TSG SA4#85 meeting
Tdoc S4 (15)1177
24-28 August 2015, Kobe, Japan 


Source:
David Singer, Apple
Title:
Proposed MBMS URL Form
Document for:
Discussion 
Agenda Item:

14.9 (MBS/MEPRO/TRAPO)
1 Introduction

2 Interface

The interface is described graphically by the diagram below. All the boxes except for the yellow, bold, box are pre-existing and no change is needed, and little is desired, in them. An application might, for example, be written to use MBMS services using the MBMS API (left side of the diagram). Or, it may be written to support URLs that address ‘file’ resources, and use a generic operating system URL resolution library (‘URL Dispatch’ in the diagram) to return the identified resource when it encounters one. The “file” resource may be an entry point to a service and it may be the case that there is a default file defined for a service (just as done today if you use http to access a web site). That library, in turn, identifies the specific protocol handler from the URL scheme name (e.g. “http:”, “mbms:”), and invokes the appropriate protocol-specific handler. The interface to that handler is determined by the operating system also; internally, the MBMS handler picks apart the URL form, and, possibly using the existing MBMS APIs, initiates the acquisition of the MBMS service that permits access to the identified resource, and acquisition of the indicated ‘file’ resource from that session, and returns that resource. (There is more detail on its hypothetical behaviour below in section 3.)
[image: image1.emf]


Application Application



URL Dispatch



MBMS URL 
handler



HTTP URL 
handler



MBMS function HTTP 
function



MBMS API











Figure 1: Position of the MBMS URL Handler
3 URL Form

3.1 Variants

The MBMS URL form may have further variants added in future. The form described here uses a URN in the prefix part; parsers must check for the existence of “urn:” and cease parsing if it is absent. [[Ed: we may need an explicit indication of this variant, e.g. by saying “serviceID=” after the “//” and before the URN]]. This URN form relies on the terminal reception of USD files over the MBMS signaling channel. Other forms may be defined in future that bootstrap in other ways.
3.2 The ServiceID form of the MBMS URL
3.2.1 Overall Form

The URL has three parts: a mandatory prefix, zero or more optional elements forming a mid-part, and an optional suffix.

3.2.2 Prefix

The prefix consists of the scheme name “mbms”, followed by a colon character and two slashes, and a URN. The prefix terminates either at the end of the URL, or at the first character not permitted in a URN (an ‘excluded character’ from the URN RFC [6], such as “&”).

The URN is formatted the same as the value of the serviceID attribute in a USD as described in [7], and will be matched to a serviceID. (Note that 26.346 explicitly describes this as a URN, not a URI, so a URL is not permitted.)

example:
mbms://urn:uuid:6e8bc430-9c3a-11d9-9669-0800200c9a66
[[Ed: Note that it should be checked to see if a service can be addressed by a more catchy <hostname>, such that mbms URLs have a similar format as http URLs. This is, however, a change to MBMS.]]
3.2.3 Mid-part elements

The mid-part has three elements, each optional.

1) The start-time of the viability of the URL, indicated by the string “&start=” and a decimal value.

2) The end-time of the viability of the URL, indicated by the string “&end=” and a decimal value.

3) Zero or more indicators of the networks on which the resource is available, indicated by the string “&plmn=” followed by the PLMN-Id of a network expressed as 6 hexadecimal characters.

The start and end times are each optional and if present are expressed exactly as in SDP (see the “t=” value in [5]), i.e. as the decimal representation of Network Time Protocol (NTP) time values in seconds since 1900.
Each network PLMN-Id identifies that the resource is available on that network. If the terminal is operating on any other network, then a suitable error should be returned immediately. If there are no PLMN-Ids in the URL, then the URL handler should continue and assume the resource/session are generally available, or that other means have been used to assure that the URL is only passed to terminals able to use it.
3.2.4 Suffix

The suffix consists of the string “&label=” followed by the content-label of a resource, expressed as its URI, without any escaping.

If the suffix is absent, then the MPD included in the USD is returned. [[Ed: We don’t have to do this defaulting, and it would have been cleaner if the USD had identified the root or default resource in general, rather than having special handling for DASH MPDs; then, for example, a web session could have identified the root HTML file as the default.]]
3.2.5 Example

mbms://urn:uuid:6e8bc430-9c3a-11d9-9669-0800200c9a66&plmn=3a06de&label=http://www.example.com/content.mpd
3.2.6 Relative URIs

Note that the “//” means that the MBMS scheme is hierarchical and that relative URLs are permitted, and that they would be effectively composed against the label part. This means that, for example, an explicit or implied base URL in an MPD may be an MBMS URL, and that relative URLs in the MPD can be composed against that base.
[[Ed: the ‘defaulting’ to the included MPD, above, means that relative URLs may get messed up; needs study.]]
4 Operation of the URL Handler

4.1 Connecting to the MBMS Service

When the terminal initializes, or at some time preceding the first request to the MBMS URL Handler, the terminal’s MBMS function opens the SACH signalling channel and receives, and caches, the USDs that are sent on that channel. In those USDs it finds the unique serviceID attribute value, defined to be a URN by 26.346, and indexes the received USDs by this serviceID URN value.
[[Ed: these handling will also be checked in order to align with the MEPRO API work. The URL form may be viewed as an instantiation of the APIs]]
4.2 Initialization of the session

Each URL is passed to the MBMS URL handler for resolution.

First, the handler checks:

a) if the URL has a start mid-part value, and the value is in the future, it returns an error (404?)

b) if the URL has an end mid-part value, and the value is in the past, it returns with error (404?)

c) if the URL has one or more PLMN mid-part values, and the PLMN-ID of the current network is operating matches none of them, it returns with error (404?)

If these checks pass, it then checks to see if the serviceID of the URL matches one of the services it is already receiving. If it is already being received, it moves ahead to return the resource at the time when the resource is available.

Otherwise, since the MBMS service described by the USD is not currently open, it finds the cached USD with the matching serviceID; if it cannot find a matching USD, it returns with error (404? Service Unavailable?). (Note, this assumes that all USDs have arrived before any URL request is made for them; is this viable?)
Using the matched USD, it opens the session, and starts to receive the contents of that session, particularly the FDT and the files described by it, and it caches the included files as they arrive (see below for more discussion of caching).
4.3 Returning the resource

When the session is open, the handler locates the FDT. If the label part of the URL request does not match any content-location entry in the FDT, the resource is not available on that session and it returns 404 (not found).
Otherwise, it waits until it has received the file with the given content-location (it may be already cached), and returns it with the content-type, content-encoding, etc. as indicated in the FDT.
If the API request for the MBMS URL indicated a time-out, and the requested resource has not arrived in the time-out period, then an error is returned.

4.4 Caching and Keep-Alive
The MBMS URL handler maintains the connection open for some time (how long?) after each request, expecting further requests for other files from the same session.
The files identified in the FDT are cached. Each such file is described by a content-location, which is a URI. If that content-location URI form uses the scheme-name of another protocol (e.g. “http:”) then the resource should (must?) be cached in a cache shared between the MBMS URL handler and that other protocol. In this way, after the session is initiated, it is possible that, for example, a request to the HTTP URL handler for a resource can be satisfied by a file that has arrived and been cached by the MBMS URL handler.

When operating in an environment that permits arrival notifications (e.g. web push or other events), as each file arrives a notification may be sent.

5 In-band information

5.1 Status Code
As noted in the draft, the current multicast definitions do not include the HTTP status with the meta-information. It would be highly desirable to extend MBMS (and Flute and Fcast) to be able to deliver explicit status codes (notably 404 and re-directs).

For MBMS, this is for further study.

6 Pending Questions

What are the correct status codes for the errors (a) request outside the viability time-range, (b) request made on the wrong network (no matching PLMN-ID) or (c) request for a non-existent serviceID?

What are the caching/keep-alive periods? Can they be derived from the USD?

Do we need the ‘default resource’ capability? The USD has maybe two ways to signal ‘this MPD’; if we need it, the text needs to be clarified, and the interaction with relative URLs needs exploring.
Can we make sure that the service id can be more instructive, e.g. being a host name rather a URN? This allows for better sharing, but is a change to MBMS.
Do we need any updates on the MBMS delivery protocol or is the URL handling a pure API question? (At this point the latter is assumed.)
7 Bibliography

[1] URLs and HTTP Response Forms for Multicast, Begen and Singer, https://tools.ietf.org/id/draft-singer-appsawg-mcast-url-00.txt
[2] Guidelines and Registration Procedures for URI Schemes, RFC 7595, Thaler et al., http://www.rfc-editor.org/rfc/rfc7595.txt
[3] FLUTE - File Delivery over Unidirectional Transport, RFC 6726, Paila et al., http://www.rfc-editor.org/rfc/rfc6726.txt
[4] MEPRO: Use Cases and Scenarios for TRAPO and API, S4-150835, Qualcomm Inc.
[5] SDP: Session Description Protocol, RFC 4566
[6] URN Syntax, RFC 2141
[7] Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs; 3GPP TS 26.346


Page: 1/4


Page: 2/4

