3GPP TSG-SA4#41 meeting
Tdoc S4-060643
06 – 10 November, 2006, Athens, Greece

Source:
Nokia

Title:
An example JBM solution for MTSI
Document for:
Discussion & decision
Agenda Item:
9, 13.8.1
1 Introduction

The current MTSI draft specification TS 26.114 [1] includes a set of functional requirements for a jitter buffer management (JBM) algorithm. Furthermore, the working assumptions for a set of minimum performance requirements for the JBM operation were agreed upon in MTSI ad-hoc#2 in San Diego.

In order to provide a complete specification, we think that also an informational example solution fulfilling the requirements is needed. An example solution would provide indication that a JBM algorithm that fulfils the minimum performance requirements exists, thereby at the same time validating that the performance requirements are realistic. Furthermore, an example JBM algorithm would also give useful guidance for implementers on how to design a simple JBM algorithm fulfilling the minimum performance requirements. However, we feel that specifying an example JBM algorithm as a pseudo code with certain degree of freedom would fully serve this purpose: while it provides sufficient guideline how to fulfil the performance requirements using a simple algorithm, it still leaves room for different implementation approaches also within the given example.
MTSI ad-hoc#2 in San Diego concluded that if SA4 defines an example JBM solution, (1) it should be described in the MTSI TS 26.114, (2) it must fulfil the MTSI JBM performance requirements, and (3) it should preferably be specified as pseudo code. It was also noted at MTSI#2 that defining implementable example JBM solution in MTSI WI needs SA4 level coordination as this would overlap with another ongoing SA4 WI “Characterisation of Adaptive Jitter Management Performance for VoIP Services”.
This document presents an outline of the proposal for an example solution for adaptive JBM algorithm to be included in the MTSI specification TS 26.114. Furthermore, a pseudo code implementing this algorithm is also provided.
2 Outline of the proposed buffering algorithm

The basic principle is the adaptation in the beginning of each talk spurt, with an option to increase buffering time during a talk spurt in a reactive manner in order to keep the late loss rate within the limits set by the proposed performance requirements. The bullet points below describe the outline of the proposed example JBM behaviour.

· Upon arrival of the first frame of the session the buffer and jitter statistics are reset, and the buffering time is set to JBF_INITIAL_DELAY (TBD, or left for the implementation issue).

· For each received frame a table of “predicted buffering times” is updated – i.e. the buffering time that would happen if the playback timeline is not changed. Note that this statistic also considers frames that arrive after their scheduled playback time.

· When the first frame of a new talk spurt is received, the buffering time for this frame is set to be the difference between the minimum and maximum “predicted buffering times” over the analysis period JBF_HISTORY_LEN (TBD, or left for the implementation issue).

· If a frame n that has been already replaced by error concealment arrives before the next frame n+1 has been sent to the decoder (or the error concealment operation to replace frame n+1 has been invoked), the playback timeline is modified by re-scheduling frame n for decoding, i.e. by inserting one frame of 20 ms by using the AMR error concealment algorithm between frames n-1 and n.

· If more than JBF_LOSS_PERIOD_THR (TBD, or left for the implementation issue) consecutive frames have been replaced by error concealment, the decoding is reset to continue from the oldest frame present in the buffer. Alternatively, if no frames are currently in the buffer, the decoding is continued from the next arriving frame.

The example JBM implementation described in section 3 complies with these guidelines. It fulfils the proposed minimum performance requirements for buffering delay and buffer induced error concealment operations when tested with the proposed set of channel profiles. Note that the proposed simple algorithm does not apply time scaling and does not require any changes to the standard AMR decoder. Naturally, the example JBM algorithm does not prohibit implementing a more advanced JBM solution, e.g. using the time scaling functionality or making changes to the error concealment procedures in the decoder.

3 The pseudo code
The pseudo code consists of two main parts:

1. Reception functionality, including the decapsulation of received RTP payload and storing the received speech frames into a buffer.

2. Decoding functionality, which takes care of reading the frames from the buffer and providing a frame of decoded speech (or error concealment data) upon request.

To illustrate the relationship between these two functional parts in a simple way, the pseudo code is structured in a form of a simulation model in which a main loop handles the reception and decoding functionalities:
· The main loop models the time line – at each execution of this loop the simulated “wall clock time” is increased by one clock tick. Furthermore, the other two loops – reception loop and the decoding loop – are implemented inside the main loop.

· The reception loop is executed as many times as needed to process the new packets available at the packet input at/before current time.

· The decoding loop is executed as many times as needed to process all frames in the buffer scheduled for decoding at/before current time.

It is straightforward to implement the contents of the reception loop in function that is called each time a new RTP payload is received to provide the reception functionality. Similarly, the operations in the decoding loop can be implemented in a function that is called each time the audio device requests a new frame of speech to provide the decoding functionality.

Table 1 summarises the variables used in the pseudo code.

Table 1: Variables used in the pseudo code.

	Variable
	Purpose
	Description / usage

	current_time
	Current simulation time as clock ticks at 8 kHz
	The current time is initialised to random value – indicated by “NOW” in the pseudo code. The value is increased by one at the each execution of the main loop to simulate the passing of time.

	rx_time
	Reception time (as clock ticks at 8 kHz) of the current/next RTP packet
	The reception time is initialised to the same value as current_time. The value is updated each time a new packet is available in the packet input.

	dec_time
	Decoding time (as clock ticks at 8 kHz) of the next frame
	The value is initialised by adding the value of desired buffering delay BUFFER_DELAY for the initial value of the current_time. This variable is updated after each decoded frame by increasing the value by 160.

	rtp_ts
	RTP timestamp of the current/next RTP packet in samples
	The value is updated each time a new input packet is captured

	frame_ts
	RTP timestamp of the current (received) frame in samples
	The frame timestamp value is set/updated when parsing a packet (containing several frames)

	next_ts
	RTP timestamp of the frame to be decoded next in samples
	The variable is used both to request the next frame in decoding order from the buffer and to detect the frames that arrive late

	end_of_input
	Indication of input speech data status
	A status variable that is initialised to value FALSE – the value is set to TRUE when the end of the input packet file is encountered.

	buffer_occupancy
	Buffer fill level in number of frames
	A variable that is used to indicate buffering status – needed for detecting the end of the simulation and to detect buffer overflows.

	loss_burst_len
	Number of consecutive frames replaced by error concealment
	The value of this variable is increased each time the decoder needs to invoke the error concealment operation. In case the value exceeds a predetermined threshold JBF_LOSS_PERIOD_THR, the re-synchronisation operation is initiated by setting resync_flag to value 1. In case of normal decoding the value of loss_burst_len is set to zero.

	resync_flag
	Flag to indicate that a re-synchronisation is needed.
	See the description for the variable loss_burst_len above.

/* INITIALISATION */

Read the first input frame, initialise variables based in received packet
/* NOTE that time is measured in speech samples at 8 kHz */
rx_time = current_time = NOW

next_ts = rtp_ts

/* Set the desired initial buffering delay */

dec_time = current_time + JBF_INITIAL_DELAY

end_of_input = FALSE

buffer_occupancy = 0

loss_burst_len = 0

resync_flag = 0

/* MAIN LOOP */

WHILE end_of_input == FALSE OR buffer_occupancy > 0

{
/* RECEPTION LOOP */
WHILE end_of_input == FALSE AND rx_time <= current_time
{
/* Set RTP timestamp for the frame */
frame_ts = rtp_ts
/* Loop over all frames in the packet */
WHILE more frames in this packet
{
IF speech onset detected
{
Find bt_min and bt_max, i.e. the minimum and maximum predicted buffering times over the period of JBF_HISTORY_LEN most recent frames
/* Set new buffering time */
buffer_delay = bt_max – bt_min
/* Set this as the next frame to be decoded */

next_ts = frame_ts

/* Set decoding time */

dec_time = current_time + buffer_delay

}
/* Check if the docder has set the re-synchronisation flag */

ELSE IF resync_flag == 1
{
/* Continue decoding from the first frame arriving after a loss period */
next_ts = frame_ts
/* Clear the re-synchronisation flag */

resync_flag = 0

}
/* Check if received frame is late by less than one frame slot */

ELSE IF frame_ts + 160 == next_ts AND TS >= next_ts NOT in the buffer
{
/* Re-schedule this frame to be the next frame to be decoded */
next_ts = frame_ts
}
Compute predicted buffering time for the received frame and update buffering time history
/* Check frame arrival time */
IF frame_ts < next_ts
{
Discard the frame because it arrived late
}
ELSE
{
/* Check buffer occupancy */
IF buffer_occupancy == MAX_BUFFER_OCCUPANCY
{
Discard the frame because the buffer is full
}
ELSE
{
Store the frame into the buffer
buffer_occupancy++
}
}
/* Update RTP timestamp for the next frame */
frame_ts += 160
}
Read the next input packet
IF new packet available
{
Update variables

 rx_time
 rtp_ts
}
ELSE
{
end_of_input = TRUE
}
} /* end of RECEPTION LOOP */
/* DECODING LOOP */
WHILE dec_time <= current_time
{
Request frame having the RTP timestamp value next_ts from the buffer
IF requested frame found
{
Decode speech or generate comfort noise (SID or SID_FIRST frame) normally
buffer_occupancy--
/* Clear lost burst counter */

loss_burst_len = 0

}
ELSE
{
IF in speech state
{
/* Increase lost burst counter */
loss_burst_len++

/* Check the loss period length */

IF loss_burst_len > JBF_LOSS_PERIOD_THR

{

Find the oldest frame in the buffer

IF a frame having a time stamp value new_ts found
{

Decode the frame found in the buffer (i.e. reset the decoding to continue from the oldest frame found in the buffer)
buffer_occupancy--
/* Set the time stamp */

next_ts = new_ts

/* Clear lost burst counter */

loss_burst_len = 0

}

ELSE

{

Invoke error concealment

/* Set the re-synchronisation flag to trigger the decoding to continue from the next arriving frame */

resync_flag = 1

}

}
ELSE
{
Invoke error concealment

}

}
ELSE
{
/* DTX */
Continue comfort noise generation
}
}
/* Update variables for decoding the next frame */
dec_time += 160
next_ts += 160
} /* end of DECODING LOOP */
/* CLOCK/TIMER UPDATE */
current_time++

}
4 Proposal
Adopt the proposed JBM algorithm as the example JBM solution into the MTSI specification TS 26.114, e.g. as an informative annex.
5 References

[1]
Tdoc S4-AHM054, “MMtel Draft TS 26.114”

