3GPP TSG SA WG4 #41

Tdoc S4-060676
6 – 10 November 2006, Athens, Greece

Source:
Ericsson, Nokia, Ikivo
Title:
Scene update mechanism in DIMS

Document for:
Discussion and Approval

Agenda Item:
6.5
Introduction

This document proposes changes of and additions to section 5.4, Scene update mechanism, based primarily upon the previous MORE proposals.

The ability to split a session into separate streams is very important in DIMS. It may not be known which streams will be needed (e.g. based upon interactivity) or one may simply wish to split the static and dynamic parts of a scene. One could download the static/near static parts of a scene and stream the dynamic parts. This way the static part of the scene, which could be potentially large, does not need to be continually sent for tune-in.

The concept of multi-stream updates in DIMS has been discussed in rather great detail during the previous SA4 meetings. The name “Multi-stream updates” refers to the sending of updates to a document in a different stream to the document itself. This input document refers to streams containing the initial document as “primary streams” and the streams containing only the updates as “secondary streams”.

The update element, as presented in S4-060461 is used to initiate secondary streams. The definition of secondary streams has been refined as has the definition of random access points (tune-in points).
Proposed text

The following text is proposed for section 5.4, Scene update mechanism.
5.4 Scene update mechanism

The scene update mechanism allows reception of updates that change parts of the current scene, without having to replace the entire scene.

The scene update mechanism in DIMS is based upon REX 1.0 (Remote Events for XML) [REF]

To account for the different update scenarios two update mechanisms are defined:

· Primary-stream updates: Updates and/or scene replacements are delivered to the client in the same stream as the original scene. Note: A stream in this case can be a RTP stream or a track in a 3GP file.

· Secondary-stream updates: Updates are delivered to the client in a different stream than the initial scene, e.g. in an interactive scenario or to combine downloaded and streamed content.

5.4.1 Primary-Stream Updates

In the primary-stream case, the updates and/or scene replacements are sent in the same stream as the initial scene. The temporal management of samples in a primary stream is based upon transport level timestamps.

5.4.1.1 Random Access Points in Primary Streams

A Random Access Point in a primary stream must either be an entire scene or a mechanism to build an entire scene. When used, this scene becomes the current scene and replaces all previous data.
5.4.2 Secondary-Stream Updates

A secondary stream is a stream that does not contain the initial scene. A secondary stream is initiated directly from the DIMS mark-up using the ‘update’ element. The ‘update’ element specifies a synchronized series of DIMS updates to be applied to the current document. The updates can be contained in a 3GP file, streamed over RTP or simply a single “raw” update.

5.4.2.1 Random Access Points in Secondary Streams

A RAP in a secondary stream is signalled through the “a” bit in the RTP payload header. A RAP in a secondary stream shall consist of an update and/or tune-in specific update. Both the tune-in update and the update are used when tuning in, whereas the tune-in update is ignored during normal playback. The tune-in update takes the scene in its current state, no matter which previous packets have been lost and cleans it up. Here the term cleaning refers to making the scene in such a state that when, after the update is applied the scene is correct and decoding can continue as normal.

A RAP in a secondary stream shall contain either:

1. A single tune-in specific update. This is simply a rex update located in a “tune-in” element. The tune-in element shall contain a single rex child and no other children. The tune-in element should be ignored by clients not requiring tune-in.

2. A single non tune-in specific rex update.

3. Both a tune-in specific update and a non tune-in specific update as described in points 1 and 2.

An example of a RAP in a secondary stream is given below:

<dims:tune-in>

 <rex xmlns='http://www.w3.org/ns/rex#'>

 <event target='id("advertisement-node001")' name='DOMNodeRemoved'/>

 <g xml:id='advertisement-node001'/>

 </rex>

</dims:tune-in>

<rex xmlns='http://www.w3.org/ns/rex#'>

 <event target='id("advertisement-node001")' name='DOMNodeInserted'>

 ...

 This is where the new advertisement goes

 ...

 </event>

</rex>

In this example advertisements are located in the node with id advertisement-node001. Tune in point is placed directly before a new advertisement, but these tune-in points can be placed arbitrarily in the stream. In this example tune-in is simple - the old advertisement is discarded and the new one put in its place.

5.4.2.2 Temporal management in secondary streams

The synchronization of the secondary stream with the original document can be performed in two ways – either using the “SVG-Time” of the tune-in point or the begin attribute of the update element. This gives the content creator freedom to choose whether the synchronization is server or client initiated.

An SVG time can be given to a RAP giving hard synchronization with the document. The SVG time of a RAP is then the time in which the RAP shall be used in the primary stream.

[image: image1]
Figure X: Example of temporal management in a secondary stream using SVG Time. The timestamp frequency is set to 1Hz for simplicity.

If an SVGTime is not present, the begin attribute of the update element is used.

The timing and temporal management is otherwise the same as for Primary-Stream Updates.

The SVG-time of a RAP should, when used and where possible, be set in such a way that, in an error free environment, there is no difference to if the begin attribute had been used.

5.4.2.3 The ‘Update’ Element

The ‘update’ element is a DIMS extension to SVG Tiny 1.2 and is therefore placed in the DIMS namespace: http://www.3gpp.org/dims
Schema: update

 <define name='update'>

 <element name='update'>

 <ref name='update.AT'/>

 <ref name='update.CM'/>

 </element>

 </define>

 <define name='update.AT' combine='interleave'>

 <ref name='svg.Core.attr'/>

 <ref name='svg.XLinkRequired.attr'/>

 <ref name='svg.AnimateBegin.attr'/>

 </define>

 <define name='update.CM'>

 <zeroOrMore>

 <ref name='svg.Desc.group'/>

 <ref name='svg.Handler.group'/>

 </zeroOrMore>

 </define>

Attribute definitions:
xlink:href = "<iri>"

A non-local IRI reference to a REX document or a DIMS stream/file. If the attribute is not specified, the effect is as if an empty value ("") was specified.
Animatable: no.
begin = "<offset-value>" | "<syncbase-value>" | "<event-value>" | "<accessKey-value>" | "indefinite"
The 'update' element has an implicit “simple duration” of 'indefinite'. See http://www.w3.org/TR/SVGMobile12/animate.html#TimingAttributes.
If the attribute is not specified, the effect is as if a value of "0s" were specified.
Animatable: no.
For the definition of “<iri>”, “<offset-value>”, “<syncbase-value>”, “<event-value>”, “<accessKey-value>”, “indefinite” and “simple duration” see the SVG Tiny 1.2 specification.

If the ‘update’ element and/or any of the attribute values are in error the SVG Tiny 1.2 error rules apply.

Seeking backwards (http://www.w3.org/TR/2005/REC-SMIL2-20050107/smil-timing.html#Timing-HyperlinksAndTiming) in the timeline will not cause the updates to be reapplied, nor will already applied updates be reversed. In order to prevent backwards seeking of the timeline authors may choose to set the 'playbackOrder' attribute to ‘forwardOnly’.

Informative example:
<svg xmlns="http://www.w3.org/2000/svg" xmlns:dims="http://www.3gpp.org/dims" version="1.2" baseProfile="tiny" width="352" height="240" playbackOrder="forwardOnly">
 <dims:update xlink:href="myupdates.3gp" begin="99s"/>
</svg>

The first sample in myupdates.3gp is applied at the SVG document time 99s. The remaining samples are applied in a stream-like manner using the 3gpp timestamps for timing.

SVG Timeline

Secondary Stream

9

8

7

open secondary stream

SU

Timestamp=3

SU

Timestamp=2

RAP

SVGTime=7

Timestamp=1

