3GPP TSG-SA WG4 Meeting #41

Tdoc S4-060625
6-10 November 2006, Athens, Greece

Source:
Siemens Networks
Title:
Proposed Metric for JBM in MTSI

Agenda Item:
9, 13.8
Document for:
Discussion and Approval
1 Method for Estimating Jitter Buffer Management Performance
The present document concerns a method for determining a Jitter Buffer Management performance.

The technique described herein is an enhanced version of the method presented in Tdoc S4-AHM036. The enhanced version takes into accounts a general Jitter Buffer Management implementation and supports:
· reordering of speech frames received from the JBM in out-of-order sequence

· discarding of duplicated speech frames received from the JBM
· discontinuous transmission during silence period
· clock drift between sender and receiver endpoints.

The performance measured with the method described in the document can be compared with the minimum performance requirements as defined in section 8.2.2.2.

The performance metric output will provide the average delay or the equivalent Cumulative Distribution Function (CDF) of the speech-frame delay introduced by the JBM under test and additionally it provides the Jitter Loss Rate in order to validate the compliance of a specific Jitter Buffer Management implementation to the JBM minimum performance requirements.
Such techniques permit a developer, a tester or a network operator to measure the performance of Jitter Buffer Management with no knowledge of the specific JBM implementation.

The proposed metric can also be extended to include specific thresholds for frame insertions during active speech and for frame insertions during speech pauses. The same holds for frame deletions.

[image: image1.emf]1 2 3 4

Sender data streams

Blackbox model approach

t

Regularly spaced

1

2 3

2

JBM input data streams

t

Jittered and delayed

1 2 3 2

JBM output data streams

t

Regularly spaced

Average

delay

Number of

Concealment

Operations

Average

delay

Number of

Concealment

Operations

JBM

performance

estimation

Jitter Buffer

Manager

 Figure 1: Network model for jitter buffer performance estimation

1.1 Performance measurement: black box model
The method is performed by sending a data stream from a sender side to a receiver side through a Jitter Buffer Manager under test. The average delay and the total amount of Jitter-induced concealment is based on the value extracted from the comparison between the reference input data stream and the output data stream only.

A JBM performance measurement technique is based on the following concept: when given a reference data stream (Sender data stream) and having the corresponding JBM output data stream, it is possible to compute the performance measurement of a JBM implementation using a template matching technique which provides a measure of the distortion between a reference input and the measured output.
[image: image10.emf]1

Sender data streams

JBM output data streams

2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 2 5 6 6 8 9 10 11 12

Figure 2: Black box model for testing JBM performance
1.2 Test execution

This section provides information on the test of a Jitter Buffer Management implementation. The Jitter Buffer Management under test can be a model simulation or a real implementation to be validated for compliance.

The test execution requires:

· For every given channel model (see S4-AHM013) a test has to be performed sending the data stream through the Jitter Buffer Manager under test and recording the output.

· Providing the JBM output speech frame sequence to the JBM performance metric evaluate the performance score of the Jitter Buffer Management under test.
· Compare the JBM performance scores with the minimum performance requirements. If, for each given channel model, the JBM performance scores are below the upper limits given in the table, then the JBM is compliant with the minimum performance requirements defined in this document.
The JBM performance assessment can be directly derived from output of the JBM performance metric and provides the following for each traffic channel model:

· the average delay of the speech frames
· the Cumulative Distribution Function of the speech frame delay

· the total amount of jitter-induced concealment operations or jitter loss rate.

The following table includes minimum performance requirement derived by the reference delay computation algorithm described in Annex C and the traffic channel model description. An average delay time is computed from the Cumulative Distribution Function of the speech frame delay. The Link Loss rate is derived from the analysis of the traffic channel models.
	JBM Minimum performance requirements
	Average Delay of the speech frames
	Jitter Loss Rate
	Link Loss Rate

	Traffic Channel 1
	< 27,65 ms
	< 1%
	0 %

	Traffic Channel 2
	< 55,65 ms
	< 1%
	0,24%

	Traffic Channel 3
	< 39,94 ms
	< 1%
	0,50%

	Traffic Channel 4
	< 62,12 ms
	< 1%
	2,40%

	Traffic Channel 5
	< 97,78 ms
	< 1%
	11,84%

	Traffic Channel 6
	< 42,49 ms
	< 1%
	0%

In an equivalent way a comparison between JBM under test and the minimum delay requirements can be assessed using the Cumulative Distribution Functions of the speech frame delay which are provided in output by the proposed metric.
Test file format

The files produced by the Jitter Buffer Manager expected by the JBM performance metric contain an arbitrary size of frame sequence numbers in binary format representing the exact sequence of regularly spaced speech frames delivered by the output of the JBM under test. Any speech frame insertion is marked with 0.

Example of the expected input file for the Jitter Buffer Management performance metric:

	2
	3
	0
	4
	5
	7
	8
	9

	
	
	Insertion
	
	Deletion
	
	

Figure 3: Sample binary stream expected as input of the performance metric
2 MATLAB Code for JBM Performance Estimation

function [Avg_Delay, DeSequences, delay] = JBMeter(JitterBuffer_output, initial_waiting_time)
% Initialization
n=length(JitterBuffer_output);
p=max(JitterBuffer_output);
Reference=[1:p];
path=zeros(1,n);
delay=zeros(1,n);
delay_shift=zeros(1,n);
cost=ones(p,n);
opt_pred=zeros(p,n);
% Node cost initialization
for i=1:p
 for j=1:n
 cost(i,j)=(JitterBuffer_output(j)~=Reference(i));
 end
end
% Transition cost computation
for j=2:n
 cost(1,j)=cost(1,j-1)+cost(1,j);
end
for i=2:p
 cost(i,1)=cost(i-1,1)+cost(i,1);
end
for j=2:n
 for i=2:p
 if cost(i-1,j-1)<=cost(i-1,j)
 if cost(i-1,j-1)<=cost(i,j-1)
 cost(i,j)=cost(i-1,j-1)+cost(i,j);
 opt_pred(i,j)=0; % Optimal predecessor on diagonal
 else
 cost(i,j)=cost(i,j-1)+cost(i,j);
 opt_pred(i,j)=1; % Optimal predecessor on horizontal
 end
 else
 if cost(i-1,j)<cost(i,j-1)
 cost(i,j)=cost(i-1,j)+cost(i,j);
 opt_pred(i,j)=2; % Optimal predecessor on vertical
 else
 cost(i,j)=cost(i,j-1)+cost(i,j);
 opt_pred(i,j)=1; % Optimal predecessor on horizontal
 end
 end
 end
end
% Optimal path searching
j=n; i=p; k=n-1; t=n-1;
path(n)=p;
delay(n)=(n-p)*20;
DeSequences=0;
while (i~=1 & j~=1)
 if opt_pred(i,j)==0 % Diagonal transition
 if(JitterBuffer_output(j)~=Reference(i)) % desequence if frame exchange
 DeSequences=DeSequences+1;
 end
 path(k)=i-1;
 delay(k)=delay(k+1); % delay not incremented
 i=i-1; j=j-1;
 elseif opt_pred(i,j)==1 % Horizontal transition
 path(k)=i;
 delay(k)=delay(k+1)-20; % delay incremented by 20ms
 j=j-1;
 DeSequences=DeSequences+1; % frame insertion: desequence
 elseif opt_pred(i,j)==2 % Vertical transition
 k=k+1; i=i-1;
 path(k)=i;

 % delay decremented by 20ms * number of lost pkts
 delay(k)=delay(k+1)+20*(path(k+1)-path(k)-1);
 DeSequences=DeSequences+1; % frame loss: desequence
 end
 k=k-1;
end
% JBM performance scores
Avg_Delay=mean(delay)+initial_waiting_time
DeSequences
% Packet delay CDF computation
[n,x] = hist(delay,140); y = cumsum(n);y = y/max(y)*100;
figure;plot(x,y);axis([0 200 0 100]);ylabel('%');xlabel('ms');title('CDF of frame delay');
3 JBM Performance Metric Description

The goal of JBM performance metric is to find the similarity between two sequences of speech frames.

[image: image9.emf]1 2 3 4

Sender data streams

t

Regularly spaced

Sender

Channel

Sender

Channel

1

2 3

2

JBM input data streams

t

Jittered and delayed

1 2 3 2

JBM output data streams

t

Regularly spaced

Jitter Buffer

Manager

Figure 4: Speech reference and sample speech test sequence comparison
The metric that ﬁnds greatest use in template matching is based on the “cost” associated with converting the test sequence (JBM output frame sequence) to the reference sequence (Sender frame sequence).The metric is defined as the minimum number of fundamental operations needed to transform the test sequence into the reference sequence.

Distance definition

Given two sequences X and Y, the distance is the minimum number of basic operations – speech frame insertions and speech frame deletions - needed to transform X into Y.

Where the basic operations are:

· Speech frame insertion: a speech frame in Y is inserted increasing the length of Y by one speech frame.

· Speech frame deletion: a speech frame in Y is deleted decreasing the length of Y by one speech frame.

Such a technique identifies the minimum distance between the reference sequence and the test sequence and the resulting information can be used for determination of the performance in terms of average delay and number of speech frame deleted or speech frame inserted by the Jitter Buffer Management under test.

3.1 Distance computation

The distance metric computation requires 4 main steps:

Step 1: Grid construction

The distance can be derived forming a two-dimensional grid with the elements of the two sequences as points on the respective axes. The test sequence is at the abscissa and the reference sequence at the ordinate. Figure 5 is an example.

[image: image2]
Each node of the grid is associated with a cost, which is an appropriately defined function measuring the “distance” between the respective elements of the reference and test sequences.

A path through the grid from an initial node (0,0) to a final one is an ordered set of nodes.

Each path is associated with an overall cost defined as the sum of all node costs included in the considered path.

The distance between the two speech frame sequences is defined as the minimum cost over all possible paths because it is the sequence that requires the minimum amount of basic operations needed to transform the test sequence in the reference sequence.

At the same time, the minimum cost path unravels the optimal pairwise correspondence between the elements of the two sequences.

Step 2: Node cost initialization.
Initialize the cost of each node depending whether it associates the same speech frame in the two streams. Each point of the grid (node) marks a correspondence between the respective elements of the two sequences. For example node (3,2) maps the third element of the test sequence to the second element of the reference sequence.

[image: image3]
Step 3: Transition cost computation.

Each node(i,j) can be reached only through three allowable predecessors:
node(i-1,j), node(i,j-1) and node(i-1, j-1).

Update the cost for each node finding the optimal predecessor that is the predecessor with the minimum cost. Update the node cost with the sum of the cost of the optimal predecessor plus the cost of the node itself.

[image: image4]
Step 4: Optimal path searching.
Starting from the node(0,0) in the upper left corner, obtain the best path searching all possible combinations of paths. The distance is computed as the cost of the minimum cost path. The optimal node correspondence can then be unraveled by backtracking the optimal path.

[image: image5]

[image: image6]

[image: image7]
The same procedure can be described in pseudo-code.

Let C be an m×n grid of integers associated with a cost or “distance” and let

δ(·, ·) denote a delta function, having value 1 if the two elements (speech frames) match and 0 otherwise. The basic sequence-distance algorithm is then:

Algorithm (Node Cost and Transition cost computation)

1 Let x and y be, respectively, the JBM output data stream and the sender data stream, and build the cost grid matrix C(mxn), where m=length[x], n=length[y]

2 Assign the cost of the node (0,0): C[0,0] = 0

3 for i from 1 to m
4
Assign: C[i,0] = i
5 end
6 for j from 1 to n
7
Assign: C[0,j] = j

8 end
9 for i from 1 to m
10 for j from 1 to n

11
C[i,j]=min(C[i-1,j], C[i,j-1], C[i-1,j-1]) + 1 - δ(x[i],y[j])

 insertion |deletion | no change/exchange

12 end
13 end

14 C is the cost grid matrix used for optimal path search

The core of this algorithm (line11) ﬁnds the minimum cost in each entry of C, column by column. The algorithm is thus greedy in that each column of the distance or cost grid is ﬁlled using merely the costs in the previous column.

Algorithm (Optimal path searching)

1 Let (m,n) be the final node of the optimal path

2 Let (i,j) = argmin(C[m-1,n], C[m,n-1], C[m-1,n-1]) be a node of the optimal path

3 while (i,j) not equal to (0,0)

4
(k,s) = argmin(C[i-1,j], C[i,j-1], C[i-1,j-1])

5
Assign (i,j) = (k,s)
6
Let (i,j) be a node of the optimal path
7 end
3.2 JBM performance scores

In order to map the distance of the optimal path to the JBM performance score it has to be analyzed the topology of the optimal path.

Only three possible transitions can occur in the optimal paths:

Diagonal transitions: the meaning of diagonal transition is that the test and reference sequence are matching. The cost of the transition is zero.

Horizontal transitions: the meaning of horizontal transitions is that a delay occurred between the reference and the test sequence (one speech frame insertion). Thus, they add to the cost, because they imply local mismatch.

Vertical transitions: the meaning of vertical transitions is that they attempt alignment of the two sequences by deleting some speech frames. They add to the cost too.

The instantaneous delay is the related to the amount of speech frames inserted or removed in test sequence. So the average delay is derived as the average distance (number of frame inserted or removed) between the test sequence and the reference sequence. Since the ideal reference sequence belongs to the diagonal path we found that the distance between the test sequence and the reference sequence is exactly the horizontal distance between the optimal path and the diagonal.
Average delay =
= The average delay is computed as the average horizontal distance between the optimal path and the diagonal, added to the initial waiting time.

In a similar way it is possible to derive the Cumulative Distribution Function (CDF) of the speech frame delay. The CDF is the cumulative histogram of the delays accumulated by the test sequence frame by frame.

The Jitter Loss Rate can be derived calculating the total amount of basic operations required to transform the test sequence in the reference sequence, because the basic operations were defined as frame insertions or frame deletions.
Number of jitter-induced concealment operations or Jitter Loss Rate = NH + NV - NL
where:

NH= Number of horizontal transitions
NV = Number of vertical transitions
NL = Number of frames lost in the link
[image: image8.bmp]
0

1

1

1

1

1

0

1

1

1

1

1

0

1

Optimal path cost = 1

1

2

3

4

2

1

2

3

2

1

1

2

21

1

0

1

3

2

1

JBM output data stream

0

1

2

4

5

1

2

3

4

5

Sender data stream

Figure 10: Example of optimal path searching: speech frame deletion

Optimal path cost = 1

0

1

2

3

4

1

0

1

2

3

2

1

0

1

2

3

21

1

0

1

4

3

2

1

JBM output data stream

0

1

2

3

4

5

1

2

3

4

5

Sender data stream

Figure 8: Example of optimal path searching: perfect matching sequences

2

0

1

2

3

4

1

0

1

2

3

2

1

0

1

2

3

21

1

0

1

4

3

2

1

JBM output data stream

0

1

2

3

4

5

1

2

3

4

5

Sender data stream

Figure 7: Transition Cost computation

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

JBM output data stream

0

1

2

3

4

5

1

2

3

4

5

Sender data stream

Figure 5: Cost grid construction

1

1

1

1

0

1

1

1

1

1

JBM output data stream

0

1

2

3

4

5

1

2

3

4

5

Sender data stream

Figure 6: Node cost initialization

3

3

3

4

1

2

2

2

3

2

1

1

1

2

3

21

1

0

1

4

3

2

1

JBM output data stream

0

1

2

Empty

3

4

1

2

3

Optimal path cost = 0

4

5

Sender data stream

Figure 9: Example of optimal path searching: speech frame insertion

1

5

2

3

4

5

