3GPP TSG SA4#87 meeting
S4- 160020
25 - 29 January, 2016, Sophia Antipolis, France
Agenda item:
8.6
Source:
U.S. Department of Commerce
Title:
Intelligibility of AMR WB, AMR WB/G.718 IO, EVS WB, EVS CA WB, and EVS CA SWB in Impaired Radio Channel Conditions
Document for
Discussion
1.1 Motivation
In SA4#86 the U.S. Department of Commerce submitted a document [1] detailing an intelligibility study of modern speech codecs in very noisy environments. This study did not address the issue of intelligibility in imperfect radio channels. Intelligibility is a very important dimension to the public safety community and is essential to the success of MCPTT communications. With the task of codec selection at hand, our goal was to test the intelligibility performance of AMR-WB and EVS in the presence of simulated imperfect radio channels.
[2] provides a significant amount of information about how AMR-WB and EVS perform relative to each other in the audio quality dimension. While audio quality and speech intelligibility are both dimensions in overall quality of experience, audio quality is not a reliable predictor of speech intelligibility. There are dedicated speech intelligibility measurement protocols (modified rhyme test, P.INTEL) and their existence speaks to the unique challenges inherent in measuring speech intelligibility.
1.2 Experiment Design

One ever-present challenge in designing subjective experiments is balancing the tradeoff between available testing resources and the number of things to be tested. Of course a more comprehensive test is desirable but comprehensive tests tend to be prohibitively expensive. The following design description represents the most efficient use of our available resources between November and January.
In our previous contribution [1] we employed the Modified Rhyme Test (MRT) to provide a measure of intelligibility in loud noise conditions. A trial in a MRT utilizes a carrier sentence followed by a one-syllable test word. That test word must be correctly identified in order for that trial to be considered a success. If one uses the MRT protocol to test imperfect radio channels, the effect of the radio channel would only have an impact on the success of a trial if there was a channel error directly affecting the test word. This is an inefficient use of a listener’s time—only one of the six syllables heard has any bearing on the results of the test. It also dramatically complicates experiment design as one must verify that a target loss rate was achieved on a small subset of each source sentence. In addition to that one must also maintain the balance intended in the MRT protocol.
With these thoughts in mind we decided to pursue a different protocol. Put simply, listeners would listen to a recording played back through a loudspeaker and then repeat the words that they understood into a microphone attached to a recording device. The resulting recordings were then scored for accuracy resulting in a number of words correctly identified. This very intuitive and direct definition of intelligibility has been used to measure the effectiveness of various speech enhancement (or noise reduction) algorithms, see [3] for one example.

It was necessary to prevent learning in order to hold the amount of linguistic context constant. Test design did not present any multiword message more than one time. However, the single word messages were presented more than one time (eg: “thanks” or “affirmative”). Subjects were required to report what they heard after a single play—no repeats were be allowed.

Twenty subjects participated and each subject heard all conditions but different combinations of source and condition. The result of this design is that around 1100 words are used to evaluate each condition.
1.2.1 Source Material

A corpus of public safety messages was transcribed from public safety scanner traffic. We made studio quality recordings of four males and two females reading these transcripts aloud in quiet conditions. These recordings were stored in the `.wav` format at 16 bits per sample and 48k samples per second. 360 messages were used and approximately one-sixth of these came from each of the six talkers. Message length ranged from one word to 15 words with a median length of 7 and a mean length of 6.1 words.
1.2.2 Codec Modes

Five codec modes were selected for this experiment and are listed below.
· EVS WB CA @ 13.2 [4]
· EVS SWB CA @ 13.2 [4]
· EVS WB @ 13.2 [4]
· AMR WB @ 12.65 [5]
· AMR WB @ 12.65 decoded by G.718 I/O [5], [6]
We are interested in the possibility of greater channel robustness proposed by EVS Channel Aware (CA) mode so we tested the two EVS modes that are available with CA mode. When testing EVS CA, we used the `HI` indicator for parameter `FEC` and we used FEC offset 3.

We are also interested in EVS WB at 13.2 kb/s for the cases where restrictions on end-to-end delay prevent the use of CA mode. Inclusion of this mode also allows for the most direct comparison to AMR WB at 12.65 kb/s.

Additionally, we tested AMR WB at 12.65 kb/s decoded by G.718 I/O as this would give an indicator how AMR WB could perform with more nearly state-of-the-art packet loss concealment.
1.2.3 Channel Conditions
Four channel impairment levels were selected. To serve as a baseline, the first condition was 0% Frame Error Rate (FER).
To simulate FER greater than zero we refer to Table A.1.2-3 of [2] “Markov parameters for 3 km/h”. These profiles are of interest because they generate loss patterns with error bursts of greater than one frame and allow us to dynamically but predictably and repeatably create loss patterns of varying lengths for all of our speech recordings. We chose FER of 5%, 10% and 20% for this test.
However, in the Markov models each state persists for 10 ms so we use every fourth state to simulate a downlink with 40 ms frames. Each of these 40 ms frames would contain two 20 ms EVS frames, so the value of each 40 ms frame is repeated once. The end result is a loss pattern where each entry represents a 20 ms EVS frame. The loss patterns were further processed such that any frame with no loss indicated was modified to indicate a minimal amount of jitter. The loss patterns were then use as input to `dlyerr_2_errpat.exe` in the AMR WB cases and `networkSimulator_g192.exe` in the EVS cases. In the AMR WB case, the output of `dlyerr_2_errpat.exe` was further processed by `eid-xor.exe` before being used as an input to the decoder. In the EVS case, the output of `networkSimulator_g192.exe` was used as input to the decoder. Exact command line calls for all cases processing one file can be found in Appendix 1.6.
1.2.4 Background Noise
Speech codec performance in noisy environments is very important to the public safety community. We chose two background noise types relevant to the public safety community: coffee shop and U.S. police car siren. Due to time constraints we could only test these noise types at one SNR each. Coffee shop noise was mixed with speech at 10 dB SNR and siren noise was mixed with speech at 5 dB SNR.
1.2.5 Processed Speech Assignments
With five codec modes, four channel conditions, and two noise levels, a total of 40 conditions are included in this speech intelligibility test. Each condition was tested using 180 messages. For maximum comparability, one group of 180 messages was used to test all coffee shop noise conditions and second group of 180 messages was used to test all siren noise conditions. The 20 coffee shop noise conditions were tested in a single session and the 20 siren noise conditions were tested in a single session. Half of the listeners did the coffee shop session first, and half of the listeners did the siren session first.

Each session covered 20 conditions, contained 180 messages, and was heard by 20 listeners. Each listener heard each of the 180 messages once and only once. Each condition was paired with each of the 180 messages once and only once.
This balance was accomplished by breaking the list of 180 messages into 20 groups of 9 messages. These 20 groups were assigned to the 20 conditions for listener one (Group 1 → Condition 1, Group 2 → Condition 2, …, Group 20 → Condition 20). Then these assignments were shifted for listener two (Group 2 → Condition 1, Group 3 → Condition 2, …, Group 1 → Condition 20), and shifted again for listener 3 two (Group 3 → Condition 1, Group 4 → Condition 2, …, Group 2 → Condition 20). Continuing this process results in these assignments for listener 20: Group 20 → Condition 1, Group 1 → Condition 2, …, Group 19 → Condition 20.
In any session, the 20 conditions were presented in a random order under the following constraints. All WB conditions were grouped and all SWB conditions were grouped. Half the sessions had WB then SWB, the other half had SWB then WB. In addition each constrained random presentation order was balanced by using the reverse order in a different session. Thus the position of the conditions within the sessions was balanced.
1.3 Implementation

1.3.1 Source preparation
1.3.1.1 Noise Insertion process

The noise insertion process follows:

1. Calculate relative A-weighted SPL for both speech and noise signals.
2. Calculate initial SNR by subtracting noise SPL from speech SPL.
3. Calculate scale factor to multiply noise by in order to achieve desired SNR.
4. Add speech signal and scaled noise signal.
1.3.1.2 Programmatic Speech Coding/Decoding
In order to properly downsample, mix, code, and decode all of the source we reused software previously developed for the same purpose in [1]. That software assumed a specified directory structure and then automatically processed all available source material. A text description of the process follows.
1. The directory structure was parsed and all source files and their properties (sample rate, file type, source type—speech or noise) were calculated and stored.

2. All source files in `.wav` format were converted to standard raw PCM format.

3. All source files were downsampled to 16k samp/sec using high quality G.191 filters.

a. All downsampled files were normalized to -28 dB using ITU Rec. P.56.

b. All downsampled files were modified to account for filter delay.

4. All source files were downsampled to 32k samp/sec using high quality G.191 filters.

a. All downsampled files were normalized to -28 dB using ITU Rec. P.56.

5. Speech and noise were mixed at the specified levels using the noise insertion process specified in1.3.1.1. Speech and noise were mixed separately at each sample rate.

6. The proper resulting source files were then coded and decoded by each codec mode [4]

 REF _Ref440536989 \r \h
[5]

 REF _Ref440536999 \r \h
[6].

a. The process for coding and decoding for each codec mode included looping through each channel impairment level.

7. The resulting processed audio was then upsampled to 48k samp/sec.

8. The resulting upsampled audio was then converted from standard raw PCM format to `.wav` format.

Exactly how all the codecs were called along with bitstream file processing calls are listed in Appendix 1.1.
1.3.2 Experiment Logistics
20 listeners participated in this test. The listeners were recruited from PSCR personnel. There were 12 males and 8 females and on average the listeners were in their mid thirties. Listeners did not know the nature of the test nor the conditions it contained.
Listeners participated one-at-a-time in a quiet sound isolation chamber. The coded speech plus noise signals were played back through a high-quality loudspeaker and listeners were allowed to adjust the volume of the loudspeaker to a comfortable level. Listeners were asked to repeat the message as they heard it. The prompt displayed read: “After the second beep, please exactly repeat each word that you understood between the two beeps.” A studio quality microphone captured the repetition which was then digitized and stored for later analysis. The experiment was double-blind. The only information provide to subjects was their progress through the session. This was done via a prompt that read, for example “This is trial 175 of 180 total trials.”
1.3.3 Listening Lab

We conducted the experiment in two matched sound-isolated rooms with inside dimensions 305 cm long, 274 cm wide and 213 cm high (approximately 10 by 9 by 7 feet). In each room the floor is carpeted and all of the walls and the ceiling are covered with sound absorbing materials. Under normal conditions as would be experienced in the experiment, the noise level inside either room is below 26.5 dBA measured with a Brüel and Kjær Type 2250 sound level meter. When the air conditioning for a room is turned off, that level drops below 19.5 dBA for each room. These are extremely low noise levels and these measurements demonstrate that background noise is well- controlled in these labs.

Both rooms are configured so that the subject sits on a chair in the center of the room behind a 76 cm by 152 cm (2.5 by 5 foot) work table. This table supports a loudspeaker, an LCD monitor screen, a mouse, and a keyboard.

The recording format is digital files with 48,000 samp/s and 16 b/samp. The playback path includes a digital audio interface (USB to AES/EBU) so that the AES/EBU digital audio format is provided to the digital input of a Fostex Model 6301D Digital Personal Monitor loudspeaker. Subjects were encouraged to adjust the volume knob on the front of this loudspeaker to achieve preferred listening level.

We used pink noise playback to characterize the combined frequency response of the playback electronics, the loudspeaker, and the room. Our spectral analysis was performed at the subject head location using octave-wide analysis bands (see ANSI S1.11). The composite response in the octaves centered at 125, 250, 500, 1000, 2000, 4000, 8000, and 16,000 Hz deviate no more than ±5 dB with respect to the response in the octave centered at 1000 Hz.

1.3.4 Scoring
A person listened to every recording produced by every subject and marked each word of the corresponding transcript as either correct or incorrect, using a software tool. This tool automated blind playing of the recordings, presentation of the transcripts, and collection of the results. In this process, the person scoring the recordings had no indication of the conditions that listeners heard before making the recordings. This resulted in a number of words correct in each recording. Thus the graphs in this document show the fraction of words successfully repeated for each codec mode and impairment level. A set of rules defining the scoring process are available in Appendix 1.6.11.
1.4 Results and Discussion
1.4.1 Experiment Errata

After completion of the experiment errata were discovered. These errata affect the analysis of the data collected during this experiment.
1.4.1.1 EVS Jitter Buffer Manager Lock Up

We were notified on January 11, 2016 about a bug in the EVS reference software implementation that we used during our experiment ([4], Version 12.5.0). The software error caused the jitter buffer manager to lock up in the case of low jitter and high FER. Thus the CA mode of EVS was not properly exercised in our test.
This has a significant impact on the results of this experiment as it invalidates data gathered for two of the three EVS modes we tested. As a result the performance of EVS CA cannot be included in this report.
1.4.1.2 Random Number Generator Seed

A random number generator was used in order to generate a unique, random loss pattern with the specified statistics. The loss pattern was to be unique based on the combination of source file, the noise type/SNR and channel impairment level. To achieve this, a hash function was used to generate a numerical input to seed the random number generator. The input to this hash function was the path and filename of the source file combined with a number representing the channel impairment level.

A post-experiment audit revealed that the method used to compensate for delay when using the AMR WB codec caused an error in this process. The delay compensation method created a temporary version of the source file with a slightly different name, and this file was used as the input to the encoder and as the input to the hashing function. This is evident in Appendix 1.6.8 and 1.6.10.
Therefore, the loss patterns generated for the AMR WB and AMR WB/G.718 codecs differ from those generated for the EVS codecs. Additionally, the delay compensation for AMR WB and AMR WB/G.718 differed by 15 samples. These factors add additional minor sources of variation between the conditions under consideration, but it is impossible for such factors to systematically favor one codec over another.
Nevertheless we performed a post-hoc analysis on the actual loss patterns seen by the codecs. The results listed in Table 1 through Table 3 show that the median loss lengths for both loss pattern types were identical and that the average loss rate and the mean loss length for both loss pattern types were very similar.

Table 1. Measured average loss rates for AMR and EVS loss patterns.
	Average Loss Rate
	5% FER
	10% FER
	20% FER

	AMR
	4.71%
	10.09%
	20.34%

	EVS
	4.71%
	10.18%
	20.40%

Table 2. Measured mean loss length for AMR and EVS loss patterns.

	Average Loss Rate
	5% FER
	10% FER
	20% FER

	AMR
	2.6883
	2.9718
	3.6160

	EVS
	2.7052
	2.9736
	3.5938

Table 3. Measured median loss lengths for AMR and EVS loss patterns.

	Average Loss Rate
	5% FER
	10% FER
	20% FER

	AMR
	2
	2
	2

	EVS
	2
	2
	2

1.4.2 Codec Intelligibility
The results obtained during this experiment are shown clearly in Figure 1 and Figure 2. In the case of coffee shop noise at 10 dB SNR with non-zero FER, no codec could be statistically distinguished from the others at the 95% significance level. Each condition was evaluated using 180 messages for a total of 1085 (coffee shop noise) or 1119 (siren noise) words. In either case this is around 1100 Bernoulli Trials per condition. With this number of trials, a success rate of .93 is significantly greater than a success rate of .90 but a success rate of .92 is not significantly greater than a success rate of .90. The margin required for significance increases slightly towards the middle of the scale: a success rate of .74 is significantly greater than a success rate of .70 but a success rate of .73 is not significantly greater than a success rate of .70.
[image: image1.png]Success Rate

[§
0.95 ~

0.9

0.85

0.8

0.75

0.7
0% FER

EVS statistically
significantly
different

5% FER 10% FER

Condition Number

~——AMR WB 12.65
—&#— AMR WB/G.718 1/O
— @& EVSWB 132

20% FER

Figure 1. Word recognition success rates for coffee shop noise at 10 dB SNR. EVS WB at 13.2 kb/s performs statistically significantly better than all other codecs only in the 0% FER case.
In the case of siren noise at 5 dB SNR with imperfect channel conditions, AMR WB decoded with G.718 I/O performs better than EVS WB at 13.2 kb/s. AMR WB decoded with G.718 I/O also performs better than AMR WB at 12.65 kb/s in the 20% FER case.
[image: image2.png]Success Rate

0.95

0.9

0.85

0.8

0.75

0.7
0% FER

5% FER 10% FER

Condition Number

~——AMR WB 12.65
—&#— AMR WB/G.718 1/O
— @& EVSWB 132

20% FER

Figure 2. Word recognition success rates for siren noise at 5 dB SNR. AMR WB at 12.65 kb/s decoded with G.718 I/O performs better than EVS WB at 13.2 kb/s in the 5%, 10% and 20% FER cases. AMR WB at 12.65 kb/s decoded with G.718 I/O also performs better than AMR WB at 12.65 kb/s in the 20% FER case.
1.4.3 Software Stability

As reported in 1.4.1.1, we were unable to exercise the CA mode of EVS during this test. The bug in the EVS reference software disclosed on January 11, 2016 was the second found in the reference software during the course of this experiment—the other was disclosed on December 7, 2015. Both of these prevented partial copy recovery in software available to us at the time of testing.

As such we are unable to measure any robustness to imperfect radio channel conditions provided by the EVS CA mode that may result in an intelligibility performance increase at this time.

Additionally, since the initial version of EVS was released in September of 2014, five new versions have been approved and released. It is expected that a sixth version will be required to eliminate the bugs uncovered in December 2015 and January 2016.
1.4.4 Decoder contributions to End-to-End Delay
An additional consideration in MCPTT applications is end-to-end delay. This is comprised of several delay contributions that must be added together to arrive at end-to-end delay. One of these contributions is the delay induced by buffering frames of encoded speech data at the decoder, often called jitter buffering. Motivations for this buffering include mitigation of delay jitter and robustness against lost data.

The only delay jitter introduced in the present test was the 20 ms scheduling delay variation mandated when two 20 ms speech data frames must be carried in a single 40 ms downlink frame. This was implemented by following the example described in the Matlab script `convert_markov_profile.m` provided by representatives of Qualcomm on December 4, 2015.

The AMR and G.718 decoders do not use multiple frames of encoded speech data to achieve robustness. Thus the buffering required in front of these decoders in this test is one frame (20 ms). More precisely, when a downlink frame containing speech frames N and N+1 is received, speech frame N can be decoded immediately and speech frame N+1 must be buffered while frame N is played. When frame N has finished playing, frame N+1 can be decoded and played. Frames N+2 and N+3 will arrive exactly when frame N+1 has finished playing.

The EVS decoder can operate in the same fashion unless CA mode is used. EVS CA mode gains robustness through the use of multiple encodings spread across multiple speech frames. In order to take advantage of these multiple encodings, they must be available at the decoder. In this test the EVS CA encoding option was set to 3 (“-rf 3”) as proposed by representatives of Qualcomm. This requires that the decoder have access to 3 frames in addition to the one that it is currently decoding. When this requirement is combined with the requirement that two 20 ms speech data frames are carried in a single 40 ms downlink frame, the equivalent buffering requirement for EVS CA operation in this test is four frames (80 ms). More precisely, consider three consecutive downlink frames that contain speech frames (N, N+1), (N+2, N+3), and (N+4, N+5). If speech frame N+1 is lost, then CA decoding requires speech frame N+4 in order to produce the speech output associated with frame N+1. But speech frame N+4 and N+5 arrive at the same time, so a total of four frames must be available in order to play out frame N+1.
1.5 Reference

[1] NTIA Report 15-520: “Speech Codec Intelligibility Testing in Support of Mission-Critical Voice Applications for LTE”, S.D. Voran & A.A. Catellier September 2015
[2] 3GPP TR 26.879: “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Mission Critical Push To Talk (MCPTT); Media, codecs and Multimedia Broadcast/Multicast Service (MBMS) enhancements for MCPTT over LTE (Release 13)”.

[3] IEEE Transactions on Audio, Speech, and Language Processing, vol.19, no.1, pp.47-56: “Reasons why Current Speech-Enhancement Algorithms do not Improve Speech Intelligibility and Suggested Solutions,” P.C. Loizou & Kim Gibak Jan. 2011. doi: 10.1109/TASL.2010.2045180

[4] 3GPP TS 26.442 “Codec for Enhanced Voice Services (EVS); ANSI C code (fixed-point)”.

[5] 3GPP TS 26.204 “Speech codec speech processing functions; Adaptive Multi-Rate – Wideband (AMR-WB) speech codec; ANSI-C code”.
[6] Recommendation ITU-T G.718 (06/2008): “Frame error robust narrow-band and wideband embedded variable bit-rate coding of speech and audio from 8-32 kbit/s”.
1.6 Appendix
1.6.1 Example Procesing Commands
1.6.1.1 EVSCA-WB, no losses

Encode string:

['../../exes/win_EVSencoder.exe', '-max_band', 'WB', '-dtx', '-rf', 'HI', '3', '13200', '16', '../../audioOneFile/uncoded/raw16k/speech/CF_medium_150.raw', '../../bitstreamFilesNoNorm/EVSCA_132_WB_None/raw16k/speech/CF_medium_150.bit']

Decode string:

['../../exes/win_EVSdecoder.exe', '16', '../../bitstreamFilesNoNorm/EVSCA_132_WB_None/raw16k/speech/CF_medium_150.bit', '../../audioOneFile/EVSCA_132_WB/raw16k/speech/CF_medium_150.raw']

1.6.1.2 EVSCA-WB, with losses

Encode String:

['../../exes/win_EVSencoder.exe', '-max_band', 'WB', '-dtx', '-rf', 'HI', '3', '13200', '16', '../../audioOneFile/uncoded/raw16k/speech/CF_medium_150.raw', '../../bitstreamFilesNoNorm/EVSCA_132_WB_2/raw16k/speech/CF_medium_150.bit']

Decode process:

count number of frames in bitstream files

multiply by two to get correct number of 10ms frames

generate loss pattern using markov chain

get every fourth value in markov chain output

repeat each frame once to get back to 20ms

if loss indicated, do nothing, else, change to either 120 or 100

write resulting loss pattern to disk

Network Simulator String:

['../../exes/networkSimulator_g192.exe', '../../bitstreamFilesNoNorm/EVSCA_132_WB_2/raw16k/speech/CF_medium_150.bit.dat', '../../bitstreamFilesNoNorm/EVSCA_132_WB_2/raw16k/speech/CF_medium_150.bit', '../../bitstreamFilesNoNorm/EVSCA_132_WB_2/raw16k/speech/CF_medium_150.bit.rtp', 'tracefile', '1', '0']

Decode string:

['../../exes/win_EVSdecoder.exe', '-VOIP', '-Tracefile', 'evsTrace.tmp', '16', '../../bitstreamFilesNoNorm/EVSCA_132_WB_2/raw16k/speech/CF_medium_150.bit.rtp', '../../audioOneFile/EVSCA_132_WB_2/raw16k/speech/CF_medium_150.raw']

1.6.1.3 EVSCA-SWB, no losses

Encode String:

['../../exes/win_EVSencoder.exe', '-max_band', 'SWB', '-dtx', '-rf', 'HI', '3', '13200', '32', '../../audioOneFile/uncoded/raw32k/speech/CF_medium_150.raw', '../../bitstreamFilesNoNorm/EVSCA_132_SWB_None/raw32k/speech/CF_medium_150.bit']

Decode String:

['../../exes/win_EVSdecoder.exe', '32', '../../bitstreamFilesNoNorm/EVSCA_132_SWB_None/raw32k/speech/CF_medium_150.bit', '../../audioOneFile/EVSCA_132_SWB/raw32k/speech/CF_medium_150.raw']

1.6.1.4 EVSCA-SWB, with losses

Encode String:

['../../exes/win_EVSencoder.exe', '-max_band', 'SWB', '-dtx', '-rf', 'HI', '3', '13200', '32', '../../audioOneFile/uncoded/raw32k/speech/CF_medium_150.raw', '../../bitstreamFilesNoNorm/EVSCA_132_SWB_2/raw32k/speech/CF_medium_150.bit']

Decode process:

count number of frames in bitstream files

multiply by two to get correct number of 10ms frames

generate loss pattern using markov chain

get every fourth value in markov chain output

repeat each frame once to get back to 20ms

if loss indicated, do nothing, else, change to either 120 or 100

write resulting loss pattern to disk

Network Simulator String:

['../../exes/networkSimulator_g192.exe', '../../bitstreamFilesNoNorm/EVSCA_132_SWB_2/raw32k/speech/CF_medium_150.bit.dat', '../../bitstreamFilesNoNorm/EVSCA_132_SWB_2/raw32k/speech/CF_medium_150.bit', '../../bitstreamFilesNoNorm/EVSCA_132_SWB_2/raw32k/speech/CF_medium_150.bit.rtp', 'tracefile', '1', '0']

Decode String:

['../../exes/win_EVSdecoder.exe', '-VOIP', '-Tracefile', 'evsTrace.tmp', '32', '../../bitstreamFilesNoNorm/EVSCA_132_SWB_2/raw32k/speech/CF_medium_150.bit.rtp', '../../audioOneFile/EVSCA_132_SWB_2/raw32k/speech/CF_medium_150.raw']

1.6.1.5 EVS-WB, no losses:

Encode String:

['../../exes/win_EVSencoder.exe', '-max_band', 'WB', '-dtx', '13200', '16', '../../audioOneFile/uncoded/raw16k/speech/CF_medium_150.raw', '../../bitstreamFilesNoNorm/EVS_132_WB_None/raw16k/speech/CF_medium_150.bit']

Decode String:

['../../exes/win_EVSdecoder.exe', '16', '../../bitstreamFilesNoNorm/EVS_132_WB_None/raw16k/speech/CF_medium_150.bit', '../../audioOneFile/EVS_132_WB/raw16k/speech/CF_medium_150.raw']

1.6.1.6 EVS-WB, with losses:

Encode String:

['../../exes/win_EVSencoder.exe', '-max_band', 'WB', '-dtx', '13200', '16', '../../audioOneFile/uncoded/raw16k/speech/CF_medium_150.raw', '../../bitstreamFilesNoNorm/EVS_132_WB_2/raw16k/speech/CF_medium_150.bit']

[decode process]

Network Simulator String

['../../exes/networkSimulator_g192.exe', '../../bitstreamFilesNoNorm/EVS_132_WB_2/raw16k/speech/CF_medium_150.bit.dat', '../../bitstreamFilesNoNorm/EVS_132_WB_2/raw16k/speech/CF_medium_150.bit', '../../bitstreamFilesNoNorm/EVS_132_WB_2/raw16k/speech/CF_medium_150.bit.rtp', 'tracefile', '1', '0']

Decode String:

['../../exes/win_EVSdecoder.exe', '-VOIP', '-Tracefile', 'evsTrace.tmp', '16', '../../bitstreamFilesNoNorm/EVS_132_WB_2/raw16k/speech/CF_medium_150.bit.rtp', '../../audioOneFile/EVS_132_WB_2/raw16k/speech/CF_medium_150.raw']

1.6.1.7 AMR WB, no losses:

correct for AMR delay

Encode String:

['../../exes/win_AMRWBencoder.exe', '-dtx', '-itu', '2', '../../audioOneFile/uncoded/raw16k/speech/CF_medium_150.raw.temp', '../../bitstreamFilesNoNorm/amr_126_WB_None/raw16k/speech/CF_medium_150.bit']

Decode String:

['../../exes/win_AMRWBdecoder.exe', '-itu', '../../bitstreamFilesNoNorm/amr_126_WB_None/raw16k/speech/CF_medium_150.bit', '../../audioOneFile/amr_126_WB/raw16k/speech/CF_medium_150.raw']
1.6.1.8 AMR WB, with losses:

correct for AMR delay

Encode String:

['../../exes/win_AMRWBencoder.exe', '-dtx', '-itu', '2', '../../audioOneFile/uncoded/raw16k/speech/CF_medium_150.raw.temp', '../../bitstreamFilesNoNorm/amr_126_WB_2/raw16k/speech/CF_medium_150.bit']

[decode process]

Delay to Error Pattern string:

['../../exes/dlyerr_2_errpat.exe', '-L', '22000', '-d', '200', '-f', '1', '-w', '-s', '0', '-i', '../../bitstreamFilesNoNorm/amr_126_WB_2/raw16k/speech/CF_medium_150.bit.dat', '-o', '../../bitstreamFilesNoNorm/amr_126_WB_2/raw16k/speech/CF_medium_150.bit.dat.errorpat']

Error Insertion Device String:

['../../exes/eid-xor.exe', '-vbr', '-fer', '../../bitstreamFilesNoNorm/amr_126_WB_2/raw16k/speech/CF_medium_150.bit', '../../bitstreamFilesNoNorm/amr_126_WB_2/raw16k/speech/CF_medium_150.bit.dat.errorpat', '../../bitstreamFilesNoNorm/amr_126_WB_2/raw16k/speech/CF_medium_150.bit.rtp']

Decode String:
['../../exes/win_AMRWBdecoder.exe', '-itu', '../../bitstreamFilesNoNorm/amr_126_WB_2/raw16k/speech/CF_medium_150.bit.rtp', '../../audioOneFile/amr_126_WB_2/raw16k/speech/CF_medium_150.raw']
1.6.1.9 AMR WB/G.718 IO, no losses:

[correct for AMR delay]
Encode String:

['../../exes/win_AMRWBencoder.exe', '-dtx', '-itu', '2', '../../audioOneFile/uncoded/raw16k/speech/CF_medium_150.raw.temp', '../../bitstreamFilesNoNorm/amrG718_126_WB_None/raw16k/speech/CF_medium_150.bit']

Decode String:
['../../exes/win_G718decoder.exe', '-IO_G722_2', '16', '../../bitstreamFilesNoNorm/amrG718_126_WB_None/raw16k/speech/CF_medium_150.bit', '../../audioOneFile/amrG718_126_WB/raw16k/speech/CF_medium_150.raw']
1.6.1.10 AMR WB/G.718 IO, with losses:

[correct for AMR delay]
Encode String:

['../../exes/win_AMRWBencoder.exe', '-dtx', '-itu', '2', '../../audioOneFile/uncoded/raw16k/speech/CF_medium_150.raw.temp', '../../bitstreamFilesNoNorm/amrG718_126_WB_2/raw16k/speech/CF_medium_150.bit']

[decode process]

Delay to Error Pattern string:

['../../exes/dlyerr_2_errpat.exe', '-L', '22000', '-d', '200', '-f', '1', '-w', '-s', '0', '-i', '../../bitstreamFilesNoNorm/amrG718_126_WB_2/raw16k/speech/CF_medium_150.bit.dat', '-o', '../../bitstreamFilesNoNorm/amrG718_126_WB_2/raw16k/speech/CF_medium_150.bit.dat.errorpat']

Error Insertion Device String:

['../../exes/eid-xor.exe', '-vbr', '-fer', '../../bitstreamFilesNoNorm/amrG718_126_WB_2/raw16k/speech/CF_medium_150.bit', '../../bitstreamFilesNoNorm/amrG718_126_WB_2/raw16k/speech/CF_medium_150.bit.dat.errorpat', '../../bitstreamFilesNoNorm/amrG718_126_WB_2/raw16k/speech/CF_medium_150.bit.rtp']

Decode String:
['../../exes/win_G718decoder.exe', '-IO_G722_2', '16', '../../bitstreamFilesNoNorm/amrG718_126_WB_2/raw16k/speech/CF_medium_150.bit.rtp', '../../audioOneFile/amrG718_126_WB_2/raw16k/speech/CF_medium_150.raw']
1.6.2 Scoring Rules
· Score for exact repetition of words, not meanings.

· Order does not matter.

· Extra words to not hurt.

Due to similarity and lack of consistent pronunciation by readers:

· ’en route’ and ‘in route’ are considered equivalent

· ‘complainant’ and ’complaintant’ are also considered equivalent

· ‘til’ and ‘until’ are equivalent
The transcript sometimes breaks hyphenated or compound words into single words if they can reasonably stand alone in the context.

Example: twenty-seven becomes twenty seven as it could be reasonably be errored to either thirty-seven, or twenty-two.

Contractions are equivalent to full words. Consider these hypothetical cases
Transcript: We will get cats.
Subject: We will get cats.
Score is 4 for 4

Transcript: We will get cats.
Subject: We’ll get cats.
Score is 4 for 4

Transcript: We will get cats.
Subject: We get cats.

Score is 3 for 4

Transcript: We will get cats.
Subject: Will get cats.

Score is 3 for 4

Transcript: We’ll get cats.
Subject: We’ll get cats.
Score is 3 for 3

Transcript: We’ll get cats.
Subject: We will get cats.
Score is 3 for 3

Transcript: We’ll get cats.
Subject: We get cats.

Score is 2 for 3
Transcript: We’ll get cats.
Subject: Will get cats.

Score is 2 for 3
- 1/14 -

