© ISO/IEC 2015 – All rights reserved

C:\Users\champelm\Documents\Standards\MPEG-DASH\MPEG 113 - Geneva\SAND DIS\ISO-IEC_DIS_23009-5_(E)_r4_redline.docFINAL DRAFT INTERNATIONAL STANDARD

 SET DDOrganization "© ISO/IEC 2015 – All rights reserved" © ISO/IEC 2015 – All rights reserved

 SET LibEnteteISO "ISO/IEC FDIS 23009-5:2015(E)" ISO/IEC FDIS 23009-5:2015(E)

 SET LIBTypeTitreISO " 63" 63

 SET DDTITLE4 "Part 5: Server and network assisted DASH (SAND)" Part 5: Server and network assisted DASH (SAND)

 SET DDTITLE3 "Information Technology — Dynamic adaptive streaming over HTTP (DASH)" Information Technology — Dynamic adaptive streaming over HTTP (DASH)

 SET DDTITLE2 "Élément introductif — Élément central — Partie 5: Titre de la partie" Élément introductif — Élément central — Partie 5: Titre de la partie

 SET DDTITLE1 "Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5: Server and network assisted DASH (SAND)" Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5: Server and network assisted DASH (SAND)

 SET DDDocLanguage "E" E

 SET DDWorkDocDate "2015-02-19" 2015-02-19

 SET DDDocStage "(50) Approval" (50) Approval

 SET DDOrganization3 "ISO/IEC" ISO/IEC

 SET DDOrganization1 "ISO/IEC J" ISO/IEC J

 SET DDBASEYEAR ""

 SET DDAmno ""

 SET DDDocSubType ""

 SET DDDocType "International Standard" International Standard

 SET DDWorkDocNo """"

 SET DDpubYear "2015" 2015

 SET DDRefNoPart "ISO/IEC 23009" ISO/IEC 23009

 SET DDRefGen "ISO/IEC 23009‑5" ISO/IEC 23009‑5

 SET DDRefNum "ISO/IEC FDIS 23009-5" ISO/IEC FDIS 23009-5

 SET DDSCSecr ""

 SET DDSecr ""

 SET DDSCTitle ""

 SET DDTCTitle ""

 SET DDWGNum "11" 11

 SET DDSCNum "29" 29

 SET DDTCNum "1" 1

 SET LIBLANG " 2" 2

 SET libH2NAME "Heading 2,H2,Head2A,2,Break before,UNDERRUBRIK 1-2,level 2,h2,Heading Two,Prophead 2,headi,heading2,h21,h22,21,Titolo Sottosezione,Head 2,l2,TitreProp,Header 2,ITT t2,PA Major Section,Livello 2,R2,H21,Heading 2 Hidden,Head1,(1.1,1.2,1.3 etc),Œ?©_o‚µ 2" Heading 2,H2,Head2A,2,Break before,UNDERRUBRIK 1-2,level 2,h2,Heading Two,Prophead 2,headi,heading2,h21,h22,21,Titolo Sottosezione,Head 2,l2,TitreProp,Header 2,ITT t2,PA Major Section,Livello 2,R2,H21,Heading 2 Hidden,Head1,(1.1,1.2,1.3 etc),Œ?©_o‚µ 2

 SET libH1NAME "Heading 1,h1,H1,app heading 1,l1,Huvudrubrik,h11,h12,h13,h14,h15,h16,Heading 1_a,Heading 1 (NN),Titolo Sezione,Head 1 (Chapter heading),Titre§,1,Section Head,Prophead level 1,Prophead 1,Section heading,Forward,H11,H12,H13,H111,H14,H112,H15,H16,H17" Heading 1,h1,H1,app heading 1,l1,Huvudrubrik,h11,h12,h13,h14,h15,h16,Heading 1_a,Heading 1 (NN),Titolo Sezione,Head 1 (Chapter heading),Titre§,1,Section Head,Prophead level 1,Prophead 1,Section heading,Forward,H11,H12,H13,H111,H14,H112,H15,H16,H17

 SET LibDesc ""

 SET LibDescD ""

 SET LibDescE ""

 SET LibDescF ""

 SET NATSubVer "0" 0

 SET CENSubVer "2" 2

 SET ISOSubVer ""

 SET LIBVerMSDN "STD Version 2.1c2" STD Version 2.1c2

 SET LIBStageCode "50" 50

 SET LibRpl ""

 SET LibICS ""

 SET LIBFIL " 4" 4

 SET LIBDeFileName ""

 SET LIBNatFileName ""

 SET LIBFileOld ""

 SET LIBTypeTitreCEN ""

 SET LIBTypeTitreNAT ""

 SET LibEnteteCEN ""

 SET LibEnteteNAT ""

 SET LIBASynchroVF ""

 SET LIBASynchroVE ""

 SET LIBASynchroVD "" ISO/IEC JTC 1/SC 29 REF DDWorkDocNo * CHARFORMAT
Date: 2015-13-11
ISO/IEC FDIS 23009-5:2015(E)
ISO/IEC JTC 1/SC 29/WG 11
Secretariat: N15694 REF DDSecr * CHARFORMAT
Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5: Server and network assisted DASH (SAND)
Élément introductif — Élément central — Partie 5: Titre de la partie
Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 (CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.
Contents
Page
vForeword

Introduction
vi
1
Scope
2
2
Normative references
2
3
Terms, definitions, symbols and abbreviated terms
2
3.1
Terms and definitions
2
3.2
Symbols and abbreviated terms
3
3.3
Conventions
4
4
Introduction
4
5
SAND Reference Architecture and Interfaces
5
6
SAND Messages
8
6.1
Common Envelope for SAND Messages
8
6.2
Metrics Messages
10
6.2.1
TCPConnections
10
6.2.2
HTTPRequestResponseTransactions
10
6.2.3
RepresentationSwitchEvents
10
6.2.4
BufferLevel
10
6.2.5
PlayList
11
6.3
Status Messages
11
6.3.1
AnticipatedRequests
11
6.3.2
SharedResourceAllocation
12
6.3.3
AcceptedAlternatives
13
6.3.4
AbsoluteDeadline
13
6.3.5
MaxRTT
14
6.4
PER Messages
14
6.4.1
ResourceStatus
14
6.4.2
DaneResourceStatus
16
6.4.3
SharedResourceAssignment
17
6.4.4
MPDValidityEndTime
17
6.4.5
Throughput
18
6.4.6
AvailabilityTimeOffset
19
6.4.7
QoSInformation
20
6.4.8
DeliveredAlternative
21
6.5
PED Messages
22
6.5.1
BwInformation
22
7
SAND message representation format
23
8
Transport Protocol to carry SAND Messages
23
8.1
Protocol to carry metrics and status messages
24
8.1.1
Sending a message directly to a DANE
24
8.1.2
Attaching a message to requests for media
24
8.2
Protocol to carry PER messages
25
8.2.1
Assistance
26
8.2.2
Enforcement
26
8.2.3
Error Case
26
9
Signalling of SAND communication channel
26
9.1
XML schema for sand:Channel element
27
10
Optional Transport Protocols to carry SAND messages
28
10.1
WebSocket Protocol
28
10.1.1
Signalling via the MPD
28
10.1.2
WebSocket messages
30
11
Reporting of metrics via SAND protocols
30
Annex A
31
Annex B
39
Annex C
46

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 23009‑5 was prepared by Joint Technical Committee ISO/IEC JTC 1, , Subcommittee SC 29, .

This second/third/... edition cancels and replaces the first/second/... edition (), [clause(s) / subclause(s) / table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.

ISO/IEC 23009 consists of the following parts, under the general title Information Technology — Dynamic adaptive streaming over HTTP (DASH):

· Part 1: Media presentation description and segment formats

· Part 2: Conformance and reference software

· Part 3: Implementation guidelines

· Part 4: Segment encryption and authentication
· Part 5: Server and network assisted DASH Operation (SAND)
Introduction
In order to enhance the delivery of DASH content, this part of DASH standard on Server and network assisted DASH (SAND) introduces messages between DASH clients and network elements or between various network elements for the purpose to improve efficiency of streaming sessions by providing information about real-time operational characteristics of networks, servers, proxies, caches, CDNs as well as DASH client’s performance and status.

Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5: Server and network assisted DASH (SAND)
1 Scope
This specification defines the following:

· the SAND architecture which identifies the SAND network elements and the nature of SAND messages exchanged among them,

· the semantics of SAND messages exchanged between the network elements present in the SAND architecture,

· a recommended encoding scheme for the SAND messages, and
· the minimum to implement SAND message delivery protocol.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 23009-1:2014, Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presentation description and segment formats
ISO 8601, Representation of dates and times
IETF RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, November 1996
IETF RFC 2388, Returning Values from Forms: multipart/form-data, August 1998

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax
IETF RFC 6455, The WebSocket Protocol, December 2011
IETF RFC 7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, June 2014
JSON Schema: core definitions and terminology, http://tools.ietf.org/html/draft-zyp-json-schema-04
3 Terms, definitions, symbols and abbreviated terms

3.1
Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1.1
DASH metric

metric defined in part 1 of ISO/IEC 23009

3.1.2
HTTP-URL

URL with a fixed scheme of “http” or “https”
3.1.3
Initialization Segment

Segment containing metadata that is necessary to present the media streams encapsulated in Media Segments
3.1.4
Media Presentation

collection of data that establishes a bounded or unbounded presentation of media content

3.1.5
Media Presentation Description
MPD

formalized description for a Media Presentation for the purpose of providing a streaming service

3.1.6
Media Segment

Segment that complies with media format in use and enables playback when combined with zero or more preceding segments, and an Initialization Segment (if any)
3.1.7
Representation

collection and encapsulation of one or more media streams in a delivery format and associated with descriptive metadata

3.1.8
Segment

unit of data associated with an HTTP-URL and optionally a byte range that are specified by an MPD

3.2
Symbols and abbreviated terms

For the purposes of this document, the following symbols and abbreviated terms apply.

DANE

DASH aware network element

DASH

dynamic adaptive streaming over HTTP

DM

DASH Metrics

HTTP

hypertext transfer protocol

MPD

Media Presentation Description
PED

parameters enhancing delivery

PER

parameters enhancing reception

RNE

regular network element

SAND

server and network assisted DASH
TLS

transport layer security

URI

uniform resource identifier

URL

uniform resource locator

URN

uniform resource name

UTC

coordinated universal time
UTF

unicode transformation format
UUID

universally unique identifier

XML

extensible mark-up language

3.3
Conventions

The following naming conventions apply in this document.

Elements in an XML document are identified by an upper-case first letter and in bold face as Element. To express that an element Element1 is contained in another element Element2, we may write Element2.Element1. If an element's name consists of two or more combined words, camel-casing is typically used, e.g. ImportantElement. Elements may be present either exactly once, or the minimum and maximum occurrence is defined by <minOccurs> ... <maxOccurs>.

Attributes in an XML document are identified by a lower-case first letter as well as they are preceded by a ‘@’-sign, e.g. @attribute. To point to a specific attribute @attribute contained in an element Element, one may write Element@attribute. If an attribute's name consists of two or more combined words, camel-casing is typically used after the first word, e.g. @veryImportantAttribute. Attributes may have assigned a status in the XML as mandatory (M), optional (O), optional with default value (OD) and conditionally mandatory (CM).

Namespace qualification of elements and attributes is used as per XML standards, in the form of namespace:Element or @namespace:attribute The fully qualified namespace will be provided in the schema fragment associated with the declaration. External specifications extending the namespace of DASH are expected to document the element name in the semantic table with an extension namespace prefix.

Variables defined in the context of this document are specifically highlighted with italics, e.g. InternalVariable.

Structures that are defined as part of the hierarchical data model are identified by an upper-case first letter, e.g. Period, Adaptation Set, Representation, Segment, etc.

The term "this clause" refers to the entire clause included within the same first heading number. The term "this subclause" refers to all text contained in the subclause with the lowest hierarchy heading.
4 Introduction
In recent years, the Internet has become an important channel for the delivery of multimedia using HTTP as its primary protocol. In 2014, ISO/IEC published second edition of MPEG Dynamic Adaptive Streaming over HTTP (DASH) as an international standard that specified formats for the media presentation description (MPD) as well as ISO-BMFF and MPEG-2 TS based segments. As DASH does not define a system or protocol, DASH is considered as an enabler for efficient and high-quality delivery of multimedia content over the Internet.
In order to enhance the delivery of DASH content, this part of DASH standard on Server and network assisted DASH (SAND) introduces messages between DASH clients and network elements or between various network elements for the purpose to improve efficiency of streaming sessions by providing information about real-time operational characteristics of networks, servers, proxies, caches, CDNs as well as DASH client’s performance and status.
The Server and Network assisted DASH (SAND) addresses:
· Unidirectional/bidirectional, point-to-point/multipoint communication with and without session (management) between servers/CDNs and DASH clients,
· Mechanisms for providing content-awareness and service-awareness towards the underlying protocol stack including server and/or network assistance,
· Various impacts on elements of the existing Internet infrastructure such as servers, proxies, caches and CDNs,

· QoS and QoE support for DASH-based services,
· Scalability in general and specifically for logging interfaces, and
· Analytics and monitoring of DASH-based services.
5 SAND Reference Architecture and Interfaces
The SAND reference architecture is based on four broad categories of elements:

· DASH clients,
· Regular network elements (RNE), which are DASH unaware and treat DASH delivery objects as any other object, but are present on the path between origin server and DASH clients, e.g. transparent caches. Note that such regular network elements are not in the scope of this specification.
· DASH-aware network elements (DANE), which have at least minimum intelligence about DASH; for instance they may be aware that the delivered objects are DASH-formatted objects such as the MPD or DASH segments, and may prioritize, parse or even modify such objects. More details on typical DANE functionalities are provided.
· Metrics server, which are DASH aware and are in charge of gathering metrics from DASH clients.

Based on these elements, the SAND reference architecture is defined as shown in Figure 2. Within this architecture, the following four categories of messages, called SAND messages as shown in Figure 1, are exchanged:
· Parameters Enhancing Delivery (PED) messages that are exchanged between DANEs,

· Parameters Enhancing Reception (PER) messages that are sent from DANEs to DASH clients,

· Status messages that are sent from DASH clients to DANEs,

· Metrics messages that are sent from DASH clients to Metrics servers.
 Figure 1 SAND messages
[image: image1.png]
Figure 2 SAND reference architecture
[image: image2.png]
In this context, a media origin that serves DASH content may also:
· receive status messages from the clients,
· send PED parameters to other DANEs,
and is therefore also considered as a DANE element.
Similarly, a third-party server that may receive DASH metrics messages from DASH clients and sends SAND messages to the clients is considered as a DANE element. Note that the third-party server may not necessarily be on the media delivery path and it may not see the DASH segments. However, as it understands the metrics and may produce SAND messages to DASH clients, for example to improve delivery efficiency, it is nevertheless considered as a DANE element.

A DASH client may send two types of messages: metric messages carrying metric information and status messages carrying non-metrics information. The metrics and status messages have a similar structure, however, it is important to distinguish them since these messages carry information of different nature.
Based on this terminology, the following interfaces are considered:

· Client-to-Metrics-server Interface: Carries metrics messages.

· Client-to-DANE Interface: Carries status messages.

· DANE-to-DANE Interface: Carries PED messages.

· DANE-to-Client Interface: Carries PER messages.

It is important to note that the implementation of the SAND architecture is neither mandatory nor necessary for successful DASH-based streaming operation. One may choose to implement a subset of the interfaces defined in the SAND reference architecture.
Part 1 of DASH standard [2] gives also an overview of a possible deployment architecture for DASH. In light of the SAND reference architecture above, Figure 3 below suggests a possible extension to it for a SAND-augmented DASH architecture.
Figure 3 - SAND-augmented DASH architecture
[image: image3.png]
In Part 1 of this standard [2], the DASH client model consists of the DASH access engine, the Media engine and the Application. The DASH access engine operates at the interface with the network when it comes to receiving the MPD and the segments, even though the delivery of the MPD is out-of-scope of MPEG DASH as stated in 5.2.1 General [2]. To support the interfaces in the SAND reference architecture, the DASH access engine becomes also responsible for the communication with the DANEs since the DANEs are network elements providing DASH related information. Figure 4 extends the original DASH Client model from [2] with the addition of a SAND channel to communicate with DANEs.

Figure 4 - SAND-augmented DASH Client model
[image: image4.png]
6 SAND Messages
This clause defines the SAND messages and their attributes. The minimum-to-implement format representation of SAND messages is XML and is defined in clause 7.
SAND implementations may choose to support all or only a subset of the SAND messages defined here. Additionally, implementations may create their own messages by using their own XML namespace.

Within this clause, the date-time type indicated in the tables must be represented as specified by ISO 8601.

6.1 Common Envelope for SAND Messages

The common envelope for SAND messages allows SAND messages aggregation within the same envelope. The envelope is the unit of data that is provided to the transport layer for sending SAND message.

All SAND messages have many parameters in common. Parameters which convey the same value for all messages included in a same envelope are attached to this common envelope for SAND messages.
Table 1 - SAND message common envelope

	Parameter
	Type
	Cardinality
	Description

	CommonEnveloppe
	
	1
	

	
	senderID
	token
	0..1
	If present, this is a unique identifier of the message sender. It is up to the sender to provide such a unique identifier.

	
	generationTime
	date-time
	0..1
	If present, this indicates the UTC time at which the message was generated.

All messages also share common parameters that need to be assigned different values for each individual message in an envelope. The following table defines these parameters, and this table is implicitly included in all following message definitions.

Table 2 - SAND message common envelope

	Parameter
	Type
	Cardinality
	Description

	messageType
	int
	0
	This uniquely identifies the type of SAND message which is carried in the envelope. Allowed values for this field are described in Table 3.

Note: When using XML representation format this field shall be represented by the tag name of the message element. When using the HTTP header transport of 8.1.2 this field shall be represented as the header name.

	messageID
	int
	0
	This field allows receivers of SAND messages to discriminate between several messages sent from the same sender. Identification of the sender may be done thanks to the senderID information or other transport layer information if senderID is not present. Among messages with same sender and same messageType, message with highest messageID value shall take precedence over the others. The maximum value for messageID is decided by senders and shall be high enough for receivers to easily identify which message shall take precedence even when messageID values have looped back to 0.

	validityTime
	date-time
	0..1
	If present, this indicates the UTC time after which the validity of the message is not guaranteed anymore. If not present, validity of messages lasts until next message with same sender, same messageType and higher messageID is received.

Table 3 - messageType values
	messageType
	Message description

	0
	reserved

	1
	TCPConnections (6.2.1)

	2
	HTTPRequestResponseTransactions (6.2.2)

	3
	RepresentationSwitchEvents (6.2.3)

	4
	BufferLevel (6.2.4)

	5
	PlayList (6.2.5)

	6
	AnticipatedRequests (6.3.1)

	7
	SharedResourceAllocation (6.3.2)

	8
	AcceptedAlternatives (6.3.3)

	9
	AbsoluteDeadline (6.3.4)

	10
	MaxRTT (6.3.5)

	11
	ResourceStatus (6.4.1)

	12
	DaneResourceStatus (6.4.2)

	13
	SharedResourceAssignment (6.4.3)

	14
	MPDValidityEndTime (6.4.4)

	15
	Throughput (6.4.5)

	16
	AvailabilityTimeOffset (6.4.6)

	17
	QoSInformation (6.4.7)

	18
	DeliveredAlternative (6.4.8)

	19
	BwInformation (6.5.1)

	20..127
	reserved for future ISO use

	128..255
	reserved for private use

6.2 Metrics Messages

This subclause defines the XML format of the DASH metrics defined in the Annex D DASH Metrics of ISO/IEC 23009-1. This enables the reporting of the DASH metrics over the SAND framework.

6.2.1 TCPConnections
6.2.1.1 Motivation

This metric collects information at the TCP level about HTTP request/response transactions.
6.2.1.2 Source and destination

	Type : Metrics
Sender : DASH client

Receiver : DANE

6.2.1.3 Data representation
See D.4.2 TCP connections in ISO/IEC 23009-1:2014 for the semantics.
6.2.2 HTTPRequestResponseTransactions
6.2.2.1 Motivation

This metric collects information about HTTP request/response transactions.
6.2.2.2 Source and destination

	Type : Metrics
Sender : DASH client

Receiver : DANE

6.2.2.3 Data representation
See D.4.3 HTTP request/response transactions in ISO/IEC 23009-1:2014 for the semantics.
6.2.3 RepresentationSwitchEvents
6.2.3.1 Motivation

This metric collects information describing Representation switch events.
6.2.3.2 Source and destination

	Type : Metrics
Sender : DASH client

Receiver : DANE

6.2.3.3 Data representation

See D.4.4 Representation switch events in ISO/IEC 23009-1:2014 for the semantics.
6.2.4 BufferLevel

6.2.4.1 Motivation

This metric reflects the Buffer level at a given point in time.
6.2.4.2 Source and destination

	Type : Metrics
Sender : DASH client

Receiver : DANE

6.2.4.3 Data representation
See D.4.5 Buffer level in ISO/IEC 23009-1:2014 for the semantics.

6.2.5 PlayList

6.2.5.1 Motivation

This metric collects information about playback periods.
6.2.5.2 Source and destination

	Type : Metrics
Sender : DASH client

Receiver : DANE

6.2.5.3 Data representation
See D.4.6 Play list in ISO/IEC 23009-1:2014 for the semantics.
6.3 Status Messages
6.3.1 AnticipatedRequests

6.3.1.1 Motivation

This message allows a DASH client to announce to a DANE which specific set of segments it is interested in. The intent is to signal the set of segments in representations that the DASH client is likely to select and request soon.

6.3.1.2 Source and destination

	Type : Status
Sender : DASH client

Receiver : DANE

6.3.1.3 Data representation

Table 4 - AnticipatedRequests parameters
	Parameter
	Type
	Cardinality
	Description

	AnticipatedRequests
	array
	1..N
	List of anticipated requests

	
	sourceURL
	url
	1
	URL for a segment of a given representation.

	
	range
	string
	0..1
	This is the byte range specification when the segment is only a part of the content referred to by sourceURL.

	
	targetTime
	date-time
	1
	Time at which the DASH client expects to request the resource identified by sourceURL.

6.3.2 SharedResourceAllocation
6.3.2.1 Motivation
This message groups all information allowing a DASH client to indicate to one or several DANE(s) an intent to share network resources (for example, access link bandwidth in a home network).
6.3.2.2 Source and destination
	Type: : Status
Sender : DASH client
Receiver : DANE

6.3.2.3 Data representation
Table 5 - SharedResourceAllocation parameters

	Parameter
	Type
	Cardinality
	Description

	SharedResourceAllocation
	object
	1
	

	
	operationPoints
	array
	1..N
	List of suitable operation points for current play time.

	
	
	bandwidth
	integer
	1
	A bandwidth value expressed in a number of bits per second. This value should be computed from the MPD by summing bandwidths of all components the client would use for working at this operation point. If playback rate is not 1, this bandwidth value shall be modified accordingly.

	
	
	quality
	integer
	0..1
	An optional value describing the quality of the current operation point.

	
	
	minBufferTime
	integer
	0..1
	An optional value in milliseconds extracted from the MPD regarding a minimal buffer time of the current operation point.

	
	weight
	integer
	0..1
	A user allocated optional value which indicates a weight of the request in the present message for the resource allocation process. The exact use of this value depends on the allocation strategy indicated by allocationStrategy.

	
	allocationStrategy
	urn
	0..1
	An optional identifier to indicate the resource allocation strategy preferred by the client for resource sharing. See Annex C.
If absent the value urn:mpeg:dash:sand:2015:allocation:basic is assumed.

	
	mpdUrl
	url
	0..1
	If present, an URL to the MPD related to the present message.

6.3.3 AcceptedAlternatives

6.3.3.1 Motivation
This message allows DASH clients to inform DANEs on the media delivery path (typically caching DANEs) when they request a given DASH segment that they are willing to accept other DASH segments alternatives. A client should not include alternative segments unless it is ready to receive them and be able to play them.
As such message is sent at the same time as a DASH segment request, transport protocol defined in clause 8.1.2 (use of header extensions) shall be used.

6.3.3.2 Source and destination
	Type: : Status
Sender : DASH client
Receiver : DANE

6.3.3.3 Data representation
Table 6 - AcceptedAlternatives parameters
	Parameter
	Type
	Cardinality
	Description

	AcceptedAlternatives
	array
	1..N
	The ordered list of acceptable alternatives. Preferred alternatives are listed first.

	
	alternative
	object
	1
	Specification of one acceptable alternative.

	
	
	sourceURL
	url
	1
	This is the URL of the alternative, as deduced from the MPD @sourceURL for requesting the (sub)segment of the acceptable representation.

	
	
	range
	string
	0..1
	This is the byte range specification when the segment is only a part of the content referred to by sourceURL. It has the same syntax as the @range attribute of an URLType as specified in Part 1.

	
	
	bandwidth
	integer
	0..1
	Optional bandwidth in bits per second that is considered as necessary by the client to receive the alternative in good conditions.

	
	
	deliveryScope
	integer
	0..1
	Optional parameter that indicates the number of caching DANEs that may be reached before removing this alternative from the list when forwarding the request.

Note that such DANEs must decrement this counter when forwarding the request.

6.3.4 AbsoluteDeadline

6.3.4.1 Motivation
This message allows DASH clients indicating the DANE the absolute deadline in wall-clock time by when the Segment needs to be completely received.

AbsoluteDeadline message shall not be sent using the HTTP POST method.

6.3.4.2 Source and destination
	Type: : Status
Sender : DASH client
Receiver : DANE

6.3.4.3 Data representation
Table 7 - AbsoluteDeadline parameters
	Parameter
	Type
	Cardinality
	Description

	AbsoluteDeadline
	object
	1
	

	
	deadline
	date-time
	1
	Absolute deadline for the segment to be available in the receiver.

6.3.5 MaxRTT

6.3.5.1 Motivation
This message allows DASH clients indicating the DANE the maximum round trip time of the request from the time when the request was issued until the request needs to be completely available at the DASH client. The time is expressed in milliseconds.

If MaxRTT message is sent with HTTP POST method, it shall be intended for every segment request during validity time.

6.3.5.2 Source and destination
	Type: : Status
Sender : DASH client
Receiver : DANE

6.3.5.3 Data representation
Table 8 - MaxRTT parameters
	Parameter
	Type
	Cardinality
	Description

	MaxRTT
	object
	1
	

	
	maxRTT
	int
	1
	Maximum RTT from the request until the Segments is available in milliseconds.

6.4 PER Messages
6.4.1 ResourceStatus

6.4.1.1 Motivation
This message allows for a DANE to inform a DASH client – in advance – about knowledge of segment availability including the caching status of the segment(s) in the DANE. The status may be different for different baseURLs or different Representation IDs (repID) used, allowing to signal availability of content dependent on the network delivering it. This may for example be because the segments are being delivered over a certain network and are expected to be selected by the DASH client regardless of the decision of the rate adaptation algorithm.
The message expresses the status of the segment availability at the current time. The DASH client should assume that this status persists until it is informed about a change of the status or the @validityTime of the message is passed.
6.4.1.2 Source and destination
	Type : PER

Sender : DANE
Receiver : DASH client

6.4.1.3 Data representation
Table 9 - ResourceStatus (with baseURL) parameters
	Parameter
	Type
	Cardinality
	Description

	ResourceStatus
	object
	1
	Resource Status Information for resources identified from a base URL.

	
	baseURL
	url
	1
	Provides the base URL for the associated resources, i.e. the status holds for all resources referenced by this base URL.

	
	status
	enum
	1
	Provides the status of all associated resource to the base URL. The defined types are documented in Table 11.

	
	reason
	string
	0..1
	Provides some textual information of the reason, e.g. ‘you are in broadcast mode’.

Table 10 - ResourceStatus (with representation ID) parameters

	Parameter
	Type
	Cardinality
	Description

	ResourceStatus
	object
	1
	Resource Status Information for segments identified from a representation ID.

	
	repID
	string
	1
	Provides the value for the representation id, i.e. status holds for all resources associated to a Representation with the value of the parameter.

	
	status
	enum
	1
	Provides the status of all associated resource to the Representation. The defined types are documented in Table 11.

	
	reason
	string
	0..1
	Provides some textual information of the reason, e.g. ‘you are in broadcast mode’.

Table 11 - allowed values for status parameter

	Status
	Semantics

	available
	Resource is available in DANE and request is expected to be responded with a 2xx code.

	unavailable
	Resource is not available in the DANE and request is expected to be responded with a 4xx code.

	cached
	Resource is already cached in the DANE.

6.4.2 DaneResourceStatus
Editor’s note: At the moment SAND specification includes both ResourceStatus and DaneResourceStatus messages although they are very similar. Clarification of possible usage of ResourceStatus by 3GPP is needed before decision whether or not to remove ResourceStatus message could be taken.

6.4.2.1 Motivation
This parameter allows DANEs to signal the available and possibly anticipated to be available data structures to the DASH client and also signal which data structures are unavailable. This method is complementary to the resource status mentioned above as it allows to express the available segments at the time of the status message. The resources are either explicitly listed or provided as a list, or they are provided by some abbreviated message format.

6.4.2.2 Source and destination
	Type : PER

Sender : caching DANE
Receiver : DASH client

6.4.2.3 Data representation
Table 12 - DaneResourceStatus parameters

	Parameter
	Type
	Cardinality
	Description

	DaneResourceStatus
	
	1
	Provides the status of the resources listed below.

	
	status
	enum
	1
	specifies the resources that can be assigned to this type. The define types are documented in Table 13.

	
	
	resource
	anyURI
	0 … N
	Provides a resource for which the status applies

	
	
	resourceGroup
	string
	0 ... N
	Provides a group of resources for which the status applies.

Table 13 - allowed values for status parameter

	Status
	Semantics

	cached
	Resource is already cached in the DANE.

	unavailable
	Resource is not available in the DANE and request is expected to be responded with a 4xx code.

	unknown
	Resource is not available in the DANE and request will be forwarded to origin server.

	promised
	Resource will be available in the DANE at the time announced in the Media Presentation.

6.4.3 SharedResourceAssignment
6.4.3.1 Motivation
This message allows the DANE to send to DASH clients competing for bandwidth over the same network information about how much bandwidth they should use in order to stay in a fair sharing of the total bandwidth.

This message is usually send to DASH clients as a response to a SharedResourceAllocation message and is usually sent by a DANE who acts as a resource allocation entity.

6.4.3.2 Source and destination
	Type : PER

Sender : DANE
Receiver : DASH client

6.4.3.3 Data representation
Table 14 - SharedResourceAssignment parameters

	Parameter
	Type
	Cardinality
	Description

	SharedResourceAssignment
	object
	1
	Response message from the coordinator that indicates the results of the bandwidth sharing operation.

	
	clientID
	token
	1
	The clientID identifies the target receiver of this message. This field shall use the same value as the senderID of the SharedResourceAllocation message sent by the client.

	
	resourcePrice
	int
	0..1
	A price for the bandwidth resource to be used by the receiver in its utility to price tradeoff to determine an optimal operation point. The operation point selected will maximize the utility to price ratio.

	
	bandwidth
	int
	1
	This fields contains the assigned bandwidth to the identified client. The unit is defined in bits per second.

Note: The validityTime attribute in the SAND message envelope shall be present for the SharedResourceAssignment message as it allows the DASH client to discover for how long the resource assignment is available. After the validity time is over, DASH clients should request a new resource assignment by sending a SharedResourceAllocation message again.
6.4.4 MPDValidityEndTime

6.4.4.1 Motivation
This message provides the ability to signal to the client that a given MPD, whose @type is set to 'dynamic' and @minimumUpdatePeriod is present, can only be used up to at a certain wall-clock time.
NOTE - Sending the message may be motivated by operational considerations such that DASH clients may fetch a new version of the MPD faster than they were planning to.

6.4.4.2 Source and destination

	Type : PER
Sender : DANE

Receiver : DASH Client

6.4.4.3 Data representation
Table 15 - MPDValidityEndTime parameters

	Parameter
	Type
	Cardinality
	Description

	MPDValidityEndTime
	object
	1
	

	
	publishTime
	date-time
	0..1
	MPD publish time attribute of the corresponding MPD.

	
	validityEndTime
	date-time
	1
	Wall-clock time at which the MPD will no more be valid.

	
	mpdUrl
	url
	1
	The recommended URL to use when fetching the next MPD update.

	
	mpdId
	string
	0..1
	The @id attribute of the MPD.

	
	mpd
	string
	0..1
	The full updated MPD encoded in a string using base64 encoding.

6.4.5 Throughput

6.4.5.1 Motivation

This message allows a DASH client to have – in advance – knowledge of the throughput characteristics and the guarantees along with this from the DANE to the DASH client. The status may be different for different baseURLs or different Representation IDs (repID) used, allowing to signal throughput characteristics dependent on the network delivering it. This may for example be used in case some QoS is provided on the access link between the DANE and the DASH client or if the data is cached in a local device. This message may apply in the case the DANE is located in a different device from the DASH client, and communicate with the DASH client via a network, e.g. a mobile network.

The message expresses the throughput status of the network at the current time. The message is therefore intended only for the networks that can guarantee a minimum throughput for a duration of time.
6.4.5.2 Source and destination
	Type : PER
Sender : caching DANE

Receiver : DASH client

6.4.5.3 Data representation

Table 16 - Throughput (with baseURL) parameters

	Parameter
	Type
	Cardinality
	Description

	Throughput
	object
	1
	

	
	baseURL
	string
	1
	Provides the base URL for the associated resources, i.e. the throughput holds for all resources referenced by this base URL.

	
	guaranteedThroughput
	unsigned int
	1
	Specifies a guaranteed throughput in bits/s. Provides the guarantee for the throughput in a sense that the download time of a resource of size S bytes and from receiving the first byte to receiving the last byte is at most S*8 divided by the value of the attribute. This guarantee is provided with the below value of the percentage of certainty and holds for a request from the DASH client w/o any other concurrent HTTP requests.

	
	percentage
	unsigned int
	0..1
	Specifies the certainty of the above guarantee. The certainty of the guarantee is expressed as a percentage from 0 to 100. If not present, the default value is 100.

Table 17 - Throughput (with representation ID) parameters

	Parameter
	Type
	Cardinality
	Description

	Throughput
	object
	1
	

	
	repID
	string
	1
	Provides the value for the representation id, i.e. throughput holds for all resources associated to a Representation with the value of the parameter.

	
	guaranteedThroughput
	unsigned int
	1
	Specifies a guaranteed throughput in bit/s. Provides the guarantee for the throughput in a sense that the download time of a resource of size S bytes and from receiving the first byte to receiving the last byte is at most S*8 divided by the value of the attribute. This guarantee is provided with the below value of the percentage of certainty and holds for a request from the DASH client w/o any other concurrent HTTP requests.

	
	percentage
	unsigned int
	0..1
	Specifies the certainty of the above guarantee. The certainty of the guarantee is expressed as a percentage from 0 to 100. If not present, the default value is 100.

6.4.6 AvailabilityTimeOffset

6.4.6.1 Motivation

This message allows a DASH client to have – in advance – knowledge of the availability time offset from the DANE to the DASH client. The status may be different for different baseURLs or different Representation IDs (repID) used, allowing to signal availability time offset dependent on the network delivering it. This is typically the result of the different paths and processing operations that the Segments of the Representation that is sent over a one network undergo compared to the segments of Representations that are delivered over another network. The intention is to adjust the segment availability start times to the new path and bring the DASH client to a correct operation point by taking into account the delay caused by the transport of the resources over different networks. This availability offset may be positive or negative and should be taken into account by the DASH client to avoid buffer underflows when switching between Representations and also to avoid 404 messages as much as possible.

The message expresses the status of the network at the current time.. The DANE should avoid significantly changing the parameters for one resource as it may result in scheduling/playback problems in the DASH client.

Note: The segments’ availability times must be accurately signalled in the MPD. This message is not intended to be used as a general practice, but only on the exceptional occasions when the availability time of the segments are changed due to unforeseen conditions during the streaming session and after the publication of the MPD.
6.4.6.2 Source and destination

	Type : PER
Sender : caching DANE

Receiver : DASH client

6.4.6.3 Data representation

Table 18 - AvailabilityTimeOffset (with baseURL) parameters

	Parameter
	Type
	Cardinality
	Description

	AvailabilityTimeOffset
	object
	1
	

	
	baseURL
	url
	1
	Provides the base URL for the associated resources, i.e. the offset holds for all resources referenced by this base URL.

	
	offset
	int
	1
	Specifies the offset in milliseconds that needs to be applied to the segment availability start time of the resources accessible through the indicated location or representation identifier.

Table 19 - AvailabilityTimeOffset (with representation ID) parameters

	Parameter
	Type
	Cardinality
	Description

	AvailabilityTimeOffset
	object
	1
	

	
	repID
	string
	1
	Provides the value for the representation id, i.e. offset holds for all resources associated to a Representation with the value of the parameter.

	
	offset
	int
	1
	Specifies the offset in milliseconds that needs to be applied to the segment availability start time of the resources accessible through the indicated location or representation identifier.

6.4.7 QoSInformation
6.4.7.1 Motivation

A DASH client can take the available network QoS information into consideration when requesting segments such that the consumed content bandwidth remains within the limits established by the signalled QoS information. As such, there is a value in enabling signalling of QoS parameters to the DASH client in order to be used for adaptation purposes.

6.4.7.2 Source and Destination

	Type : PER
Sender : DANE
Receiver : DASH client

6.4.7.3 Data Representation

Table 20 - QoSInformation parameters

	Parameter
	Type
	Cardinality
	Description

	QoSInformation
	object
	1
	

	
	gbr
	int
	0..1
	Guaranteed bit rate in kbps between the DANE and DASH client, denoting the end to end guaranteed bit rate at the IP layer bearer that the service provider delivers to the DASH client.

	
	mbr
	int
	0..1
	Maximum bit rate in kbps between the DANE and DASH client, limiting end to end bit rate that the service provider delivers the DASH client and denoting the end to end maximum bit rate at the IP layer bearer that the service provider delivers to the DASH client.

	
	delay
	int
	0..1
	Packet layer budget in milli-seconds (ms) denoting the maximum packet delay encountered at the IP layer with a confidence level of 98 percent. For TCP-based video streaming applications relevant for DASH, it is recommended that Delay equals 300ms.

	
	pl
	int
	0..1
	Packet loss parameter, where packet loss rate equals 10^(-PL/10). For TCP-based video streaming applications relevant for DASH, it is recommended that PL=60 such that the packet loss rate equals 10^(-6).”

6.4.8 DeliveredAlternative
6.4.8.1 Motivation

As a response to an AcceptedAlternatives message sent by a DASH client, a DANE may deliver an alternative segment rather than the requested segment. If so, the DANE also sends a DeliveredAlternatives message to the DASH client to inform him that the response contains a segment alternative and not the requested segment. The HTTP response must be correct and must prevent wrong additional caching from an intermediate RNE, thus it must include the following headers:

· A Warning header with value ‘214 Transformation Applied’.

· A Content-Location header which value is the @sourceURL of the selected segment representation.

· A Vary header containing the value ‘SAND-AcceptedAlternatives’, in addition to other values that may be already present.

6.4.8.2 Source and Destination

	Type : PER
Sender : DANE
Receiver : DASH client

6.4.8.3 Data Representation

Table 21 - DeliveredAlternatives parameters

	Parameter
	Type
	Cardinality
	Description

	DeliveredAlternative
	object
	1
	Description of what is delivered when a DANE sends a response containing an alternative representation.

	
	initialURL
	url
	1
	This is the URL of the initially requested segment.

Note: within a request/response exchange in HTTP, the requested URL is implicitly known in the response because there is a 1 to 1 association between them. So it does not need to be repeated explicitly.

	
	contentLocation
	url
	1
	This is the URL of the actual delivered content.

6.5 PED Messages
6.5.1 BwInformation
6.5.1.1 Motivation
Minimum and maximum bandwidth information can be extracted from the MPD and shared with the service provider or operator to help facilitate the derivation of network QoS parameters at the DANE or another network element, e.g., guaranteed bitrate (GBR) and maximum bitrate (MBR). The exact mapping of QoS parameters from minimum and maximum bandwidth is implementation specific and can depend on other factors such as service provider policy, application requirements and user subscription information.
6.5.1.2 Source and Destination
	Type : PED
Sender : DANE
Receiver : DANE

6.5.1.3 Data representation

Table 22 - BwInformation parameters

	Parameter
	Type
	Cardinality
	Description

	BwInformation
	object
	1
	

	
	minBandwidth
	int
	0..1
	Minimum required bandwidth of the service, extracted from the MPD given by the sum of all MPD@minBandwidth of all media components simultaneously (not mutually exclusive) selectable by the DASH client plus HTTP/TCP/IP overhead and TCP messages for flow control.

If this attribute is not present then minBandwidth is given by the sum of MPD@bandwidth attributes of all media components of the available media presentation corresponding to representations or subrepresentations with lowest bandwidth simultaneously (not mutually exclusive) selectable by the DASH client plus HTTP/TCP/IP overhead and TCP messages for flow control.

If the client is expected to access multiple MPDs, then minBandwidth is calculated by summing up the minimum bandwidth values extracted from each MPD.

	
	maxBandwidth
	int
	0..1
	Maximum required bandwidth of the service, extracted from the MPD given by the sum of all MPD@maxBandwidth of all media components simultaneously (not mutually exclusive) selectable by the DASH client plus HTTP/TCP/IP overhead and TCP messages for flow control.

If this attribute is not present then maxBandwidth is given by the sum of MPD@bandwidth attributes of all media components of the available media presentation corresponding to representations or subrepresentations with highest bandwidth simultaneously selectable (not mutually exclusive) by the DASH client plus HTTP/TCP/IP overhead and TCP messages for flow control.

If the client is expected to access multiple MPDs, then maxBandwidth is calculated by summing up the maximum bandwidth values extracted from each MPD.

At least one of @minBandwidth or @maxBandwith parameters shall be present.
7 SAND message representation format
This clause defines XML as the format for SAND messages data representation format. While SAND network elements may implement additional data representation formats (such as JSON), they shall at least support SAND messages in XML format.
The XML schema for SAND messages is defined in Annex A.
8 Transport Protocol to carry SAND Messages
This clause defines HTTP as the minimum transport protocol that shall be at least supported by SAND enabled elements. It does not preclude that other additional transport protocols (as described in clause 10) could also be implemented.
The use of HTTP as a minimum transport protocol to implement is defined for:

a) Metrics messages (from DASH client to DANE)

b) Status messages (from DASH client to DANE)

c) PER messages (from DANE to DASH client)

PED messages are sent from DANE to DANE and may use any of the protocol defined for Metrics and Status messages or PER messages.

Depending on the nature of SAND messages, the use of HTTP protocol by SAND network elements varies. The following table summarizes which HTTP usages shall be supported (in bold in the table) by a SAND element or may be optional depending on the nature of the SAND message.

Table 23 – Mandatory usages of HTTP for carrying SAND messages

	Metrics messages
	HTTP POST (8.1.1)
HTTP headers (8.1.2) may be used for small metrics messages.

	Status messages
	HTTP headers (8.1.2)

	PER messages
	HTTP GET (8.2)

	PED message
	HTTP headers (8.1.2)
HTTP POST (8.1.1)

8.1 Protocol to carry metrics and status messages

Depending on how the destination DANE can be identified, two cases are defined. When the DANE URL or IP address is known by the DASH client, the client send messages as the body of HTTP requests directly sent to the DANE. When the target DANE(s) is (are) located on the media delivery path and not directly addressable as above, messages are attached to HTTP requests for media.

8.1.1 Sending a message directly to a DANE

The DASH client uses the HTTP POST method to send a metrics or status message to the DANE. The URL for the request is the @endpoint URL announced by the channel signalling defined in section 9.

The Content-Type shall be text/xml. Unless the XML document is in US-ASCII, the encoding shall be specified with a charset attribute in the Content-Type.

The message document itself is included as the body part of the HTTP request.

For example, with @endpoint=http://some_dane.my_domain.com/path/to/messages the HTTP request is:

	POST /path/to/messages HTTP/1.1
Host: some_dane.my_domain.com
Content-Type: text/xml;charset="utf-8"

Content-Length: 248

[...]

<?xml version="1.0" encoding="UTF-8"?>

<AnticipatedRequests messageId="1234" ...

8.1.2 Attaching a message to requests for media

The DANE to which a message shall be sent may not be the origin server but any intermediate network equipment on the media delivery path that is able to understand the HTTP request. In this case, the sending of SAND messages makes use of existing requests for DASH media – MPD or segments – from the DASH client to the DANE.

The DASH client attaches metrics or status messages to such requests by inserting in the request an HTTP header with name SAND-XXX where XXX is the name of the message as defined in section 6. Multiple headers may appear in a single request.

For SAND messages defined in another namespace than the MPEG namespace (urn:mpeg:dash:schema:sandmessage:2015), the namespace shall be present in the SAND message name with colon characters replaced with hyphens. For instance: SAND-urn-my-example-com-MyMessage.

The header value provides the message data. The header value shall conform to the following ABNF:
sand-message-value = sand-object

sand-object = sand-attr-or-list *("," sand-attr-or-list)

sand-attr-or-list = sand-attribute / sand-list

sand-list = "[" sand-object *(";" sand-object) "]"

sand-attribute = sand-attribute-name "=" sand-value

sand-value = QUOTEDSTRING / QUOTEDURI

 / TOKEN / INT / BYTERANGE / DATETIME
QUOTEDURI is an URI (RFC 3986) enclosed between double quotes. If a double quote is part of the URI, it must be encoded as %22. The enclosing double quotes protect from misinterpretation of delimiters used elsewhere in the message syntax.
DATETIME shall follow the ISO 8601 format, with a dot and not a comma for fractions of second to avoid confusion with comma separating key=value pairs.
If attributes defined for the envelope or attributes defined as common to all messages have to be included, they shall appear first in the message, and will be provided as key=value pairs. Note that the @messageId is not mandatory to include in the case of status messages in HTTP headers.
Note: If HTTPS is used for the media delivery, the message will only reach the final endpoint of the underlying TLS connection, and will not be seen by intermediates. Such SAND message communication can therefore not be used along with TLS if it is meant to be intercepted by an intermediate DANE.
The following text shows examples of status messages sent in HTTP headers:
	SAND‑AnticipatedRequests: [sourceURL="http://my.cdn.com/video/some_segment.m4v",range=0-5000,targetTime=2015-10-11T17:53:03Z]

SAND‑SharedResourceAllocation: [bandwidth=300000,quality=1;bandwidth=600000,quality=2;bandwith=1200000,quality=3],weight=50,allocationStrategy="urn:mpeg:dash:sand:2015:allocation:basic"

SAND‑AcceptedAlternatives: [sourceURL="/video/q_4/seg_25.mp4v",range=0‑85333;sourceURL="/video/q_3/seg_25.mp4v",range=0-64000]

SAND‑AbsoluteDeadline: deadline=2015-10-11T17:53:03Z

SAND‑MaxRTT: maxRTT=2345
SAND-urn-my-example-com-MyMessage: foo=bar

8.2 Protocol to carry PER messages
The following scenarios are considered for exchange between the DANE and the DASH client.

· Client assistance: A scenario for which the message is provided as auxiliary information for the client, but the service will be continued even if the client ignores the message. This is for example the case when the service provider provides information on the availability of additional networks that may be accessed by the DASH client to request the content. For example protocols and methods, see clause 0.

· Client Enforcement: A scenario for which the client requires to act, the network provides suitable alternatives for future requests. The DANE cannot or is not willing to respond to the request with a valid resource, but provides suitable alternatives. For example protocols and methods, see clause 0.

· Error Cases: A scenario for which the client is informed that the request is not valid and the network provides the reason and possible resolutions for the problem. The DANE cannot respond to the request with a valid resource. For example protocols and methods, see clause 0.
8.2.1
Assistance

For assistance, a suitable method is the use of a dedicated HTTP header field that indicates a notification that the DANE has SAND messages to send to the DASH client. Upon receiving an HTTP entity that contains the SAND header field in its entity head, the DASH client issues a GET request to the indicated element to receive the SAND message.

The following ABNF syntax for the header field shall be used:

SAND-header-field = "MPEG-DASH-SAND" ":" element-address

element-address = absolute-URI

The field absolute-URI takes the syntax from RFC3986. The SAND header field provides the URI to the SAND message that is to be fetched by the DASH client using an HTTP GET method.

8.2.2
Enforcement

For enforcement, a suitable method is the use of a 300 Multiple Choices response with the following details:

· The response includes an entity containing a SAND message. The entity format is specified by the media type given in the Content-Type.

· The response should not include the Location field to avoid the use of the Location field value by the user agent for automatic redirection.

This response is cacheable unless indicated otherwise.

8.2.3
Error Case

For error cases, a suitable method is the use of a suitable 4xx error code. The response may include a SAND message from which the client can deduce the reason for the error code and potential resolution of the problem.

9 Signalling of SAND communication channel
The signalling mechanism described in the present clause is intended to provide the necessary information so as to use HTTP protocol for SAND messages as described in section 8, or to signal the use of alternative transport protocols (such as WebSockets, see clause 0).

In order to signal the SAND communication channel to DASH clients, the DANE can announce the presence of a SAND channel via the MPD using the sand:Channel element defined in the “urn:mpeg:dash:schema:sand:2015” namespace. The namespace prefix is “sand:”.

Table 24 – sand:Channel element

	Element or Attribute Name
	Use
	Description

	
	Channel
	
	provides information about a SAND channel

	
	
	@id
	O (string)
	specifies an identifier for this SAND channel.

	
	
	@schemeIdUri
	M
	identifies the channel scheme. The channel scheme defines the protocol the DASH client must use with the SAND channel.

	
	
	@endpoint
	 O (string)
	provides the endpoint to the SAND channel. The endpoint conforms to the URI specification, RFC3986.

	Note that the conditions only holds without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>

The sand:Channel@schemeIdUri specifies which protocol the DASH client shall use with this SAND channel. The table below lists the mandatory protocols.

Table 25 - Protocols for SAND channels
	@schemeIdURI
	Description

	urn:mpeg:dash:sand:2015:channel:http
	The identifier indicates that the DASH client shall use the protocol defines in 8.1.1
Sending a message directly to a DANE. That is the SAND messages are transmitted via HTTP POST request inside the body of the request.

In this case, the @endpoint of the sand:Channel shall be a valid HTTP-URL.

	urn:mpeg:dash:sand:2015:channel:header
	The identifier indicates that the DASH client shall use the protocol defines in 8.1.2
Attaching a message to requests for media. That is the SAND messages are transmitted via HTTP header extension of HTTP requests for media segments and MPD.

In this case, the @endpoint of the sand:Channel shall not be present

To allow signalling of a SAND communication channel in case it is not practical to modify the MPD, the DANE can also announce it via an HTTP header attached to any response to a media request.
The following ABNF syntax defines this header field:

SAND-channel-header-field = "MPEG-DASH-SANDChannel" ":" "schemeIdUri=" channel-scheme-name "," optional-endpoint

optional-endpoint = "endpoint=" element-address / VOID
channel-scheme-name = URN
element-address = absolute-URI
The field absolute-URI follows the syntax from RFC3986.

DASH clients which implements SAND shall support signalling of SAND channel via HTTP header and MPD.
9.1 XML schema for sand:Channel element
	<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="urn:mpeg:dash:schema:sand:2015"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 xmlns:xs=http://www.w3.org/2001/XMLSchema
 xmlns="urn:mpeg:dash:schema:sand:2015">

 <xs:annotation>
 <xs:appinfo>SAND elements</xs:appinfo>
 <xs:documentation xml:lang="en">
 This Schema defines the Server And Network Assisted DASH (SAND) XML elements for MPEG-DASH.
 </xs:documentation>
 </xs:annotation>

 <!—SAND message: main element (
 <xs:element name="Channel" type="ChannelType"/>

 <!—SAND Channel (
 <xs:complexType name="ChannelType">
 <xs:attribute name="id" type="xs:string"/>
 <xs:attribute name="schemeIdUri" type="xs:anyURI" use="required"/>
 <xs:attribute name="endpoint" type="xs:anyURI" use="required"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>

</xs:schema>

10 Optional Transport Protocols to carry SAND messages

This clause specifies additional Transport Protocols for the exchange of SAND messages between a DANE and the DASH client. The following table defines additional schemes that are optional protocols for SAND channels.
Table 26 - Optional protocols for SAND channels

	@schemeIdURI
	Description

	urn:mpeg:dash:sand:2015:channel:websocket
	The identifier indicates that the DASH client shall use the WebSocket Protocol as specified in 10.1 WebSocket Protocol.

In this case, the @endpoint of the sand:Channel shall be a valid WebSocket URI as specified in 3 WebSocket URIs of RFC 6455.

10.1 WebSocket Protocol

This paragraph defines the exchange of SAND messages over the WebSocket Protocol as specified in RFC 6455.
10.1.1 Signalling via the MPD

This section addresses the signalling of the SAND channel set-up information to the DASH clients via the MPD of which REF _Ref411344005 \h
 presents an MPD example.
The @schemaIdUri attribute of the sand:Channnel element shall be urn:mpeg:dash:sand:2015:channel:websocket while the @endpoint attribute shall contain a valid WebSoscket URI as defined in paragraph 3 WebSocket URIs of RFC6455.
The following is an MPD example of a SAND channel signalling.
	<?xml version="1.0" encoding="UTF-8"?>
<MPD
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:dash:schema:mpd:2011"
 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
 xmlns:sand="urn:mpeg:dash:schema:sand:2015"
 type="dynamic"
 minimumUpdatePeriod="PT2S"
 timeShiftBufferDepth="PT30M"
 availabilityStartTime="2011-12-25T12:30:00"
 minBufferTime="PT4S"
 profiles="urn:mpeg:dash:profile:isoff-live:2011">

 <BaseURL>http://cdn1.example.com/</BaseURL>
 <BaseURL>http://cdn2.example.com/</BaseURL>

 <sand:Channel schemeIdUri="urn:mpeg:dash:sand:2015:channel:websocket" endpoint="wss://cdn3.example.com">

 <Period id="1">
 <!-- Video -->
 <AdaptationSet
 mimeType="video/mp4"
 codecs="avc1.4D401F"
 frameRate="30000/1001"
 segmentAlignment="true"
 startWithSAP="1">
 <BaseURL>video/</BaseURL>
 <SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v" media="$Bandwidth%/$Time$.mp4v">
 <SegmentTimeline>
 <S t="0" d="180180" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 <!-- Audio -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40" lang="en" segmentAlignment="0" startWithSAP="1">
 <SegmentTemplate timescale="48000" initialization="audio/en/init.mp4a" media="audio/en/$Time$.mp4a">
 <SegmentTimeline>
 <S t="0" d="96000" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="a0" bandwidth="64000" />
 </AdaptationSet>
 </Period>
</MPD>

Figure 5 – SAND channel set-up information provided in the MP
Upon reception of the MPD, the DASH client parses the MPD. The sand:Channel element indicates that a SAND channel is available. The @schemeIdUri attribute value specifies that the SAND channel uses the WebSocket Protocol. The @endpoint attribute indicates the actual endpoint to which the DASH client must connect to in order to set up the SAND channel.
NOTE – For the same security reasons as for the MPD delivery, it is recommended that WebSocket-based SAND channels run over TLS. Hence the use of "wss" for the URI scheme in the @endpoint attribute in the MPD example. See 10.6. Connection Confidentiality and Integrity in “JSON Schema: core definitions and terminology” for more details.

When the connection to the WebSocket-based SAND channel is successful (see [1] for the successive steps of the protocol), the DASH client starts listening for incoming PER messages and may send metrics and status messages when needed. Since the WebSocket Protocol establishes a full-duplex connection, the DANE and the DASH client may exchange SAND messages travelling simultaneously in opposite directions over the channel.

10.1.2 WebSocket messages

Data frame messages of the WebSocket Protocol must be set to the text type and the content must be UTF-8 encoded as specified by the WebSocket Protocol. Each WebSocket message shall contain a valid SAND message compliant with the SAND message XML schema.

11 Reporting of metrics via SAND protocols
In ISO/IEC 23009-1, the Annex D DASH Metrics defines a list of metrics to be collected by the DASH client. SAND allows the MPD author to use the SAND protocol for the reporting of these metrics.

The Reporting@schemeIdUri element indicates the SAND protocol that the DASH client must use. The possible values are those listed in Table 1 - Protocols for SAND channels and Table 2 - Optional protocols for SAND channels. In that case, the same rules applying to sand:Channel@endpoint attribute apply to the Reporting@value attribute. In addition, the following scheme is also defined for the Reporting@schemeIdUri.
Table 27 – DASH metrics reporting

	@schemeIdURI
	Description

	urn:mpeg:dash:sand:2015:channel
	The identifier indicates that the DASH client shall use a SAND channel to report the metrics.

In this case, the Reporting@value attribute shall contain the value of a sand:Channel@id attribute present in the MPD. Consequently, the DASH client will derive the protocol to use from the attributes of the indicated sand:Channel.

Annex A

A. XML Schema for SAND messages
	<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="urn:mpeg:dash:schema:sandmessage:2015"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:mpd="urn:mpeg:dash:schema:mpd:2011"
 xmlns="urn:mpeg:dash:schema:sandmessage:2015">
 <!-- future xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning" vc:minVersion="1.1" -->

 <xs:annotation>
 <xs:appinfo>SAND Messages</xs:appinfo>
 <xs:documentation xml:lang="en">
 This Schema defines the Server And Network Assisted DASH (SAND) messages for MPEG-DASH.
 </xs:documentation>
 </xs:annotation>

 <xs:import namespace="urn:mpeg:dash:schema:mpd:2011"/>

 <!-- SAND message: main element -->
 <xs:element name="SANDMessage" type="SANDEnvelopeType"/>

 <!-- SAND common envelope Type -->
 <xs:complexType name="SANDEnvelopeType">
 <xs:choice maxOccurs="unbounded">
 <xs:element name="AnticipatedRequests" type="AnticipatedRequestsType"/>
 <xs:element name="SharedResourceAllocation" type="SharedResourceAllocationType"/>
 <xs:element name="AcceptedAlternatives" type="AcceptedAlternativesType"/>
 <!-- AbsoluteDeadline is not allowed in XML, only in HTTP headers -->
 <xs:element name="MaxRTT" type="MaxRTTType"/>
 <xs:element name="ResourceStatus" type="ResourceStatusType"/>
 <xs:element name="DaneResourceStatus" type="DaneResourceStatusType"/>
 <xs:element name="SharedResourceAssignment" type="SharedResourceAssignmentType"/>
 <xs:element name="MPDValidityEndTime" type="MPDValidityEndTimeType"/>
 <xs:element name="Throughput" type="ThroughputType"/>
 <xs:element name="AvailabilityTimeOffset" type="AvailabilityTimeOffsetType"/>
 <xs:element name="QoSInformation" type="QoSInformationType"/>
 <!-- DeliveredAlternative is not allowed in XML, only in HTTP headers -->
 <xs:element name="BwInformation" type="BwInformationType"/>
 <!-- ISO/ISC 23009-5 Annex D DASH metrics -->
 <xs:element name="TcpList" type="TcpListType"/>
 <xs:element name="HttpList" type="HttpListType"/>
 <xs:element name="RepSwitchList" type="RepSwitchListType"/>
 <xs:element name="BufferLevelList" type="BufferLevelListType"/>
 <xs:element name="PlayList" type="PlayListType"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attribute name="senderId" type="xs:token"/>
 <xs:attribute name="generationTime" type="xs:dateTime"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>

 <!-- SAND message base Type -->
 <xs:complexType name="SANDMessageType">
 <xs:attribute name="messageId" type="xs:unsignedInt" use="required"/>
 <xs:attribute name="validityTime" type="xs:dateTime"/>
 </xs:complexType>

 <!-- AnticipatedRequests Type -->
 <xs:complexType name="AnticipatedRequestsType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:sequence>
 <xs:element name="Request" type="AnticipatedRequestType" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- Request Type -->
 <xs:complexType name="AnticipatedRequestType">
 <xs:attribute name="sourceURL" type="xs:anyURI" use="required"/>
 <xs:attribute name="range" type="xs:string"/>
 <xs:attribute name="targetTime" type="xs:unsignedLong" use="required"/>
 </xs:complexType>

 <!-- SharedResourceAllocation Type -->
 <xs:complexType name="SharedResourceAllocationType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:sequence>
 <xs:element name="OperationPoint" type="OperationPointType" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="weight" type="xs:unsignedInt"/>
 <xs:attribute name="allocationStrategy" type="xs:anyURI"/>
 <xs:attribute name="mpdURL" type="xs:anyURI"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- OperationPoint Type -->
 <xs:complexType name="OperationPointType">
 <xs:attribute name="bandwidth" type="xs:unsignedInt" use="required"/>
 <xs:attribute name="quality" type="xs:unsignedInt"/>
 <xs:attribute name="minBufferTime" type="xs:unsignedInt"/>
 </xs:complexType>

 <!-- AcceptedAlternatives Type -->
 <xs:complexType name="AcceptedAlternativesType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:sequence>
 <xs:element name="Alternative" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="sourceURL" type="xs:anyURI" use="required"/>
 <xs:attribute name="range" type="xs:string"/>
 <xs:attribute name="bandwidth" type="xs:unsignedInt"/>
 <xs:attribute name="deliveryScope" type="xs:unsignedInt"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- MaxRTT Type -->
 <xs:complexType name="MaxRTTType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:attribute name="maxRTT" type="xs:unsignedInt" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<!-- ResourceStatus Type -->
 <xs:complexType name="ResourceStatusType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:attribute name="baseURL" type="xs:anyURI"/>
 <xs:attribute name="repID" type="StringNoWhitespaceType"/>
 <xs:attribute name="status" type="ResourceStatusTypeStatusType" use="required"/>
 <xs:attribute name="reason" type="xs:string"/>
 <!--xs:assert test="(@baseURL and not(@repID)) or (not(@baseURL) and @repID)"/-->
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<!-- ResourceStatus status enumeration -->
 <xs:simpleType name="ResourceStatusTypeStatusType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="available"/>
 <xs:enumeration value="cached"/>
 <xs:enumeration value="unavailable"/>
 </xs:restriction>
 </xs:simpleType>

<!-- DaneResourceStatus Type -->
 <xs:complexType name="DaneResourceStatusType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:sequence>
 <xs:element name="resource" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="resourceGroup" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="status" type="DaneResourceStatusTypeStatusType" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<!-- DaneResourceStatus status enumeration -->
 <xs:simpleType name="DaneResourceStatusTypeStatusType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="cached"/>
 <xs:enumeration value="unavailable"/>
 <xs:enumeration value="unknown"/>
 <xs:enumeration value="promised"/>
 </xs:restriction>
 </xs:simpleType>

<!-- SharedResourceAssignment Type -->
 <xs:complexType name="SharedResourceAssignmentType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:attribute name="clientID" type="xs:token" use="required"/>
 <xs:attribute name="resourcePrice" type="xs:unsignedInt"/>
 <xs:attribute name="bandwidth" type="xs:unsignedInt" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<!-- MPDValidityEndTime Type -->
 <xs:complexType name="MPDValidityEndTimeType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:sequence>
 <xs:element ref="mpd:MPD" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="mpdID" type="xs:string"/>
 <xs:attribute name="publishTime" type="xs:dateTime"/>
 <xs:attribute name="validityEndTime" type="xs:dateTime" use="required"/>
 <xs:attribute name="mpdURL" type="xs:anyURI" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<!-- Throughput Type -->
 <xs:complexType name="ThroughputType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:attribute name="baseURL" type="xs:anyURI"/>
 <xs:attribute name="repID" type="StringNoWhitespaceType"/>
 <xs:attribute name="guaranteedThroughput" type="xs:unsignedInt" use="required"/>
 <xs:attribute name="percentage" type="PercentageType"/>
 <!--xs:assert test="(@baseURL and not(@repID)) or (not(@baseURL) and @repID)"/-->
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- Percentage type -->
 <xs:simpleType name="PercentageType">
 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="100"/>
 </xs:restriction>
 </xs:simpleType>

<!-- AvailabilityTimeOffset Type -->
 <xs:complexType name="AvailabilityTimeOffsetType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:attribute name="baseURL" type="xs:anyURI"/>
 <xs:attribute name="repID" type="StringNoWhitespaceType"/>
 <xs:attribute name="offset" type="xs:unsignedInt" use="required"/>
 <!--xs:assert test="(@baseURL and not(@repID)) or (not(@baseURL) and @repID)"/-->
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<!-- QoSInformation Type -->
 <xs:complexType name="QoSInformationType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:attribute name="gbr" type="xs:unsignedInt"/>
 <xs:attribute name="mbr" type="xs:unsignedInt"/>
 <xs:attribute name="delay" type="xs:unsignedInt"/>
 <xs:attribute name="pl" type="xs:unsignedInt"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<!-- BwInformation Type -->
 <xs:complexType name="BwInformationType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:attribute name="minBandwidth" type="xs:unsignedInt"/>
 <xs:attribute name="maxBandwidth" type="xs:unsignedInt"/>
 <!--xs:assert test="@minBandwidth or @maxBandwidth"/-->
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<!-- String without white spaces, same as MPD schema -->
 <xs:simpleType name="StringNoWhitespaceType">
 <xs:restriction base="xs:string">
 <xs:pattern value="[^\r\n\t \p{Z}]*"/>
 </xs:restriction>
 </xs:simpleType>

<!-- Metrics as defined in Annex D of ISO/IEC 23009-1 -->
 <!-- NOTE the naming convention complies with the keys defined in Annex D
 and with camelCase convention like the rest of the schema -->

 <!-- TcpList Type -->
 <xs:complexType name="TcpListType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:attribute name="tcpid" type="xs:unsignedInt" use="required"/>
 <xs:attribute name="dest" type="xs:unsignedInt"/>
 <xs:attribute name="topen" type="xs:dateTime"/>
 <xs:attribute name="tclose" type="xs:dateTime"/>
 <xs:attribute name="tconnect" type="xs:unsignedInt"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- HttpList Type -->
 <xs:complexType name="HttpListType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:sequence>
 <xs:element name="HttpTransaction" type="HttpTransactionType" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- HttpTransaction Type -->
 <xs:complexType name="HttpTransactionType">
 <xs:sequence>
 <xs:element name="Trace" type="TraceType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="tcpid" type="xs:anyURI" use="required"/>
 <xs:attribute name="type" type="HttpRequestTypeType"/>
 <xs:attribute name="url" type="xs:anyURI"/>
 <xs:attribute name="actualurl" type="xs:anyURI"/>
 <xs:attribute name="range" type="xs:string"/>
 <xs:attribute name="trequest" type="xs:dateTime"/>
 <xs:attribute name="tresponse" type="xs:dateTime"/>
 <xs:attribute name="responsecode" type="xs:unsignedInt"/>
 <xs:attribute name="interval" type="xs:unsignedInt"/>
 </xs:complexType>

 <!-- HttpRequestType Type -->
 <xs:simpleType name="HttpRequestTypeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="MPD"/>
 <xs:enumeration value="XLink expansion"/>
 <xs:enumeration value="Initialization Segment"/>
 <xs:enumeration value="Index Segment"/>
 <xs:enumeration value="Media Segment"/>
 <xs:enumeration value="Bitstream Switching Segment"/>
 <xs:enumeration value="Other"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- Trace Type -->
 <xs:complexType name="TraceType">
 <xs:sequence>
 <xs:element name="b" type="xs:unsignedInt" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="s" type="xs:dateTime"/>
 <xs:attribute name="d" type="xs:unsignedInt"/>
 </xs:complexType>

 <!-- RepSwitchList Type -->
 <xs:complexType name="RepSwitchListType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:sequence>
 <xs:element name="RepSwitch" type="RepSwitchType" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- RepSwitch Type -->
 <xs:complexType name="RepSwitchType">
 <xs:attribute name="t" type="xs:duration"/>
 <xs:attribute name="mt" type="xs:unsignedInt"/>
 <xs:attribute name="to" type="StringNoWhitespaceType"/>
 <xs:attribute name="lto" type="xs:unsignedInt"/>
 </xs:complexType>

 <!-- BufferLevelList Type -->
 <xs:complexType name="BufferLevelListType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:sequence>
 <xs:element name="BufferLevel" type="BufferLevelType" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- BufferLevel Type -->
 <xs:complexType name="BufferLevelType">
 <xs:attribute name="t" type="xs:dateTime"/>
 <xs:attribute name="level" type="xs:unsignedInt"/>
 </xs:complexType>

 <!-- PlayList Type -->
 <xs:complexType name="PlayListType">
 <xs:complexContent>
 <xs:extension base="SANDMessageType">
 <xs:sequence>
 <xs:element name="Playback" type="PlaybackType" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- Playback Type -->
 <xs:complexType name="PlaybackType">
 <xs:sequence>
 <xs:element name="RenderingPeriod" type="RenderingPeriodType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="start" type="xs:dateTime"/>
 <xs:attribute name="mstart" type="xs:duration"/>
 <xs:attribute name="starttype" type="StartType"/>
 </xs:complexType>

 <!-- Start Type -->
 <xs:simpleType name="StartType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="New playout request"/>
 <xs:enumeration value="Resume from pause"/>
 <xs:enumeration value="Other user request"/>
 <xs:enumeration value="Start of a metrics collection period"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- RenderingPeriod Type -->
 <xs:complexType name="RenderingPeriodType">
 <xs:attribute name="representationid" type="StringNoWhitespaceType" use="required"/>
 <xs:attribute name="subreplevel" type="xs:unsignedInt"/>
 <xs:attribute name="start" type="xs:dateTime"/>
 <xs:attribute name="mstart" type="xs:duration"/>
 <xs:attribute name="duration" type="xs:duration"/>
 <xs:attribute name="playbackspeed" type="xs:decimal"/>
 <xs:attribute name="stopreason" type="StopReasonType"/>
 </xs:complexType>

 <!-- StopReason Type -->
 <xs:simpleType name="StopReasonType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Representation switch"/>
 <xs:enumeration value="Rebuffering"/>
 <xs:enumeration value="User request"/>
 <xs:enumeration value="End of Period"/>
 <xs:enumeration value="End of content"/>
 <xs:enumeration value="End of a metrics collection period"/>
 <xs:enumeration value="Failure"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

Annex B
B. Informative description of SAND Messages
Editor’s note: this informative section has not been aligned yet with SAND messages specification.

B.1 Metrics and Status Messages

B.1.1 AnticipatedRequests

B.1.1.1 Sender-side logic

	AnticipatedRequests()

{

 t = get_start_time_for_next_segment()

 reprs = get_all_representations_for_time(t)

 result = []

 for r in reprs

 do

 result.append({"sourceURL": r.sourceURL, "range": r.range,

 "targetTime": t})

 end for

}

B.1.1.2 Receiver-side logic

	// DANE behaviour
on_reception(AnticipatedRequests)

{

 cached = cachingInformation(AnticipatedRequests)

 // A recursive collection may be done with upstream DANEs

 // This is optional, and if the parameter is attached to the request

 // this happens only when the current request is not served from cache

 if recursive

 then

 not_cached = []

 for item in AnticipatedRequests

 do

 if ([item.sourceURL, item.range]) not in cached

 then

 not_cached.append([item.sourceURL, item.range])

 end if

 end for

 send_param_upstream(AnticipatedRequests=not_cached)

 wait_for_reception_of_cachingInformation()

 cached += cachingInformation

 end if

 send_params(isCached=cached) // send aggregated results downstream

}

B.1.2 SharedResourceAllocation
B.1.2.1 Sender-side logic

	// DASH client

SharedResourceAllocation()

{
 clientId = get_my_ip_address() + get_unique_client_id_in_device()

 reprBandwidths = []

 for repr in MPD.get_representations_for_time(now)

 do

 if is_suitable_to_play(repr)

 then

 reprBandwidths.append(repr.get_bandwidth()) // a margin may be added

 end if
 end for

}

B.1.2.2 Receiver-side logic

	// DASH client

on_reception(SharedResourceAllocation)

{
 if SharedResourceAllocation.bandwidthDistributionSchemeId != mySchemeId

 then

 return

 end if

 if SharedResourceAllocation.clientId not in all_sessions

 then

 // The newcomer needs to know our information

 send_param(all_sessions[my_client_id])

 // This session is new, note its starting time

 session_start_times[SharedResourceAllocation.clientId] = now()

 end if

 // Sort reprBandwidths once now, this simplifies usage later

 SharedResourceAllocation.reprBandwidths.sort()

 // store session information for future use
 all_sessions[SharedResourceAllocation.clientId] = SharedResourceAllocation
}

// Use of session information in adaptation algorithm,

// for all collaborative clients

select_representation_premium_privileged()

{

 remaining_bw = linkCapacity //c.f. Error! Reference source not found.
 session_list = get_sessions()

 session_list.reverse_sort_according_to_start_times()
 count = session_list.length

 for session in session_list

 do

 allocated = max(session. reprBandwidths)

 i = session.reprBandwidths.index_of(allocated)

 while allocated > remaining_bw / count and i > 0

 do

 i -= 1

 allocated = session.reprBandwidths[i]

 end while

 if allocated > remaining_bw

 then

 // no suitable representation for available bandwidth share

 session.allocated_index = -1

 else

 remaining_bw -= allocated

 session.allocated_index = i

 end if

 count -= 1

 end for
 // Now all sessions have tried to evenly share the bandwidth. The remaining
 // bandwidth will now be shared among clients on a first come first serve
 // basis.

 session_list.sort_according_to_start_times() // favor oldest sessions

 improvement_made = True

 while improvement_made and remaining_bw > 0

 do

 improvement_made = False

 for session in session_list

 do

 if session.allocated_index < session.reprBandwidths.length – 1

 // not already max

 then

 next_bitrate = session.reprBandwidths[session.allocated_index + 1]

 if session.allocated_index == -1

 then

 current_bitrate = 0

 else

 current_bitrate = session.reprBandwidths[session.allocated_index]

 end if

 if (next_bitrate - current_bitrate) <= remaining_bw

 then // this session can get a bit more bandwidth

 session.allocated_index += 1

 remaining_bw -= (next_bitrate - current_bitrate)

 improvement_made = True

 end if

 end if

 end for

 end while

 res = get_representation_for_level(all_sessions[my_session_id].allocated_index)
 // We may want here to request a lower representation (e.g. for rebuffering)

 return res
}

select_representation_everybody_is_served()

{

// step 1: provide minimum bandwidth to a maximum number of clients.

 remaining_bw = linkCapacity

 session_list = get_sessions(p)

 session_list.sort_according_to_start_times()

 for session in session_list

 do

 if remaining_bw >= session.reprBandwidths[0] then

 session.allocated_index = 0 // chosen representation is first one
 // (minimum bandwidth)

 remaining_bw -= session.reprBandwidths[0]

 else

 session. allocated_index = -1 // no representation

 end if

 end for

// at this point, provided there is enough bandwidth, all sessions have been
// allocated their minimum bandwidth, starting with earliest sessions.
// If total bandwidth is not enough, earliest sessions are served first.

 // step 2: distribute remaining bandwith (until it is exhausted)

 // between all clients, starting with earliest ones

 improvement_made = True
 while remaining_bw > 0 and improvement_made

 do
 improvement_made = False
 session_list = get_sessions()

 session_list.sort_according_to_start_times()

 for session in session_list

 do

 i = session.allocated_index
 if i < session.reprBandwidths.length – 1 // not already max
 then
 bw_upgrade = session.reprBandwidths[i+1] - session.reprBandwidths[i]

 if remaining_bw >= bw_upgrade

 then

 // there is enough bandwidth to upgrade to next representation

 improvement_made = True

 session.allocated_index += 1

 remaining_bw -= bw_upgrade

 end if

 end if

 end for

 end while

 res = get_representation_for_level(all_sessions[my_client_id].allocated_index)
 // We may want here to request a lower representation (e.g. for rebuffering)

 return res
}

B.2 PER Messages

B.2.1 ResourceStatus

B.2.1.1 Sender-side logic

	// DANE behaviour
// First example: generate status associated to baseURL

ResourceStatusBaseURL()

{
 result = []
 for base_url in list_baseURL_from_MPD()

 do

 if same_status_for_all_reprs_with_base(base_url)

 then

 result.append({"baseURL": base_url, "status": common_status})

 end if

 done

}

// Second example: generate status per repId
// candidate_list is a list of candidate representations
// for which we want to test the caching status.

// This value may come from the anticipatedRequest parameter

// received from the client or a downlink DANE
// Note: here we assume representations never have same id

// to simplify the pseudo code example
ResourceStatusRepId(candidate_list)

{
 result = []
 for repr in candidate_list

 do

 result.append({"repId": repr.id, "status": repr.get_status()})

 end for
}

B.2.1.2 Receiver-side logic

	// DASH client

on_reception(ResourceStatus)

{

 store_status_information();

 if (source NOT trusted)

 return;

 if (identifier is URL) {

 foreach (baseURL in MPD) {

 if (baseURL == identifier && status == cached)

 set weight = 0.8;

 else if (baseURL == identifier && status == available)

 set weigth = 0.2;

 }

 } else if (identifier is repid && available) {

 switch_to(identifier);
}

B.2.2 DaneResourceStatus
B.2.2.1 Sender-side logic

B.2.2.2 Receiver-side logic

B.2.3 SharedResourceAssignment
B.2.3.1 Sender-side logic

B.2.3.2 Receiver-side logic

B.2.4 MPDValidityEndTime

B.2.4.1 Sender-side logic

	// Example of MPDValidityEndTime constructor

MPDValidityEndTime ()

{

 // Get the publishTime of the MPD host by cdn1.

 publishTime = getPublishTime("http://cdn1.example.com/live.mpd")

 // Here we want the DASH clients to fecth a new version of the MPD as soon as they receive the message.

 validityEndTime = now()

 // Indicates the new MPD URL.

 mpdUrl = "http://cdn2.example.com/live.mpd"

}

B.2.4.2 Receiver-side logic

	// Example of MPDValidityEndTime callback

on_reception(MPDValidityEndTime)

{

 if MPDValidityEndTime.PublishTime is myCurrentMpd.publishTime

 then

 if MPDValidityEndTime.mpdUrl not ""

 then

 nextMpdUrl = MPDValidityEndTime.mpdUrl

 else

 nextMpdUrl = myCurrentMpd.location

 end if

 if MPDValidityEndTime.validityEndTime > now()

 then

 schedule(

 updateMpd(httpGet(nextMpdUrl)), MPDValidityEndTime.validityEndTime)

 else

 // Immediate update because MPD is no more valid

 updateMpd(httpGet(nextMpdUrl))

 end if

 end if

}

B.2.5 Throughput

B.2.5.1 Sender-side logic

	// DANE behaviour
// First example: generate throughput associated to baseURL

ThroughputBaseURL()

{

 result = []

 for base_url in list_baseURL_from_MPD()

 do

 if same_throughout_for_all_reprs_with_base(base_url)

 then

 result.append({"baseURL": base_url, "throughput": common_throughput})

 end if

 done

}

B.2.5.2 Receiver-side logic

	// DASH client
on_reception(Throughput)

{

 store_throughput_information();

 if (source NOT trusted)

 return;

 if (identifier is URL) {

 foreach (baseURL in MPD) {

 if (baseURL == identifier && guaranteedThroughput > Representation@bandwidth && percentage == 100)

 switch_off_bandwidth_estimation();

 }

 } else if (identifier is repid) {

 switch_to(identifier);

}

	

B.2.6 AvailabilityTimeOffset

B.2.6.1 Sender-side logic

	// DANE behaviour
// First example: generate availability time offset associated to baseURL

AvailabilityTimeOffsetBaseURL()

{

 result = []

 for base_url in list_baseURL_from_MPD()

 do

 if same_offset_for_all_reprs_with_base(base_url)

 then

 result.append({"baseURL": base_url, "offset": common_offset})

 end if

 done

}

B.2.6.2 Receiver-side logic

	// DASH client
on_reception(AvailabilityTimeOffset)

{

 store_offset_information();

 if (source NOT trusted)

 return;

 if (identifier is URL) {

 foreach (baseURL in MPD) {

 if (baseURL == identifier)

 adjust_availability_time(identifier, offset);

 }

 } else if (identifier is repid) {

 switch_to(identifier);

}

	

B.2.7 QoSInformation
B.2.7.1 Sender-side logic
	QoSInformation()

{

send_qosInformation(&gbr, &mbr, &delay, &pl);

}

B.2.7.2 Receiver-side logic
	Adaptation(QoSInformation)

{

selected_representation = max(&gbr,min(&mbr,selected_representation))

}

B.3 PED Messages

B.3.1 BwInformation
B.3.1.1 Sender-side logic
	BwInformation()

{

send_bwInformation(&minBandwidth, &maxBandwidth, &clientID);

}

B.3.1.2 Receiver-side logic

	QoSDerivation(BwInformation)

{

derive_QoS(&minBandwidth, &maxBandwidth, &clientID);

}

Annex C
C. SharedResourceAllocation Allocation Strategies
In order to obtain a cooperative environment between DASH clients operating over the same network, DASH clients may send a SharedResourceAllocation message which contains the list of their operation points and their preferred resource allocation strategy. Such resource allocation strategies define how bandwidth shall be assigned among the DASH clients.

The present specification normatively defines the following strategies and their associated algorithms.
Table 28 – Allocation Strategies
	urn
	Allocation Strategy

	urn:mpeg:dash:sand:2015:allocation:basic
	Basic

	urn:mpeg:dash:sand:2015:allocation:premium-privileged
	Premium privileged

	urn:mpeg:dash:sand:2015:allocation:everybody-served
	Everybody served

	urn:mpeg:dash:sand:2015:allocation:weighted
	Weighted

	urn:mpeg:dash:sand:2015:allocation:pricing
	Pricing

Each algorithm described below is computing allocations for the entire set of clients at the time it is run. This means the inputs for an algorithm are:

1. The values collected from all valid SharedResourceAllocation messages received from clients in the considered network.

2. The shared_bandwidth which is the total amount of available bandwidth we want to share between the clients.

Note: this value may be obtained for example by using the QoSInformation@mbr parameter.

The first four algorithms below (section C.1 to section C.4) work in two passes:

· A first pass computes allocations following the strategy itself, maybe allocating different shares to clients. Since the operation points provide only a small discrete set of bandwidth values, at the end of this first pass there is most of the time ‘wasted bandwidth’, i.e. the sum of allocations to clients is below the shared bandwidth.

· A second pass is thus trying to improve the delivered quality and bandwidth occupancy by just looking for possible increases in operation points. A common procedure used for this second pass is described in C.5.

The fifth algorithm described below (Pricing, see section C.6) is a one pass algorithm.
C.1 Basic (urn:mpeg:dash:sand:2015:allocation:basic)
This is the minimalist strategy. The algorithm is very limited (while still useful). Its goal is to make an ‘equal share’ in the allocation.
The first pass simply divides the shared_bandwidth by the number of clients.

The second pass runs on the complete list of clients, ordered by start time.

def basic_algo():

 remaining_bw = shared_bandwidth

 # === First pass ===

 # Divide the bandwidth equally

 bw_share = shared_bandwidth / number_of_clients()

 # Let every client take the highest operation point fitting this share of bandwidth

 for s in all_clients ():

 s.allocate_at_most(bw_share)

 remaining_bw -= s.allocated

 # === Second pass (see C.5) ===

 remaining_bw = second_pass(remaining_bw, all_clients_by_start_time())

C.2 Premium privileged (urn:mpeg:dash:sand:2015:allocation:premium-privileged)
This strategy is aimed at providing maximum quality to some privileged session(s), for example premium content the user has bought.

The strategy uses SharedResourceAllocation@weight as the priority value to allow some client(s) to be allocated bandwidth first, lower priority clients being served only when the total bandwidth is not used by higher priority clients.

The first pass works successively on priorities (weights) from highest to lowest. For each group of clients of same priority, clients are considered in reverse order of starting time to favour oldest ones. Division of remaining bandwidth is done at every step so unused bandwidth at one step is included for the next client.

The second pass runs on the complete list of clients, ordered by start time.
def premium_algo():

 remaining_bw = shared_bandwidth

 # === First pass ===

 # Allocate top priority clients as if the others do not exist,

 # then continue with each next lower priority for remaining bandwidth.

 # The priority is given by the weight parameter.

 for priority in decreasing_weights():

 count = number_of_clients_with_weight(priority)

 # Scan clients of same priority from last started client to oldest client

 # This gives some advantage to the oldest clients since the first ones

 # will often not be allocated 100% of their bandwidth share,

 # providing margin to others.

 for s in most_recent_first_clients_with_weight(priority):

 # Recompute bandwidth share each time, so as to maximize total bandwidth use

 s.allocate_at_most(remaining_bw / count)

 remaining_bw -= s.allocated

 count -= 1

 # === Second pass (see C.5) ===

 remaining_bw = second_pass(remaining_bw, all_clients_by_start_time())

C.3 Everybody served (urn:mpeg:dash:sand:2015:allocation:everybody-served)
This strategy is aimed at serving the maximum number of clients with enough bandwidth to play without interruption.

The strategy uses SharedResourceAllocation@weight as a value which determines the order in which clients are scanned for allocation. Thus higher weight clients have more chance to get bandwidth before all is allocated.
The first pass scans clients by decreasing weight, and by increasing start time for a same weight. For each client in this order, the lowest operation point is allocated if enough bandwidth is remaining.

The second pass is applied to the group of clients with highest priority letting them use all they can of the remaining bandwidth. Then the same is repeated for next lower priority.
def everybody_served_algo():

 remaining_bw = shared_bandwidth

 # === First pass ===

 # Try to allocate the lowest operation point to all clients.

 # Since this may not be possible, the ordering determines

 # which clients may be left without any bandwidth.

 # Highest weight clients come first.

 for weight in decreasing_weights():

 # For a given weight, oldest clients come first.

 for s in least_recent_first_clients_with_weight(weight):

 if s.smallest_operation_point_bw() <= remaining_bw:

 s.allocated = s.smallest_operation_point_bw()

 remaining_bw -= s.allocated

 # === Second pass (see C.5) ===

 for weight in decreasing_weights():

 remaining_bw = second_pass(remaining_bw,

 least_recent_first_clients_with_weight(weight))

C.4 Weighted sessions (urn:mpeg:dash:sand:2015:allocation:weighted)
This strategy is aimed at allocating every clients a share of bandwidth proportional to their SharedResourceAllocation@weight. This can be used for example to use more bandwidth for large screen devices than for mobile devices.
The first pass scans clients by decreasing weight then increasing start time. At each step it computes the ratio of the client’s weight to the sum of weights of unallocated clients. The ratio is applied to the remaining bandwidth at that time for allocation to the client.

The second pass runs on the complete list of clients, ordered by start time.

def weighted_algo():

 remaining_bw = shared_bandwidth

 # === First pass ===

 # The ordering for allocation:

 sorted_clients = all_clients_sorted_by_decreasing_weight_then_increasing_start()

 # At each loop step we consider only the clients not yet allocated

 remaining_clients = sorted_clients.copy()

 for s in sorted_clients:

 # Recompute values each time, considering only the clients not yet allocated

 remaining_weight = compute_sum_of_weights(remaining_clients)

 bw_share = float(remaining_bw) * s.weight / remaining_weight

 s.allocate_at_most(bw_share)

 remaining_bw -= s.allocated

 remaining_clients.remove(s)

 # === Second pass (see C.5) ===

 remaining_bw = second_pass(remaining_bw, all_clients_by_start_time())

C.5 Common procedure for second pass

The procedure below is used by the previous algorithms during a second pass. Its goal is to try to make use of all the remaining bandwidth, distributing it among a sorted list of clients provided by the caller.

It goes through all clients and tries to go just one step higher in operation points of each client. The process is repeated as long as there is a possibility of improving.

def second_pass(remaining_bw, sorted_clients):

 improved = True

 while improved:

 # We loop as long as some bandwidth can be allocated to somebody

 # stopping if no client can be improved anymore.

 improved = False

 for s in sorted_clients:

 # First check if this client has potential for improvement

 if s.can_improve():

 # How much bandwidth would it take to improve:

 bw_delta = s.next_higher_op_point_bw() - s.allocated

 # If this fits, then allow this client to go one point up

 if bw_delta <= remaining_bw:

 s.allocated = s.next_higher_op_point_bw()

 remaining_bw -= bw_delta

 improved = True

 return remaining_bw
C.6 Pricing (urn:mpeg:dash:sand:2015:allocation:pricing)
Price determination algorithm at the coordinator:

Initialize C as shared bottleneck bandwidth
Initialize price P as (Plast)? Plast : Pdefault

Set R = C

For each session i with requested bandwidth BWi:
Set R as R-BWi

END

If (R < 0)

Scale price by |R|/C by setting P = Plast * (1+|R|/C)

Else if (R > delta)

Scale price by R/C by setting P = Plast * (1 - |R|/C)

END

Send new calculate P

Price determination algorithm at the client:
Let P equal received bandwidth price

For each operation point i in Operation_Points

Set Qi = Quality(Representation(i))

Set Bi = (Bandwidth(Representation(i))

Set Ui = Qi – Bi * Price

END

Let j be Operation Point with Uj = Max(Ui, i (Operation Points)

Send resource allocation with Bj requested bandwidth to the server

Document type: International Standard
Document subtype:

Document stage: (50) Approval
Document language: E
C:\Users\champelm\Documents\Standards\MPEG-DASH\MPEG 113 - Geneva\SAND DIS\ISO-IEC_DIS_23009-5_(E)_r3_redline.doc STD Version 2.1c2

