3GPP TSG-SA4#56 Tdoc S4-090875
9-13 November, Sophia-Antipolis, France

Source:
Huawei Technologies Co., Ltd.
Title:
HTTP Streaming – the Static Content Serving Mode
Document for:
Discussion and Approval
Agenda Item:
6
1 Introduction

This document proposes an approach for the static content serving mode of HTTP streaming, including:

· File storage;

· Media presentation description; and
· Streaming processes for both on-demand streaming and live streaming.
2 File storage

2.1 Proposed approach

The media presentation description (MPD) should be stored in a separate file by its own.

Media files shall be stored as follows:

· Each file contains one or more segments of exactly one alternative representation.
For examples, a file may contain and only contain one or more segments of one audio alternative representation, a file may contain and only contain one or more segments of one video alternative representation, a file may contain and only contain one or more segments of one audio-video alternative representation consisting of one audio alternative representation and one video representation. However, a file shall not contain one or more segments of more than one video alternative representation, and shall not contain one or more segments of more than one audio alternative representation.
· The first segment of one alternative representation contains the 'ftyp' box and the 'moov' box, but does not contain a 'moof' box. In the 'moov' box, no media sample shall be documented, i.e., entry_count in the each 'stts' box contained in the 'moov' box shall be equal to 0, and sample_count in each 'stsz' or 'stz2' box contained in the 'moov' box shall be equal to 0. As there is no sample documented in the first segment, there does not need to be an associated 'mdat' box.
· Any other segment than the first segment shall contain exactly one movie fragment.
· For any other segment than the first segment, the metadata ('moof' box etc.) and the media data ('mdat' box) shall be stored in the same file.

· For all alternative representations, partitioning of media samples into segments shall be temporally aligned, such that the n-th segment of any alternative representation A covers the same time period of any other alternative representation B.

For live streaming, in the addition to the above restrictions, the following applies:

· When H.264/AVC video is in use, parameter sets should be stored in a separate parameter set track instead of in the sample entries, as the video encoder may need to figure out optimal encoding parameters during encoding and therefore the parameter sets cannot be known and included when the 'moov' box is generated.
2.2 Alternative approaches
This subsection discusses alternative approaches for file storage and why they are not as good as the proposed approach.
An alternative way of storing the MPD is to store it as part of a media file. However, storing MPD as a separate file by its own makes it easier to access the MPD, in particular in on-demand case, as a simply HTTP GET request can be used to fetch the MPD. If it is stored as part of a media file, then to accurately request only the MPD, the exact location of the MPD in the file must be known by the client. One more advantage for storing MPD separately is that the process is much simpler for live streaming as the increasing of the MPD records will have no impact on the offset of the media part of the media file containing the MPD.
There are many alternative ways to store the media content excluding the MPD.

The first alternative way is to store all alternative representations in one file as typically in RTP/RTSP based streaming. The second alternative way is to store all the metadata ('moov' box and 'moof' boxes etc.) in one file, and all the media data ('mdat' box or boxes) in other files, without splitting to multiple files in the temporal dimension (i.e. all segments of one alternative representation in one file). A major disadvantage of these two storage methods is that they are not friendly to caching.
The third alternative way is similar to the second alternative, but with splitting to multiple files in the temporal dimension, e.g. each segment is stored in two separate files, one for the metadata ('moov' or 'moof' box) and one for the media data ('mdat' box). A major disadvantage of this storage method compared to the proposed approach is that the number of files doubles, and consequently, the number of HTTP requests doubles for streaming of the same content.
The fourth alternative is to store one or more segments of each audio-video alternative in one file. A major disadvantage of this method is redundant storage. For example, when there are two audio alternative representations, then each video alternative representation is repeatedly stored twice.
For live streaming with H.264/AVC video, parameter sets may also be stored in the sample entries. However, this way disallows the video encoder to change to more out optimal encoding parameters during encoding. Another alternative is to put new parameter sets in a new box contained in the 'moof' box. However this way is not backward-compatible and existing H.264/AVC file readers will ignore the new box, wherein the new parameter sets are needed for correctly decoding the samples contained in the movie fragment.
3 Media presentation description
The proposed syntax and semantics for the MPD are as follows. The syntax is described in pseudo C form.
media_presentation_description()

{

// beginning of global information

BOOL live_session;
byte(4) major_brand;

byte(4) timescale;

byte(4) presentation_duration;

BOOL constant_segment_duration;

if(constant_segment_duration)

byte(4) segment_duration;
BOOL constant_num_segments_per_file;

if(constant_num_segments_per_file)
byte(4) num_segments_in_one_file;

BOOL num_segments_aligned;

BOOL byte_offset_included;

BOOL codec_mime_type_included_for_each_file;
byte(2) num_separate_audio_alternatives;

byte(2) num_separate_video_alternatives;

byte(2) num_av_combined_alternatives;

for (i=0; i<num_separate_audio_alternatives; i++){

string codec_mime_type;

byte(4) avg_bitrate;

byte(2) language_code;

byte(1) channel_count;

string url_prefix;

byte(4) max_segment_len_in_bytes;
}

for (i=0; i<num_separate_video_alternatives; i++){

string codec_mime_type;

byte(4) width;

byte(4) height;

byte(4) avg_framerate;

byte(4) avg_bitrate;

string url_prefix;

byte(4) max_segment_len_in_bytes;
}
for (i=0; i<num_av_combined_alternatives; i++){

string audio_codec_mime_type;

byte(4) audio_avg_bitrate;

byte(2) language_code;

byte(1) channel_count;

string video_codec_mime_type;

byte(4) width;

byte(4) height;

byte(4) avg_framerate;

byte(4) video_avg_bitrate;

string url_prefix;

byte(4) max_segment_len_in_bytes;

}

// end of global information, start of segment specific information

// The following four fields are just variables,
// and there are no bits used in the MPD for them

file_index_a = 0;

file_index_v = 0;

file_index_av = 0;

file_index = -1;

while(!EoMPD) { // EoMPD – End of Media Presentation Description

file_index++;

if((!constant_num_segments_per_file)&&(num_segments_aligned))

byte(4) num_segments_in_one_file;

for (i=0; i<num_separate_audio_alternatives; i++){

if(codec_mime_type_included_for_each_file)

string audio_codec_mime_type_for_one_file;

mpd_for_one_file();
file_index_a += num_segments_in_one_file;

}

for (i=0; i<num_separate_video_alternatives; i++) {

if(codec_mime_type_included_for_each_file)

string video_codec_mime_type_for_one_file;

mpd_for_one_file();

file_index_v += num_segments_in_one_file;

}

for (i=0; i<num_av_combined_alternatives; i++){

if(codec_mime_type_included_for_each_file){

string audio_codec_mime_type_for_one_file;

string video_codec_mime_type_for_one_file;

}

mpd_for_one_file();

file_index_av += num_segments_in_one_file;

}

}
}
mpd_for_one_file()

{

if((!constant_num_segments_per_file)&&(!num_segments_aligned))

byte(4) num_segments_in_one_file;

for(i=0; i<num_segments_in_one_file; i++){

if(!constant_segment_duration) {

byte(4) segment_start_time;

byte(4) segment_duration;

}

if(byte_offset_included) {

byte(4) segment_start_byte_offset;

byte(4) segment_end_byte_offset;

}
}
}
live_session: This field equal to FALSE indicates that the MPD is for an on-demand streaming session. The value TRUE indicates that the MPD is for a live streaming session.
major_brand: The major file brand identifier, indicating the file format features a client must support to be able to play the media presentation.

timescale: An integer that specifies the time-scale for the entire presentation; this is the number of time units that pass in one second. For example, a time coordinate system that measures time in sixtieths of a second has a time scale of 60.

presentation_duration: An integer that declares the length of the presentation (in the indicated timescale) of an alternative representation for normal playback. When the value is equal to 0, the length of the presentation is unknown. In a media presentation description for a live streaming session this value is set to 0.
constant_segment_duration: When the value is TRUE, segment length is constant in time. When the value is FALSE, segment length in time is not constant.

segment_duration: Gives the length of a segment in time (in the indicated timescale).
constant_num_segments_per_file: When the value is TRUE, except for the file(s) containing a 'moov' box, each file contains a constant number of segments. When the value is FALSE, files not containing a 'moov' box may contain different numbers of segments.

num_segments_in_one_file: Gives the number of segments (except for the file(s) containing a 'moov' box) in one file.
num_segments_aligned: When the value is TRUE, the number of segments in each file is temporally aligned for all alternative representations. When the value is FALSE, the number of segments in each file is not temporally aligned for all alternative representations.

byte_offset_included: When TRUE, byte offsets for each segment are included in the MPD. When FALSE, byte offsets for each segment are not included in the MPD.

codec_mime_type_included_for_each_file: When TRUE, a codec MIME type is included in file specific part of the MPD. When FALSE, codec MIME type information in included only in the global part of the MPD.

num_separate_audio_alternatives: Specifies the number of separately stored audio alternative representations.

num_separate_video_alternatives: Specifies the number of separately stored video alternative representations.

num_av_combined_audio_alternatives: Specifies the number of separately stored audio-video alternative representations.

codec_mime_type: Gives the MIME type parameter for the initial media samples of the audio or video media type in an alternative representation. For video, this MIME type parameter includes also the profile and level information.

avg_bitrate/audio_avg_bitrate/video_avg_bitrate: Gives the average bitrate of the audio or video media type in an alternative representation, in bits per second.

language_code: Declares the language code for this media. See ISO 639-2/T for the set of three character codes. Each character is packed as the difference between its ASCII value and 0x60. Since the code is confined to being three lower-case letters, these values are strictly positive.

channel_count: Gives the number of audio channels of the audio media type in an alternative representation.
url_prefix: Gives the URL prefix for an alternative representation. The URL of a file containing one or more segments of an alternative representation is the concatenation of the URL prefix for the alternative representation and the corresponding file index value in the form of five decimal digits, e.g., 00000, 00005, 00012, and so on. The file index value is derived from the MPD. For each alternative representation, the file index value for the first file (the one containing a 'moov' box) is equal to 0, the file index value for other files is equal to the segment index value of the first segment contained in the file, which is equal to the sequence_number field found in the movie fragment header box of the movie fragment corresponding to the first segment contained in the file. When segment duration is constant and there are no byte offsets and no time offsets signaled for each segment in the MPD, a client can figure out which file to start with when it wants to seek to a specific temporal position.

max_segment_len_in_bytes: Specifies the maximum length of a segment in bytes. This value enables to use an appropriate byte range without signaling of all byte ranges in the MPD. For example, starting from the beginning of a segment, without knowing the length of the segment in bytes, the client may request a block of data of the size equal to max_segment_len_in_bytes to ensure that the entire segment is requested. Starting from a specific position of a segment, without knowing the length of the segment in bytes, the client may request a block of data of the size equal to max_segment_len_in_bytes minus the specific position in bytes of the segment to ensure that the entire segment is requested.
width: Specifies the horizontal resolution of the video media type in an alternative representation, counted in pixels.

height: Specifies the vertical resolution of the video media type in an alternative representation, counted in pixels.

avg_framerate: Specifies the average frame rate, in units of frames per 256 seconds, of the video media type in an alternative representation..
audio_codec_mime_type_for_one_file: Specifies the codec MIME type for the audio samples in a file corresponding to a specific file index value.
video_codec_mime_type_for_one_file: Specifies the codec MIME type for the video samples in a file corresponding to a specific file index value. This value includes profile and level information.

segment_start_time: Gives the starting time of a segment, in milliseconds, in relative to the beginning of the presentation.

segment_duration: Gives the duration of a segment, in the indicated timescale.
segment_start_byte_offset: Gives the byte offset of the first byte of the segment in the file containing the segment.

segment_end_byte_offset: Gives the byte offset of the last byte of the segment in the file containing the segment.

The MPD should be described in XML. An example XML scheme that specifies the format of any MPD is as follows.
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="media_presentation_description_for_http_streaming">

<xs:sequence>

<xs:element name="live_session" type="xs:boolean"/>

<xs:element name="major_brand" type="xs:unsignedLong"/>

<xs:element name="timescale" type="xs:unsignedLong"/>

<xs:element name="presentation_duration" type="xs:unsignedLong"/>

<xs:element name="constant_segment_duration" type="xs:boolean"/>

<xs:element name="segment_duration" type="xs:unsignedLong" minOccurs="0" maxOccurs="1">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/constant_segment_duration[1]=true"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

<xs:element name="constant_num_segments_per_file" type="xs:boolean"/>

<xs:element name="num_segments_in_one_file" type="xs:unsignedLong" minOccurs="0" maxOccurs="1">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/constant_num_segments_per_file[1]=true"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

<xs:element name="num_segments_aligned" type="xs:boolean"/>

<xs:element name="byte_offset_included" type="xs:boolean"/>

<xs:element name="codec_mime_type_included_for_each_file" type="xs:boolean"/>

<xs:element name="num_separate_audio_alternatives" type="xs:unsignedShort"/>

<xs:element name="num_separate_video_alternatives" type="xs:unsignedShort"/>

<xs:element name="num_av_combined_alternatives" type="xs:unsignedShort"/>

<xs:group minOccurs="/num_separate_audio_alternatives[1]" maxOccurs="/num_separate_audio_alternatives[1]">

 <xs:sequence>

 <xs:element name="codec_mime_type" type="xs:string"/>

 <xs:element name="avg_bitrate" type ="xs:unsignedLong"/>

 <xs:element name="language_code" type ="xs:unsignedShort"/>

 <xs:element name="channel_count" type ="byte"/>

 <xs:element name="url_prefix" type="xs:string"/>

 <xs:element name="max_segment_len_in_bytes" type ="xs:unsignedLong"/>

 </xs:sequence>

</xs:group>

<xs:group minOccurs="/num_separate_video_alternatives[1]" maxOccurs="/num_separate_video_alternatives[1]">

 <xs:sequence>

 <xs:element name="codec_mime_type" type="xs:string"/>

 <xs:element name="width" type ="xs:unsignedLong"/>

 <xs:element name="height" type ="xs:unsignedLong"/>

 <xs:element name="avg_framerate" type ="xs:unsignedLong"/>

 <xs:element name="avg_bitrate" type ="xs:unsignedLong"/>

 <xs:element name="url_prefix" type="xs:string"/>

 <xs:element name="max_segment_len_in_bytes" type ="xs:unsignedLong"/>

 </xs:sequence>

</xs:group>

<xs:group minOccurs="/num_av_combined_alternatives[1]" maxOccurs="/num_av_combined_alternatives[1]">

 <xs:sequence>

 <xs:element name="audio_codec_mime_type" type="xs:string"/>

 <xs:element name="audio_avg_bitrate" type="xs:unsignedLong"/>

 <xs:element name="language_code" type="xs:unsignedShort"/>

 <xs:element name="channel_count" type="byte"/>

 <xs:element name="video_codec_mime_type" type="xs:string"/>

 <xs:element name="width" type="xs:unsignedLong"/>

 <xs:element name="height" type="xs:unsignedLong"/>

 <xs:element name="video_avg_framerate" type="xs:unsignedLong"/>

 <xs:element name="avg_bitrate" type ="xs:unsignedLong"/>

 <xs:element name="url_prefix" type="xs:string"/>

 <xs:element name="max_segment_len_in_bytes" type ="xs:unsignedLong"/>

 </xs:sequence>

</xs:group>

<xs:complexType name="mpd_for_one_file">

<xs:sequence>

<xs:element name="num_segments_in_one_file" type="xs:unsignedLong">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/constant_num_segments_per_file[1]=false"/>

 <xs:assertion test="/num_segments_aligned[1]=false"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

<xs:group minOccurs="/num_segments_in_one_file[1]" maxOccurs="/num_segments_in_one_file[1]">

<xs:sequence>

 <xs:element name="segment_start_time" type="xs:unsignedLong">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/constant_segment_duration=false"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="segment_duration" type="xs:unsignedLong">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/constant_segment_duration=false"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="segment_start_byte_offset" type="xs:unsignedLong">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/byte_offset_included[1]=true"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="segment_end_byte_offset" type="xs:unsignedLong">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/byte_offset_included[1]=true"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

</xs:sequence>

</xs:group>

</xs:sequence>

</xs:complexType >

<xs:group maxOccurs="unbounded">

 <xs:element name="num_segments_in_one_file" type="xs:unsignedLong">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/constant_num_segments_per_file[1]=false"/>

 <xs:assertion test="/num_segments_aligned[1]=true"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:group minOccurs="/num_separate_audio_alternatives[1]" maxOccurs="/num_separate_audio_alternatives[1]">

 <xs:sequence>

 <xs:element name="audio_codec_mime_type_for_one_file" type="xs:string">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/codec_mime_type_included_for_each_file[1]=true"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element type="mpd_for_one_file"/>

 </xs:sequence>

 </xs:group>

 <xs:group minOccurs="/num_separate_video_alternatives[1]" maxOccurs="/num_separate_video_alternatives[1]">

 <xs:sequence>

 <xs:element name="video_codec_mime_type_for_one_file" type="xs:string">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/codec_mime_type_included_for_each_file[1]=true"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element type="mpd_for_one_file"/>

 </xs:sequence>

 </xs:group>

 <xs:group minOccurs="/num_av_combined_alternatives[1]" maxOccurs="/num_av_combined_alternatives[1]">

 <xs:sequence>

 <xs:element name="audio_codec_mime_type_for_one_file" type="xs:string">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/codec_mime_type_included_for_each_file[1]=true"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="video_codec_mime_type_for_one_file" type="xs:string">

 <xs:simpleType>

 <xs:restriction>

 <xs:assertion test="/codec_mime_type_included_for_each_file[1]=true"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element type="mpd_for_one_file"/>

 </xs:sequence>

 </xs:group>

</xs:group>

</xs:sequence>

</xs:element>

</xs:schema>
4 Streaming processes

4.1 On-demand streaming
4.1.1 Setup, pause, resume, stop
Streaming setup consists of the following steps:

1) The client gets the URL of the MPD. How the client gets the URL of the MPD is out of the scope of this document;
2) The client gets the MPD using an HTTP GET request. It is also possible that the client gets the MPD in a progressive manner, i.e., using multiple HTTP GET requests with byte ranges. When progressive requesting of MPD is in use, the following steps can already start as soon as the MPD data for the respective segments are available at the client, and the client may use a separate TCP link for requesting MPD while using other TCP links for requesting segments;
3) The client parses the MPD and chooses one or more appropriate alternative representations (one for each media type) containing all the media types the client wants;
4) The client requests the segments of the chosen alternative representations, starting from the first segment for each chosen alternative representation.
The URL of the file containing a specific segment is indicated by the MPD, wherein each file index value corresponds to one file and a number of segments, and the URL for one file index value is the concatenation of the corresponding URL prefix and the file index value in the form of 5 decimal digits. This rule applies to all HTTP GET requests involved in the streaming process, including the live streaming case.
If an entire file, regardless of whether it contains one or more segments, is requested, then use of byte range is not needed. If more than one segment is stored in a file, and the client requests a subset of all segments included in the file, byte range must be used. This rule applies to all HTTP GET requests involved in the streaming process, including the live streaming case.
To pause or stop, the client simply stops requesting more data by sending HTTP GET requests.

To resume, the client sends HTTP GET requests to request segments, starting from the next segment after the last requested segment.
4.1.2 Seeking (forward and backward)
To seek to a specific position, forward or backward, the client sends HTTP GET requests to request segments of the current alternative representations, starting from the segment starting from the specific position. Note that seeking can only target at specific positions where segment starts.

For seeking to a specific backward position, if the client has buffered the data since that specific position, it can playback the buffer data since that specific position.

4.1.3 Stream adaptation

To perform streaming adaptation by switching from one alternative representation A to another alternative representation B, the following steps are required:

1) The client stops requesting data of the current alternative representations;

2) If the client has never received any segment of B, then the client firstly requests the first segment of B, and then requests the segments of B starting from the temporal position right after the last requested segment. At the same time the client should store the first segment of B for future use when switching back to B from any other alternative representation. If the client has received and stored the first segment of B, then requesting of the first segment is skipped.
4.2 Live streaming
In live streaming, the following restrictions shall apply:

· Except for the first segment, which contains zero media samples, segment duration in the temporal dimension shall be constant, i.e., constant_segment_duration shall not be equal to 0.

· If each segment is stored in a separate file, then the MPD shall not contain elements for each file, i.e., the MPD is static (not changing) during the live streaming session. This implies that constant_num_segments_per_file shall not be equal to 0, codec_mime_type_included_for_each_file shall be equal to 0, constant_segment_duration shall not be equal to 0, and byte_offset_included shall be equal to 0. In this case, the URL of the file containing the last segment for each alternative representation shall be the concatenation of the URL prefix for the alternative representation and the 5 decimal digits value 99999.
· If a file may contain more than one segment, then num_segments_aligned shall be true.
4.2.1 Setup, pause, resume, stop
In live streaming, setup consists of the following steps:

1) The client gets the URL of the MPD. How the client gets the URL of the MPD is out of the scope of this document;

2) The client gets the MPD using an HTTP GET request;

3) The client parses the MPD and chooses one or more appropriate alternative representations (one for each media type) containing all the media types the client wants;

4) The client requests the first segment for each of the chosen alternative representations, and then requests the last segment for each chosen alternative representation;
5) If each segment is stored in a separate file (i.e. constant_num_segments_per_file is equal to 1), the client periodically checks the availability of the next file corresponding to the next file index value, and when the file is available, the client requests the next file using an HTTP GET request without byte range. In this case, if the next file does not contain a 'moof' box (e.g., the file is empty), then the client shall conclude that the live stream session has ended. Otherwise (more than one segment may be stored in a file), the client periodically requests the updated part of the MPD, by using an HTTP GET request with an open-ended byte range starting after the last byte previously requested, and then requests the next available segment. In this case, if the next segment is empty (i.e. it contains no media samples), the client shall conclude that the live stream session has ended. The client may use a separate TCP link for requesting MPD while using another TCP link for requesting segments. The period for periodically checking of the availability of the next file or the next segment should be less than but close to the segment duration or equal to the segment duration.
To pause or stop, the client simply stops requesting more data by sending HTTP GET requests.

To resume, the client sends an HTTP GET request to request the last segment for each chosen alternative representation, and then performs step 5) above.
4.2.2 Backward seeking
To seek to a specific backward position, the client sends HTTP GET requests to request segments of the current alternative representations, starting from the segment starting from the specific position. Note that seeking can only target at specific positions where segment starts.

If the client has buffered the data since that specific position, it can playback the buffer data since that specific position.

4.2.3 Stream adaptation

In live streaming, to perform streaming adaptation by switching from one alternative representation A to another alternative representation B, the following steps are required:

1) The client stops requesting data of the current alternative representations;

2) If the client has never received any segment of B, then the client firstly requests the first segment of B, and then requests the last segment of B. At the same time the client should store the first segment of B for future use when switching back to B from any other alternative representation. If the client has received and stored the first segment of B, then requesting of the first segment is skipped.
3) Step 5) in 4.2.1 is carried out.
5 Proposal
Adopt the following proposals for the static content serving mode of HTTP streaming:

1) The proposed file storage approach in section 2.1.
2) The proposed media presentation description as described in section 3.
3) The streaming processes in section 4.

Page: 1/11

Page: 11/11

