Page 4
Draft prETS 300 ???: Month YYYY


3GPP TSG-SA4 Meeting #56
S4-090809
November, 9th- 13th, 2009
Sophia-Antipolis, France
Agenda item: 


Source: 
NOKIA Corporation
Title: 
Necessity of a Chunk Index File
Document for
Discussion and Approval
1 Introduction

HTTP Streaming is currently being defined by 3GPP SA4. The solution is based on the HTTP protocol and aims at providing streaming-like user experience that makes it more suitable than progressive download for low playback delay scenarios.
Two modes for achieving HTTP streaming have been identified: static HTTP streaming and dynamic HTTP streaming. In the static HTTP streaming case, the content is prepared in advance and the structure of the media data may not be modified to suit the clients’ needs. In the dynamic HTTP streaming case, the content preparation is done dynamically at the server upon receiving a non-cached request. 

In the case of static HTTP streaming, the client gets no support from the streaming server, which only serves the content statically. The content preparation step takes place offline and results in modification of the content and/or in the creation of a description file.
A possible realization of static HTTP streaming may rely on the chunking of the content to a huge set of small files. For example, chunking of a content file of duration 20 minutes and with 10 possible representations (5 video bitrates and 2 audio languages) into small content pieces of 1 second, would result in 12000 small pieces. This of course constitutes a huge burden on web servers and caches, which would have to deal with such a large amount of small file pieces. Alternatively, the content file may be restructured without chunking the media samples into many files. 
In both of the previous realizations, the HTTP streaming solution may be built to rely on an index file that indexes the different content pieces. In this contribution, we discuss the drawbacks of such a solution and conclude with a proposal to omit the dependency on index files from the 3GPP HTTP streaming solution.
2 Index Files

Index files may be structured as XML documents that carry information about the existing content pieces in a certain 3GP content file. An index file typically carries the following descriptions:
· Location of the content piece or fragment

· Synchronization information for the media samples contained in the content piece

· Size of the content piece
· Media components that are used to build the content piece

In general, the information given above is already present in the 3GP file itself as part of the metadata. Furthermore, the metadata in the 3GP file is stored in binary format and as such is much more compact than the index file, especially when movie fragments are used.
When the content is chunked into very small pieces of content that are stored in separate files, the metadata information in the 3GP file may not be sufficient to reference the different files. The index file may fill this gap by providing the URLs to each single piece of content. This solution will drastically increase the size of the index file and by consequence increase the startup time due to download and processing of the index file. In the example given above, assuming metadata of 100 bytes (including URL) for each piece of content would result in an index file of 1.2 MB! This may be reduced significantly, if URL patterns are used to build the request URLs as proposed in [1].

Finally, the streaming of live content should be given equal importance as with the use case of streaming pre-recorded content. In live streaming, having a dependency on an index file increases the complexity of the solution both for clients, servers, and content providers. The index file, would have to be downloaded periodically, parsed to detect the presence of new content pieces, and then the new content pieces are requested. The following challenges arise:

· How often shall the index file be downloaded?
· Polling intervals must be agreed and that results in several issues, e.g. the trade-off between number of polling requests and initial playback delay. Too long intervals result in longer startup delay and flash crowd effects. Too short intervals may result in too often poll requests

· How does the client detect new updates to the index file?
· The client will probably have to parse the index file to detect changes to the index file and to extract the new content pieces. Alternatively, it will have to first issue a HEAD request or a conditional request to the original server to find out if the file has been updated since the last time. Note, that this is risky as the clocks might be in skew and the provision of accurate timestamps (with less than 1 second accuracy) is not guaranteed.

· How is the caching of the index file handled? 

· In live scenarios, the index file must be marked as non-cacheable and the requests will end up propagating to the original server.
· What is the delay incurred by the acquisition of the index file and what are the impacts on the total playback delay?

· This is a study item and any index file-based solution must prove that this impact is minimal.

 The above mentioned challenges must be addressed and the impact of creating a dependency on an index file studied before the usage of such an index file is specified.
3 Proposal

In this contribution, we examined the challenges and drawbacks of building a dependency on an index file in the 3GPP HTTP streaming solution. The tools that are provided by the 3GP file are sufficient to fulfill the requirements of the HTTP streaming solution in a more efficient and standard-compatible manner. This will alleviate the burden on content providers to create and maintain index files and also on the clients to retrieve and process index files. In addition, the suitability of index files for streaming of live content has been questioned and several open issues would need to be addressed by such a solution. 
We propose the following:

1. Avoid index file dependency in the 3GP HTTP streaming solution.

2. Exhaust the tools and possibilities provided by the 3GP file format.

3. Define URL pattern syntax and semantics to enable locating content pieces.

4 References

[1]

S4-AHI071, “Static HTTP Streaming”, NOKIA Corporation
- 1/3 -

