km/h
Scheduling granularity 5 RB sub-band
Receiver type MMSE-IRC
Feedback mode Wideband PMI based on LTE 4-bit CB, subband
cQI
Inter-site Distance 500 m

User distribution Users dropped uniformly in the entire cell




According to the DASH-based adaptive streaming framework, users may consume varying qualities of video based on the working of the assumed adaptation algorithm, which selects the optimal quality/bitrate representation among the available video clips based on monitoring of user experience via 3GPP-based QoE metrics, i.e. particularly the playback buffer level. The different representations of the video requested by a representative client are indexed using letter k. In particular, k=1 represents the lowest bitrate representation level and k = N represents the highest representation level and bk represents the bitrate of encoded video of representation level k, b1 ≤ b2 ≤ b3 ≤ … ≤ bN. Rate adaptation is client-driven and is done at segment level where each video segment might contain one or more GOPs (Group of Pictures).

The DASH-based adaptive streaming framework monitors the LTE link throughput and client buffer state and requests the video representations accordingly to realize the highest possible quality but also making sure to avoid playback buffer starvation. The DASH client starts playback with initial start-up delay of one second. It requests the video at a higher fetch rate during the buffering mode (playback buffer under a specified threshold) while the fetch rate is lower during the streaming mode (playback buffer above the specified threshold). Encountering playback buffer starvation, the client enters re-buffering mode while stalling the playback. The playback resumes after a certain targeted amount of media (i.e. 1 second) is aggregated in the media buffer.
A typical DASH-level throughput estimate is the average segment Throughput which is defined as the average ratio of segment size to the download time of the segment. 
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where Sseg(s), 
[image: image6.wmf]seg

fetch

T(s)

,
[image: image7.wmf]seg

dwnd

T(s)

are the size, fetch time, and download time of the jth video segment, Si the number of segments downloaded until frameslot i, and F is the number of video segments over which the average is computed. 
2.3 Video-Aware QoS Optimizations at the Core

The architecture in Figure 3 is considered for video-aware network resource management. It consists of HTTP Adaptive Streaming (HAS) servers, Core Network (CN), Video Aware Controller (VAC), backhaul network, Radio Access Networks (RAN) and DASH clients. The “Video Aware Controller” (VAC) placed at a service provider central office at the network core is the central intelligence for video-aware resource management. The key to this architecture is application-level feedback from HAS (DASH) servers/clients to the VAC and QoS-signaling from the VAC. For example, the VAC can receive feedback of client media buffer levels from the DASH clients and video segment quality information from the video servers. Then the VAC processes the feedback information to determine QoS parameter settings for each flow in the network. Specifically VAC determines the Maximum Bit Rate (MBR) and Guaranteed Bit Rate (GBR) for each flow in the network. These QoS-parameters are then communicated to all QoS-enforcing nodes in the network. Such QoS enforcing nodes include the PCRF, S-GW, and eNodeB (base station) in an LTE network deployment. These QoS-enforcing nodes enforce flow-level QoS settings over network resources that are under their control. Also the QoS parameters may be communicated by the VAC to the DASH clients which use this information in its video rate adaptation algorithm. 
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Fig. 2. Video Aware QoS Signaling Architecture.

Thus the VAC indirectly manages the network resources at various parts of a QoS-aware network by setting the QoS parameters that are to be enforced. This includes wireless resources at the radio access network that are managed by the base station. A QoS aware base station enforces the MBR/GBR limits for each user flow using standard algorithms [1]. The VAC also controls the rate adaptation of the video clients by communicating the respective QoS-parameters to each client. At DASH client j, the computation of the best video representation level takes into account QoS parameters MBRj and GBRj of flow j as follows:
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By setting MBRs for flows intelligently in a video-aware fashion, QoE-based outage capacity of the network is enhanced and by setting GBR for flows it is possible to guarantee certain minimum video quality for premium users. Thus architecture turns a QoS-aware network to a video QoE aware network. Moreover, this architecture has the ability to take into account both DASH client media buffer dynamics and variability in video content based on feedback from DASH clients and servers respectively. Through QoS-signaling to the DASH clients, it also establishes a close interaction between resource allocation to each flow and video rate adaptation by DASH clients. 
The forthcoming discussion focuses on the problem of setting MBR dynamically for DASH flows to increase QoE-outage based capacity of a QoS-aware wireless network like LTE. Figure 3 shows the schematic of the scenario under consideration. An LTE network is considered consisting of a QoS-aware eNodeB and LTE Evolved Packet Core (EPC). A number of DASH clients establish streaming sessions to DASH servers through the eNB, EPC and the core network. 
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Fig. 3: Dynamic MBR provisioning for HAS in LTE. 

The VAC is connected to the EPC. The VAC also contains a QoE reporting server to receive periodic feedback of media buffer levels from the DASH clients. This is done by establishing an application-level auxiliary control connection between the DASH client and the VAC for each streaming flow, e.g., an HTTP POST connection. The VAC has a synthetic view of the buffer levels of all the connected streaming clients. It computes a maximum bit rate MBRj for each flow j and communicates the computed MBRs for all the flows to the LTE EPC, and eNodeB. It also communicates the MBRj of each flow j to the respective HAS client through the auxiliary control connection. 
The buffer evolution at each client is determined by the playback and download processes. The playback process removes one video frame from the client media buffer each frame duration except in the startup/re-buffering states where it waits till the buffer level reaches a certain threshold. The download process determines the rate at which frames are entering the buffer. This in turn determines on the video segment representation level chosen. By setting a MBR for each HAS flow, the download process can be controlled. The VAC periodically tracks the media buffer evolution of each client. The difference between buffer levels for client j from feedback cycle (t-1) to feedback cycle t is given by:
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BEq \o(t\,diff, j    ) determines the evolution of media buffer at HAS client j over the duration of a feedback cycle considering the playback and download processes. To avoid re-buffering, we require that the download process is faster than the playback process. To minimize chances of re-buffering for each DASH client j, a requirement is set that the rate of change in the buffer level to be greater than a certain positive threshold i.e.,
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Where XEq \o(t, j)  is an indicator variable that indicates whether user j is in startup or re-buffering during the feedback cycle t. This can be easily determined by comparing the user buffer level relative to the buffering threshold.  This parameter is used to ensure that even when there is no playback by the client, the rate of buffering should exceed the nominal playback back rate by the threshold δ. Since wireless conditions, video content etc are dynamic, it is only required that the condition in Eqn. t, j) (6)

 to hold in an average sense. A buffer aware user token parameter W GOTOBUTTON ZEqnNum840842  \* MERGEFORMAT  is used to monitor the overall cumulative performance of the client j until feedback cycle t in terms of buffering rate exceeding the threshold. In every feedback cycle, WEq \o(t, j)  is updated based on BEq \o(t\,diff, j    ) as follows:
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When BEq \o(t\,diff, j    ) ≤ (XEq \o(t, j)  + δ)τ in feedback cycle t, it means it means that the media buffer of user j is growing at a rate smaller than the target threshold. In this case WEq \o(t, j)  is then incremented by (XEq \o(t, j)  + δ)τ − BEq \o(t\,diff, j    )  to reflect the penalty for having a low buffer change rate in feedback cycle t. Similarly when the buffer change rate for user j in feedback cycle t exceeds the target threshold, then WEq \o(t, j)  is then decremented to reward user j. Thus WEq \o(t, j)  represents the accumulated penalties and rewards for user j until feedback cycle t. A higher value of user token parameter WEq \o(t, j)  reflects the fact that the download rate for the user is not sufficient to sustain continuous playback. 

A user is defined to be dis-satisfied when the user token parameter for the user exceeds a certain pre-defined threshold. User j is considered to be dis-satisfied at time t if the following condition is satisfied: 
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The percentage of dis-satisfied users at time t, denoted by D(t),  is then given by: 
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where I(.) is the identity function and J is the total number of users in the system. The VAC tracks the percentage of dis-satisfied users over time based on media buffer feedback from HAS clients. A window of observations consisting of the past L feedback cycles is taken into account to compute the trend of percentage of dis-satisfied users over time. Specifically at time t, observations D(t), D(t-1),…, D(t-L) are used to compute a linear fit as follows:
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m(t) and c(t) are the slope and the y-intercept for the linear equation depicting the trend of dis-satisfied users in feedback cycle t. A positive slope m(t) > 0 indicates that D(t) is increasing and a negative slope m(t) < 0 indicates that D(t) is decreasing.

MBR is used for each DASH session for controlling the percentage of dis-satisfied users. Decreasing the MBR has the effect of decreasing percentage of dis-satisfied users at the cost of video quality. Our basic idea is to set the MBR value just large enough keep the percentage of dis-satisfied users below a threshold ψ. At the beginning of every DASH session, the VAC initiates the MBR for the user to a nominal value and then updates it every feedback cycle depending on i) the percentage of dis-satisfied users D(t) and ii) the trend of percentage of dis-satisfied users m(t). The flowchart for our MBR update algorithm is depicted in Figure 4. 
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Fig. 4: Flowchart for Dynamic MBR Update.

There are 4 cases depending on the values of D(t) and m(t). 

Case 1) D(t) ≥ ψ and m(t) ≥ 0: When D(t) exceeds the threshold ψ and is on a non-decreasing trend exemplified by m(t) ≥ 0, MBRj(t) is reduced by a fraction χ with the aim of reversing the trend of D(t) i.e.,
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Case 2) D(t) ≥ ψ and m(t) < 0: In this case, D(t) is above the acceptable threshold ψ but has a decreasing trend as exemplified by m(t) < 0. Therefore the MBR is unchanged from its previous value i.e.,
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Case 3) D(t)  < ψ and m(t) > 0: In this case, D(t) is below the acceptable threshold ψ, but has an increasing trend. MBR is unchanged from its previous value as in Case 2. 
Case 4) D(t)  < ψ and m(t) ≤ 0: When D(t) is below the acceptable threshold ψ and has a non-increasing trend exemplified by m(t) ≤ 0,  MBR is increased by a fraction χ with the aim of improving video quality i.e.,
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2.4 Video QoE-Aware Scheduling at the RAN

A media-buffer aware optimization framework is considered for multi-user resource allocation that constrains re-buffering probability for adaptive streaming users.  A gradient based algorithm, called Re-buffering Aware Gradient Algorithm (RAGA), solves this optimization problem based only on periodic feedback of media buffer levels from streaming video clients. The scheduling priorities to users are continuously adjusted based not only on the absolute values of client media buffer levels but also on the rate of change of these buffer levels. Also since the optimization objective is not changed, this approach allows for flexibility in choosing custom optimization criterion including that of proportional fair and those based on video-quality metrics. Thus this approach is also friendly to non-video users that are served by the same base station. 

In most cellular wireless networks, the UEs send to the BS periodic feedback regarding the quality of wireless link that they are experiencing in the form of Channel Quality Information (CQI). The CQI sent by the UEs is discretized, thus making the overall channel state “m” discrete. The eNodeB translates the CQI information into a peak rate vector 
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 representing the peak achievable rate by user j in channel state m.  For every scheduling resource, the eNodeB has to make a decision as to which user to schedule in that resource. Scheduling the best user always would result in maximum cell throughput but may result in poor fairness. Scheduling resources in a round robin fashion might result in inability to take advantage of the wireless link quality information that is available. So, typical resource allocation algorithms in wireless networks seeks to optimize the average service rates R = (R1, R2, R3, …RJ) to users such that a concave utility function H(R) is maximized subject to the capacity (resource) limits in the wireless scenario under consideration i.e., 
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where V represents the capacity region of the system. Utility functions of the sum form have attracted the most interest:
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where each Hj(Rj) is a strictly concave continuously differentiable function defined for Rj > 0. The Proportional fair (PF) and Maximum Throughput (MT) scheduling algorithms are special cases of objective functions of this form with Hj(Rj) = log(Rj) and H(Rj) = Rj respectively.
A video-aware optimization framework is considered for multi-user resource allocation in which client re-buffering is constrained. In order to avoid re-buffering at a video client, video segments need to be downloaded at a rate that is faster than the playback rate of the video segments. Let Tj(s) be the duration of time taken by user j to download a video segment s and τj(s) be the media duration of the segment. Then the condition required for avoiding re-buffering is:
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where δ > 0 is a small design parameter to account for variability in wireless network conditions. Segment download time Tj(s) depends on the size of the video segment Sj(s) and the data rates experienced by user j. Sj(s)  in turn depends on the video content and representation (adaptation) level that is chosen by the DASH client. DASH client choses the representation level for each video segment based on its state and its estimate of available link bandwidth. Based on all this, a Re-buffering Constrained Resource Allocation (RCRA) framework is devised as follows:
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The key difference is the additional constraints related to re-buffering. Unlike prior approaches, this framework closely relates the buffer evolution at DASH clients to resource allocation at the eNodeB since Tj(s) is related to the average service rate Rj obtained by user j. By intelligent resource allocation, the eNodeB can help reduce re-buffering in video clients. This approach requires some feedback from DASH clients in order to enforce the re-buffering constraints.
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Fig. 5: Buffer Level Feedback based Scheduling.

The buffer-aware resource allocation framework is shown in Figure 5. In addition to CQI feedback as is standard in 3GPP cellular networks, each adaptive streaming user also feeds back its media playback buffer level periodically to the BS scheduler. This can be directly done over the radio access network or indirectly through the video server. 

Scheduling algorithms for multi-user wireless networks need to make decisions during every scheduling time slot (resource) t in such a way it leads to the long-term optimal solution. Note that the scheduling time slot is typically at much finer granularity than a (video) frameslot in the LTE environment. The Re-buffering Aware Gradient Algorithm (RAGA) uses a token-based mechanism to enforce the re-buffering constraints. The scheduling decision of RAGA in scheduling time slot t when the channel state is m(t) can be summarized as follows:
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where Rj(t) is the current moving average service rate estimate for user j. It is updated every scheduling time slot as in the PF scheduling algorithm i.e.,
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where β > 0 is a small parameter that determines the time scale of averaging and μj(t) is the service rate of user j in time slot t. 
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 if user j was scheduled in time slot t and μj(t) = 0 otherwise. Wj(t) is a video-aware user token parameter and aj(t) is a video-aware user time-scale parameter, both of which are updated based on periodic media buffer level feedback by the clients to the eNodeB. These parameters hold the key to enforcing re-buffering constraints at the eNodeB. For simplicity, it is assumed that such client media buffer level feedback is available only at the granularity of a frameslot.  Therefore the user-token parameter and user-time scale parameter are constant within a frameslot i.e.,
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Let 
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 represent the buffer status feedback in the frameslot i in units of media time duration. The difference between buffer levels from frameslot (i-1) to frameslot i is given by:
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A positive value for 
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 indicates an effective increase in the media buffer size in the previous reporting duration and a negative value indicates a decrease in media buffer size. Note that this difference depend on frame playback and download processes at the DASH client. To avoid re-buffering, the rate of change in the client media buffer level needs to be greater than a certain positive threshold i.e.,
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The media buffer aware user token parameter is updated every frameslot as follows:
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The intuitive interpretation of this result is that if rate of media buffer change for a certain user is below the threshold, the token parameter is incremented by an amount 
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 that reflects the relative penalty for having a buffer change rate below threshold. This increases its relative scheduling priority compared to other users whose media buffer change rate is higher. Similarly, when the rate of buffer change is above the threshold, the user-token parameter is decreased to offset any previous increase in scheduling priority. 
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 is not reduced below zero, reflecting the fact that all users that have a consistent buffer rate change greater than the threshold have scheduling priorities as per standard proportional fair scheduler. 

The video-aware parameter 
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 determines the time-scale over which re-buffering constraints are enforced for adaptive streaming users.  A larger vale of 
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 implies greater urgency in enforcing the re-buffering constraints for user j. The values of 
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 can be set to reflect this relative urgency for different users. Therefore 
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 is set based on the media buffer level of user j in frameslot i as follows:
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where ϕ is a scaling constant, 
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 is the current buffer level in seconds for user j, and  
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  is the threshold for the steady state operation of the DASH video client. If the buffer level 
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 for user j is above the threshold, then 
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 = 1 and if it is below the threshold, 
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 scales to give relative higher priorities to users with lower buffer levels. This scaling of priorities based on absolute user buffer levels improves the convergence of the algorithm. Note that parameter Wj(t) is updated based on rate of media buffer level change while parameter aj(t) is updated based on buffer levels themselves. Such an approach provides a continuous adaptation of user scheduling priorities based on media buffer level feedback (unlike an emergency response type response) and reduces the re-buffering percentage of users without significantly impacting video quality.
2.5 Relationship to SAND
SAND provides the application layer framework to realize the streaming enhancements described in clauses 2.3 and 2.4. In particular, the VAC described in clause 2.3 can be realized by the DANE functionality defined by SAND, where DASH clients can indicate their desired bandwidth levels through the use of the SAND status message SharedResourceAllocation and also can report QoE metrics. In addition, when VAC determines the resource allocation across the DASH clients, it can rely on its DANE functionality to inform the DASH clients about their resource assignments and throughput / QoS, which can be achieved by the SAND PER message SharedResourceAssignment, Throughput and QoSInformation. Furthermore, provided that the QoE metrics reports enabled by SAND are also made accessible to the scheduler at the eNodeB, SAND can be an enabler for the QoE-aware multiuser scheduling algorithms described in clause 2.4
2.6 Performance Evaluation Results
Dynamic MBR signaling (MBR-Sig) algorithm with RAGA [2], Proportional Fair (PF) [3], Proportional fair With Barrier for Frames (PFBF) 


[4] ADDIN EN.CITE , GMR (Gradient with Min rate) [1], and Congestion Aware (CA) [5] algorithms. For GMR, the minimum rate is set for each video user to the rate of the lowest representation level of the user’s video. CA algorithm is an end-to-end distributed resource management algorithm based on congestion-signaling.

Re-buffering percentage is computed for each user as the fraction of total time the user spends in re-buffering state. Fig. 6 plots the CDF of the % of users with re-buffering less than 2% as the load is varied. For a given load, PF and GMR have lowest % of users with re-buffering percentage less than 2%. PFBF performs better than PF and GMR. RAGA performs still better. CA algorithm has the highest number of users with low re-buffering because of its very conservative approach (very low video quality). Our proposed MBR-Sig algorithm comes close to CA in terms of number of users with low re-buffering. We measure video quality in terms of PSNR. Fig. 7 compares the average video quality in terms of PSNR for the various schemes. PF has the best quality at expense of huge re-buffering and CA has lowest video quality although it has low re-buffering. RAGA performs in between PF and CA in terms of quality as well as re-buffering .MBR-Sig obtains a video quality close to RAGA, but it obtains a re-buffering percent close to CA. 
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Fig. 6: CDF of Re-buffering Outage.
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Fig. 7: Average Video Quality Comparison.

[image: image51.emf]PF PFBF GMR RAGA CA MBR-Sig

0

10

20

30

40

50

60

Video QoE Capacity

Scheduling Scheme

QoE Capacity (# of users)


Fig. 8: QoE-outage based capacity.

Fig. 8 compares the QoE-outage based capacity of various schemes. Observe that PF has the lowest capacity, and CA obtains the highest capacity. MBR-Sig does better than RAGA in terms of capacity and comes close to CA. Thus MBR-Sig approach is better than other schemes because it achieves the best balance of quality and capacity, with video-aware intelligence at network core. 

The following evaluation results compare the performance of the resource allocation algorithm RAGA with standard Proportional Fair (PF) 


[3] ADDIN EN.CITE , Proportional fair With Barrier for Frames (PFBF) 


[6] ADDIN EN.CITE , and GMR (Gradient with Min rate) 1[]
 algorithms. For GMR, the minimum rate is set for each video user to the rate of the lowest representation level of the user’s video. 
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Fig. 9: CDF of Re-buffering Percentage.

Figure 9 plots the CDF of re-buffering percentage when there are 100 streaming and 100 elastic users in the system. It is observed that RAGA has the lowest re-buffering percentage among all the schemes across all the users. It has reduced number of users experiencing and smaller amount of re-buffering experienced by the users. PF has the worst re-buffering performance. GMR is better than PF, but it still lags behind due to lack of dynamic cooperation with the video clients. PFBF performs better than GMR in terms of peak re-buffering percentage but lags behind both PF and GMR in terms of the number of users experiencing re-buffering.  This is because PFBF reacts to low-buffer in an emergency fashion and inadvertently penalizes good users to satisfy users with low buffer levels. On the other hand RAGA continually adjust the scheduling priorities of the users based on the rate of change of media buffer levels, thus avoiding emergency situations in the first place. 
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Fig. 10: CDF of Perceived Video Quality (PVQ).

Figure 10 compares CDFs of Perceived Video Quality (PVQ) of video clients with the same loading. PVQ is computed as the difference between the mean and standard deviation of PSNR. Only played out video frames are considered in the computation of PVQ. The PVQ using RAGA is better than PF scheduling for all users. GMR appears to have only marginally better PVQ than RAGA but this is at a huge cost in terms re-buffering percentages. PFBF has better PVQ than all schemes for some users and worse than all schemes for others because of emergency response to low buffer levels and cyclic effect thereof. RAGA has the most balanced PVQ among all the schemes and also the lowest re-buffering percentages.
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Fig. 11: % of Users with No Re-buffering vs. Loading.

Figures 11 and 12 plot respectively the percentage of users with no re-buffering and the peak re-buffering percentage as the user loading varied. RAGA performs the best compared to other algorithms on both these accounts. PFBF performs well in terms of peak re-buffering percentage compared to PF and GMR but loses out in terms of number of users experiencing re-buffering at high loads. At high loads, GMR performs better than PF, but the % of user experiencing re-buffering and peak re-buffering are significantly higher than RAGA. Also RAGA has the lowest slope in both cases indicating the stability it provides to HAS rate adaptation by constraining the re-buffering percentage. 
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Fig. 12: Peak Re-buffering percent.
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Fig. 13: Elastic User Throughput. 

Figure 13 compares the CDFs of throughputs of elastic users when using the different scheduling algorithms. PF provides the highest throughput to elastic users as it treats both elastic and video streaming users alike. Among QoE-aware scheduling algorithms, RAGA is the closest to PF, indicating that its friendliness to elastic users. 

3 Streaming Enhancements from QoE-Aware Resource Allocation

It is proposed to adopt Section 2 in TR 26.957 on the FS_SAND study item.
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