TSG SA4#85 meeting
Tdoc S4 (15)0937

24-28 August 2015, Kobe, Japan
(derived from S4-150381)

Source:
David Singer, Apple
Title:
On the MBMS URL Form
Document for:
Discussion
Agenda Item:

14.9 (MBS/MEPRO/TRAPO)
1 Introduction

In the MEPRO work item there is a task area TRAPO “Usage of MBMS as a transport protocol including a URL form (TRAPO)”:
In some circumstances it is desirable to enable applications that use network resources that could be delivered over HTTP, to access those resources over MBMS rather than over a unicast protocol. The MBMS protocol handler will be identified by a URL form, and handler will act (from the application’s point of view) in a similar way as a unicast resolution handler.
An application encountering such a URL would use this handler and the handler will use the information in the URL to bootstrap, access the service and return the identified resource to the application if possible.

The access details, including the bootstrap procedure, caching, and resolution of the location of the resources, are hidden in the protocol handler, thus allowing the application and the content authors to exploit MBMS without exposing these details to the application, and also ideally without requiring the application to be specific to the MBMS protocol.
In this area, we will study the details of such URL form(s), the bootstrapping process, and the behaviour of the protocol handler, both from the point of view of the network and the application.

This document attempts to start ‘painting the landscape’ for some aspects of this area.

2 Use Cases

The URL form is intended to be an additional way to address and invoke MBMS, not a replacement for anything currently specified.

The expected applications include

1. Use of MBMS delivery into contexts that support using ‘files’ (resources) delivered by URLs, where the timing of delivery is not critical: the most obvious example here is traditional web browsing.
2. Use of MBMS delivery into contexts that support using ‘files’ (resources) but that have timing sensitivity on delivery; the most obvious example is DASH (though it already has MBMS mappings). The client here needs to be aware that arrival timing is not indicative of bandwidth availability; MBMS delivery cannot be treated as ‘like HTTP’ in this sense,

3. The previous two, where the URL is given through the ability to re-direct from other protocols with URL addressing and re-direction capability (notably HTTP and its successors). In this case, the client is originally given an HTTP URL and the system decides to re-direct it to an MBMS URL (presumably based on the client’s type, network location, demand for the resource, and so on).
The initial URL acquisition is, of course, out of scope. Examples include (as above) embedding in HTML wherever a source can be addressed (e.g. , <source>), a QR Code that embeds URLs, printed URLs that users type-in or copy-paste, and so on.

An example scenario might help here. Joe and many thousands of other people enter a stadium that has a sign that says “Violet Subscribers: Scan here to see our streaming camera!” and there is a square code below:
[image: image1.png]
Indeed, the Violet subscribers scan this, and it tunes in an MBMS session, starts caching the files, and returns the DASH MPD that the URL references. That invokes a DASH player, and, because more MBMS URLs are used to address the source media in the MPD, that player starts to access the MP4 segments and to play the video referred to. It’s possible that this happened without even a DNS lookup, and this scenario works with no required HTTP traffic. (The MBMS session and MPD are, of course, free to use HTTP for resources, repair, reporting, etc. if they wish.)
In more complex scenarios, the MBMS URL contains names that are looked up. The DNS resolution can be context-sensitive (e.g. Violet subscribers and Umafone subscribers get different answers). In more complex scenarios, the initial URL is HTTP that is then dynamically re-directed to MBMS, possibly considering demand, time, the network the subscriber is on, and so on.
3 Interface

The interface is described graphically by the diagram below (which was developed in the SA4 meeting in Rennes). All the boxes except for the yellow, bold, box are pre-existing and no change is needed, and little is desired, in them. An application might, for example, be written to use MBMS services using the MBMS API (left side of the diagram). Or, it may be written to support URLs that address ‘file’ resources, and use a generic operating system URL resolution library (‘URL Dispatch’ in the diagram) to return the identified resource when it encounters one. That library, in turn, identifies the specific protocol handler from the URL scheme name (e.g. “http:”, “mbms:”), and invokes the appropriate protocol-specific handler. The interface to that handler is determined by the operating system also; internally, the MBMS handler picks apart the URL form, and, possibly using the existing MBMS APIs, initiates the acquisition of the MBMS session, and acquisition of the indicated ‘file’ resource from that session, and returns that resource. (There is more detail on its hypothetical behaviour below in section 7.)
[image: image2.emf]

Application Application

URL Dispatch

MBMS URL
handler

HTTP URL
handler

MBMS function HTTP
function

MBMS API

Figure 1: Position of the MBMS URL Handler
4 URL Form

4.1 Context

MBMS stands as a member of a family of protocols that deliver objects (files, resources) over multicast channels. The family includes Flute and FCast. Though MBMS uses some aspects of Flute, and might stand to benefit from using Fcast, we treat it here as a protocol in its own right. Commonality of approach with the other protocols in the family would need addressing should the IETF become active in this area; SA4 does not own Flute or FCast and so they will not be discussed directly here.
There is more discussion of the general problem in the (expired) internet draft [1].
4.2 URL Requirements

We need to consider [2] and abide by what it says.

The ‘scheme’ of the URL must indicate what the protocol is: this corresponds to one of the requirements of [3] (“An indication that the session is a FLUTE session”, though in this case we are indicting MBMS)
The URL needs to have an initial ‘//’ after the ‘:’, as indicated by the Guidelines for URI Schemes: “Double slashes are intended for use ONLY when the syntax of the <scheme-specific-part> contains a hierarchical structure.”

As indicated in the internet draft, there are four rough classes of information that could be in the URL:

1. Information about alternatives that could be supplied as part of the higher-level protocol (e.g., different representations in HTTP adaptive streaming and HTML5 source elements)

2. Information (IP addresses and the like) that is needed to 'bootstrap' the multicast reception

3. Information about where/how the reception is possible (e.g., protocol parameters, time-ranges, and so on)

4. Information that could be acquired later, in-band, such as feedback addresses, the availability of alternatives and unicast repair servers, and so on (or indeed, a fuller description of the multicast itself)

As the draft indicates, the important information is in items 2+3. This means that we need to identify how the other information is carried: higher-layer (e.g. DASH or HTML <source> alternatives) or in-band.
We also desire that it be possible to initiate the service, and bootstrap, using at most ‘normal’ IP and other services (e.g. DNS) and that there be no required Unicast operation (HTTP).
We require that relative URLs work.
5 Drafting an MBMS URL Scheme
At the moment, it looks as if FCAST, FLUTE and MBMS would need different schemes. Here we focus on MBMS.
In some cases – in Unicast, for example – a 3GPP network can be treated as an IP network; for example, the PDP context that supplies IP packets is not typically evident above the IP layer. The IP address effectively provides an abstraction, and the lower system layers know how to map that to what is, from the IP point of view, the ‘physical layer’ that is 3GPP.
This is not the case in multicast. There is no mapping of, for example, a multicast IP address into the MBMS identifiers. In previous discussions, we have identified that some mapping might be possible, but the discussions have not concluded.
If we were to try to use a Flute URL form (as MBMS does, in fact, use Flute) this would be important; however, for now, we should focus on the MBMS information directly. Nonetheless, this is explored a little below.
As I understand it, to do the initial tune-in to an MBMS session, one needs some of the following:
1. MBMS Service ID (see 23.003). MBMS Service ID consists of a 6-digit fixed-length hexadecimal number between 000000 and FFFFFF. MBMS Service ID uniquely identifies an MBMS bearer service within a PLMN.
2. TMGI. The TMGI is composed of three parts (see 23.003):

1)
MBMS Service ID consisting of three octets.
2)
Mobile Country Code (MCC) consisting of three digits. The MCC identifies uniquely the country of domicile of the BM-SC;

3)
Mobile Network Code (MNC) consisting of two or three digits (depending on the assignment to the PLMN by its national numbering authority). The MNC identifies the PLMN which the BM-SC belongs to.

3. PLMN-ID. PLMN-ID consists of Mobile Country Code (MCC) and Mobile Network Code (MNC). (see 23.003). (So, a TMGI can also be thought of as an MBMS Service ID with a PLMN-ID).

4. MBMS SAI (do not confuse this with an SAI, see below). This is a decimal number between 0 and 65,535 (inclusive). (The SAI is defined in 23.003; MBMS Service Area is defined in 23.246).
5. SAI. (Not MBMS SAI, see above). I don’t think this is used. The Service Area Code (SAC) together with the PLMN-ID and the LAC constitute the Service Area Identifier (23.003).

6. LAC, RAC (2 bytes). I can’t find their definition, but: “If there are less than 4 significant digits in <RAC> or <LAC>, one or more "0" digit(s) is/are inserted at the left side to fill the 4 digit coding.” (23.003). So we do know their size. (Only used here in SAI which I don’t think we need.)
7. SAC. (2 bytes, operator defined, unique within LAC).

8. EARFCN (2 bytes, unsigned; E-UTRA Absolute Radio Frequency Channel Number). EARFCN seems to range from 0 to 29649 (see 36.104). (I am not sure why I was told that we care about EARFCN.)
This list is too long, obviously. Reference [4] identifies:
· The [above mentioned] APIs may be implemented also as a URL form. This permits that the application can communicate with the MBMS client in a formalized manner, similarly as applications communicate with underlying HTTP stack.

· The URL needs sufficient information to register with the MBMS client, generally the following information is considered sufficient in the URL:

· ServiceID

· Service Type

I assume that the ServiceID is the MBMS Service ID, and the service type is the MBMS Protocol. If so, “mbms:” as the scheme name in the URL says the former, and we can embed the MBMS Service ID in the URL as follows. But actually, I think we need the full TMGI (including PLMN-ID, which in turn gives MCC and MNC).
It’s desirable to use DNS if we can. Providing dynamic answers to DNS queries is sometimes done on the internet (e.g. to do server cycling, and so on). If we are to use DNS, the easiest is to use simple IPv4 addresses as the resolution; then we don’t need any new DNS record type. One could look up a name and get returned a 32-bit IPv4 address in the multicast range. The multicast addresses are in the range 224.0.0.0 through 239.255.255.255. The range of addresses between 224.0.0.0 and 224.0.0.255, inclusive, is reserved for the use of routing protocols and other low-level topology discovery or maintenance protocols, such as gateway discovery and group membership reporting, so we need to avoid that range. Decimal 224 is 0xE0, and 239 is 0xEF. So, we could form an IP multicast address of 0xE1 concatenated with the MBMS service identifier (6 hex digits)
This doesn’t tell us the MCC and MNC, alas. We could

a) put them somewhere else in the URL, as numbers, but this then rather undermines the value of using DNS for the MBMS Service Identifier.

b) invent a new DNS record type that returns the full TMGI, register that with the IETF/IANA, and use that.

c) give up on using DNS as an indirection; just embed the TMGI in the URL directly.

d) use some other dynamic part of the URL to return MCC and MNC.

e) use the ‘only applicable on network X’ part of the suggested URL form to indicate MCC and MNC

f) have a new ‘mid-part’ that is specifically 3GPP, supplying MCC and MNC.

Note that the last two diminish the value of using DNS for the MBMS Service ID.

The internet draft suggests that multicast URLs be formed from a prefix that is protocol-specific, and then a suffix of key:value pairs, with “label” as the last key and identifying the desired resource (note that this means that relative URLs ‘work’).

The draft suggests for FCast
fcast://destination:port/source:TSI

as the initial part of the URL. If the destination and source are permitted to be names (rather than hard-coded IP addresses) then network-sensitive name-resolution can be used (as it commonly used on the internet, e.g. for round-robin or proxying). We should do something similar for MBMS.
This suggests something like

mbms://destination:port/source:TSI

where destination is an IP multicast address or a name that resolves to one, source is an IP unicast address or a name that resolves to one, port is the IP destination port of the multicast (is this used in MBMS?) and TSI is defined in ALC [5].

The other suffixes in the internet draft include start and end times, and a ‘hosting network’ indicator (“this URL is only going to work if you think you are on this network”). I’d rather like to get rid of the network identifier, and somehow have DNS or some other lookup tell you whether the multicast is likely to work for you where you are.

6 In-band information

6.1 Special Names
The draft suggests that special names be used for some information, notably all the ‘extra’ information that can be acquired after initial channel acquisition. At the moment, this information is carried in SDP and/or USD files. I would suggest that we actually carry these ‘as is’, with the instructions to the receiver that fields they ‘already know’ (notably, the multicast info) MUST be ignored. That way when a multicast is transferred from one network to another, or its final form is not known at generation time, these files can be transferred ‘as is’, with ‘wrong’ or ‘placeholder’ values for the multicast address etc.

All the repair information, feedback information, and so on, would nonetheless have to be correct (this is the unique place to find it). If these need to vary by network, the files will need re-writing.

We may need special names for either or both of:

a) the SDP file describing the session;

b) the USD for MBMS

I would suggest URNs for these (the file labels) and that the first be an IETF URN (as it goes with the protocol, ALC) and the second be a 3GPP one.
6.2 Status Code
As noted in the draft, the current multicast definitions do not include the HTTP status with the meta-information. It would be highly desirable to extend MBMS (and Flute and Fcast) to be able to deliver explicit status codes (notably 404 and re-directs).

In Fcast, perhaps the easiest way to include it would be to introduce a new value of the format indicator http://www.iana.org/assignments/fcast/fcast.xhtml#format and say that the status line is included.
For MBMS, this is for further study.

7 Operation of the URL Handler

(From [1]).

When the client-side URL handler gets the first URL for a given session, it would 'tune in that session' and (with luck) start receiving files and metainformation. On the receipt of 'special files' (e.g., a USD or SDP) it can expand its knowledge of the session. Other files not corresponding to the immediate request in hand should be cached, observing the cache control headers. When the indicated file (or at least the requested byte-range of the indicated file) is available, it is returned. If in-line status codes are supported in MBMS, and a 404, 410, or 3xx response is received for the indicated file, then an appropriate error is returned, as indeed it is if the URL specifies that the multicast is only available over a given time range, and the request is not or cannot be satisfied in that time range.

8 Tasks and Proposal
1. What is the URL form and what information is needed in it?

2. Can MBMS parameters be derived from the IP-level information (multicast address etc.) – at least enough to ‘tune in’?
3. Is the approach to in-band information enough?
4. What are the special-file URNs?

We propose refining the use-cases and requirements, and the draft MBMS form, and adding them to the on-going draft TR.

9 Bibliography

[1] URLs and HTTP Response Forms for Multicast, Begen and Singer, https://tools.ietf.org/id/draft-singer-appsawg-mcast-url-00.txt
[2] Guidelines and Registration Procedures for URI Schemes, RFC 7595, Thaler et al., http://www.rfc-editor.org/rfc/rfc7595.txt
[3] FLUTE - File Delivery over Unidirectional Transport, RFC 6726, Paila et al., http://www.rfc-editor.org/rfc/rfc6726.txt
[4] MEPRO: Use Cases and Scenarios for TRAPO and API, S4-150835, Qualcomm Inc.
[5] Asynchronous Layered Coding (ALC) Protocol Instantiation, RFC 5775, Luby et al. https://tools.ietf.org/rfc/rfc5775.txt

Page: 1/7

Page: 6/7

