3GPP TSG-SA WG4#38
Tdoc S4-060028
Rennes, France, 13 – 17 February 2006

Source:
Digital Fountain, BenQ Mobile, Ericsson
Title:
Miscellaneous proposals for TR 26.946

Document for:
Discussion and Agreement
Agenda Item:
12.1
1.
Introduction

This contribution proposed a number of changes for TR 26.946.
2.
Proposed Changes

6.1.2
Transport of MBMS Download Data

This section explains briefly how files are constructed for and transported during a FLUTE session.

The BM-SC takes a file, e.g. a video clip or a still image, which is used as the transport object for FLUTE (see Figure 6). The BM-SC constructs source blocks by breaking the file into contiguous portions of approximately equal size. Each source block is broken into source symbols . One or more encoding symbols are carried as the payload of a FLUTE packet, thus the encoding symbol size must divide the FLUTE packet size. The target FLUTE packet size is configured by the BM-SC and, together with the file size, is used to determine the encoding symbol length. Note that when FEC is used with smaller files it is often necessary to include several symbols in each FLUTE packet. This means that the FLUTE packets cannot be fixed at a specific arbitrary size by the operator, because they must be a multiple of the number of symbols required per packet in size. Based on the transport object length, the encoding symbol length and the maximum source block length, FLUTE calculates the source block structure (i.e., the number of source blocks and their length).

[image: image1.wmf]Constructing FLUTE Packets

=

1011010100

1010101101

1010101010

0100100101

0000000000

1111111111

0110010110

1100101011

1011010100

1010101101

1010101010

0100100101

0000000000

1111111111

0110010110

1100101011

file

transport

object

source

block(s)

00000

00000

encoding

symbol(s)

11111

11111

Header

FLUTE packet

11111

FLUTE/

UDP/

IP

packet

Figure 6: Constructing FLUTE Packets
The BM-SC communicates the transport object length, the encoding symbol length and the file size to the receivers within the FLUTE session transmission. Thus the receiver can also calculate the source block structure in advance of receiving a file.

The FLUTE packet is constructed from FLUTE header and payload containing one or more encoding symbols.
The distinction between file and transport object is that the file is the object provided to the BM-SC and played-out or stored at the MBMS UE. Within the scope of FLUTE sessions, content encoding may be used, for instance to compress the file with gzip for delivery. In the presence of FLUTE session content encoding, the file and the transport object will be different binary objects, and in the absence of content encoding the transport object will be identical to the file. Any symbol calculations (including FEC) are performed on transport objects.

Example 1:

File size:

1MB (1048576 bytes)

Target packet size (payload):
500 bytes

Maximum source symbols:
8192 (defined by FEC code)

Minimum source block target:
1024 (recommended by FEC code)

Symbol alignment parameter:
4 bytes

Based on the recommendations of TS26.346, Section B.3.4.1, then the above parameters would lead to 1 symbol of 500 bytes per packet and the file would be treated as a single source block with 2098 symbols.

Example 2:

File size:

16MB (16777216 bytes)

Target packet size (payload):
250 bytes

Maximum source symbols:
8192 (defined by FEC code)

Minimum source block target:
1024 (recommended by FEC code)

Symbol alignment parameter:
4 bytes

This would result in 1 symbol of 248 bytes per packet and the file being broken into 9 source blocks, 2 source blocks will have size 7616 symbols and the remaining 7 will have size 7517 symbols.
Example 3:

File size:

256KB (262144 bytes)

Target packet size (payload):
500 bytes

Maximum source symbols:
8192 (defined by FEC code)

Minimum source block target:
1024 (recommended by FEC code)

Symbol alignment parameter:
4 bytes

This would result in 2 symbols of 248 bytes each per packet and the file being treated as a single source block of 1058 symbols.
******************* Next Change ****************
6.1.3
Repair Symbol Request

In 3GPP TS 26.346 [6], Section 9.3.3, on “Identification of Missing Data from an MBMS Download”, it is stated that an MBMS client is able to identify the ESI values of required source and/or repair symbols that would complete the reconstruction of a source block (of a file) and that the corresponding symbols can be requested from the server. Especially for the case when MBMS FEC scheme is used, the MBMS client should either:

1.
identify a minimal set of source symbols that, combined with the already received symbols, allow the MBMS FEC decoder to recover the file, or

2.
identify a number, r, of symbols such that reception of r previously non-received symbols will allow the MBMS FEC decoder to recover the file.

Option 1 (clause 6.1.3.1) is more appropriate if only very few symbols are lost as the signalling of only very few symbols is more efficient. In contrast, option 2 (clause 6.1.3.3) is appropriate in the case where a significant amount of symbols are not available. To minimize the uplink traffic, sending only the initial symbol ESI and the amount of requested consecutive symbols is more appropriate. The decision which option to use is up to the MBMS client.

For both options, example algorithms to determine a suitable set of repair symbols are presented in the following. For option 1 the derivation of a minimum set of source symbols and for option 2 the derivation of a sufficient set of consecutive repair symbols is described based on the initial matrix A as constructed in 3GPP TS 26.346 [6], Section C.2.1. In both cases, a maximum Gaussian elimination as described below is performed on A. Then, the matrix is virtually extended by those rows which, for option 1, represent the missing source symbols and, for option 2, a set of consecutive repair symbols. Maximum Gaussian elimination is again performed on this new matrix. With appropriate tracking of row and column labels this process allows finding an appropriate set of ESIs for repair of the source block as requested in 3GPP TS 26.346 [6], Section 9.3.3. Note that almost all parts of described algorithms can be included in the regular FEC decoding process as specified in Annex C such that the decoding complexity is minimized. Nevertheless, the description of the following algorithms is based on the unmodified matrix A.
6.1.3.1
Option 1: Determination of a Minimum Set of Source Symbols for Repair

The following algorithm, operating on matrix A, is used to determine a minimum set of source symbols for successful recovery:

1. Assume c to be the column index vector of length L with labels such that column exchanges can be tracked, e.g. for all i=0, …, L-1 c[i]=i.

2. Apply the maximum Gaussian elimination process, as described below, to A, with tracking of column labels c. The process returns matrices U and W as well as the modified column label vector c’ of dimension L.

3. Generate an m by L matrix G’, whereby m is equal to the number of non-received source symbols as follows. Consider GLT to be the K by L generator matrix that corresponds to the outer LT encoder of the Raptor code generating the first K encoding symbols according to figure 3GPP TS 26.346 [6], B.5.2.5.2-1. The matrix G’ is constructed from matrix GLT by deleting the rows corresponding to already received encoding symbols and by exchanging the columns according to c’. In addition, the rows in G’ get assigned the corresponding ESIs and these labels are tracked in v’.

4. A new decoding matrix A’ is constructed in the following way:

	U
	W

	G’

Figure 7: New decoding matrix A’

5. In addition, a row label vector v is generated by the vertical stacking of n and v’, i.e. v=[nT v’T]T whereby n represents a vector containing any rank(U)=dim(U) entries such that any label of n can be distinguished from any label in v’. In the remainder we assume n being an all -1 vector of dimension rank(U).

6. Apply the maximum Gaussian elimination process to A’, as described in section 6.1.3.3, with tracking of row labels v. The process returns the exchanged row labels v*.

7. The ESIs of the encoding symbols forming a minimum set of repair symbols are obtained by the labels in v* which are not -1.

6.1.3.2 Option 2: Determination of a Sufficient Set of Consecutive Encoding Symbols for Repair

The following algorithm operating on matrix A is used to determine a sufficient set of consecutive encoding symbols for successful repair:

1. Assume c to be the column index vector of length L with labels such that column exchanges can be tracked, e.g. for all i=0, …, L-1 c[i]=i.

2. Apply the maximum Gaussian elimination process, as described below, to A, with tracking of column labels c. The process returns matrices U and W as well as the modified column label vector c’ of dimension L.

3. Assume that Rlow is one higher than the largest ESI received and that Rhigh= Rlow+m-1. Generate an m by L matrix G’, whereby m is equal to or only slightly greater than the minimum number of missing repair symbols L-rank(U) by vertically stacking rows that correspond to the outer LT encoder of the Raptor code for all ESI from Rlow, …, Rhigh.

4. A new decoding matrix A’ is constructed according to Figure 7.

5. Apply the maximum Gaussian elimination process to A’ which returns some different U and W as described in section 6.1.3.3.

6. If W is not the empty matrix, then

· Set Rhigh= Rhigh+1

· Generate an 1 by L matrix G’ constructed according to the outer LT encoder of the Raptor code for ESI=Rhigh.

· Go to 4

7. the ESIs of the encoding symbols forming a minimum set of repair symbols are obtained by requesting all symbols with ESI from Rlow, …, Rhigh.

6.1.3.3 Maximum Gaussian Elimination

Assume that we have given any matrix X as well as possibly a vector of row labels v or possibly a column label vector c or possibly both. A maximum Gaussian elimination is an algorithm similar to standard Gaussian elimination, in which the main diagonal is extended to its maximum limit, i.e., the number of 1s in the main diagonal after this algorithm has been applied, corresponds to the rank of the input matrix X, i.e., rank(X).

To be more specific assume that matrix X is conceptually divided into 4 parts as shown in Figure 8.

	U
	W

	Z
	B

Figure 8: Conceptual division of X into 4 blocks

where U is a square-upper-matrix with 1s in the main diagonal and zeros below the main diagonal, Z is a zero matrix and W and B are any arbitrary matrices with appropriate dimensions. Initially, U, W, and Z have dimensions such that B=X.

In the maximum Gaussian elimination process, the matrix X and if present, the row label vector v and column label vector c, are now processed and modified in the following way:
1. Partition the matrix X in U, Z, W, and B as shown in Figure 8 such that U is a square-upper-matrix with 1s in the main diagonal and zeros below the main diagonal, Z is a zero matrix and W and B are any arbitrary matrices with appropriate dimensions.
2. If B is the zero matrix, the algorithm stops and returns matrices U and W, if v is present, the first rank(U) components of v in some vector v’, and if c is present, the entire vector c.
3. Otherwise, B is transformed using row/column exchange(s) into a matrix with a 1 the in upper-left corner.
4. The following operations on B are allowed:
a. row exchange, accompanied by the exchange of row labels in v, if present.
b. column exchange, accompanied by the exchange of column labels in c, if present.
5. by means of row additions, the rows of B (except the first row) are eliminated, i.e. 0s are produced in all rows of the first column of B except for the first row.
6. the process restarts with the updated matrix X in 1.
******************* Next Change ****************

6.1.4
On Choosing the SDU size

This clause provides a simple analysis that suggests how to choose the SDU size. The crux of the analysis is to notice that there is a fundamental tradeoff between two competing factors that suggest how to choose the SDU size. The two factors are the relative length of the SDU header compared to the SDU size, and the SDU loss rate induced by PDU loss. Generally the SDU header size is fixed by other considerations, and the PDU loss rate is determined by characteristics of the underlying network. Given a fixed SDU header size and PDU loss rate, making the SDU larger means the header wastes less space per SDU, whereas making the SDU smaller means the SDU loss induced by PDU loss is smaller. The MBMS FEC code has the property that data (which is a source file in the case of the file download service or a source block in the case of the streaming service) can be recovered with high probability from the reception of any set of encoding packets only slightly greater in length to the data, independent of packet loss amounts or patterns. The loss of SDUs thus has the same negative impact on wasted bandwidth in terms of delivering the data as the wasted (but necessary) SDU header space. Thus, the goal is to choose an SDU length so that the bandwidth wasted due to headers and SDU loss induced by PDU loss is minimized. (It is important to note that this is not trying to minimize total SDU loss, only the contribution to SDU loss due to PDU loss. Other sources of SDU loss, e.g., cell change loss, cell congestion loss, backbone loss, UE unavailable loss, all independently contribute to bandwidth wastage but do not affect the analysis of how to choose the SDU size based on balancing the header wastage against the PDU loss induced wastage.)

6.1.4.1
Analysis

Let H be the SDU header size (which for example consists of the IP/UDP/FLUTE headers), let B be the PDU size and let p be the PDU loss probability, and all of these parameters are fixed. Let P be the overall SDU size (including headers) that is to be set based on the fixed parameters. Let h = H/P be the fractional header wastage. For example, if H = 44 bytes, P = 440 bytes then h = 0.1. Let q be the SDU loss probability induced by PDU loss. To optimize the value of P, one would want to choose the value of P to make h + q minimal. The contribution [1] derives the value of q as a function of P and B and p. From [1], and using N·p as an upper bound on the probability that N PDUs are lost, an upper bound on the value of q is (1+P/B)·p. The actual value of q is at least (1 - ε/2) times this upper bound when N·p < ε for N = ceil(P/B)+1, and hereafter the upper bound for q will be used for the actual value of q. To minimize h + q means setting P so as to minimize H/P + (1+P/B)·p, and this is minimized by setting P = sqrt{H·B/p}. Let A = sqrt{H·p/B}. The overall wastage for this value of P is then h + q = p + 2·A.
The values of H and B are determined by the network and link layer protocols used for trasport. For example, H = 44 bytes (IP/UDP/FLUTE headers) and B = 640 bytes for UTRAN or B = 30 bytes for GERAN. Note that if Robust Header Compression is applied in the RAN then the value of H in these calculations must be reduced accordingly.
The value of p may or may not be known, but it may be possible to heuristically roughly estimate the average value of p and use this to decide on the value of P.

Suppose for example H = 44 bytes, B = 640 bytes and p = 0.1. The computed value of P is 531 bytes, h = 0.083, q = 0.183 and thus the overall wastage h + q = 0.266. As another example, suppose H = 44 bytes, B = 30 bytes and p = 0.01. The computed value of P is 364 bytes, h = 0.121, q = 0.131 and thus the overall wastage h + q = 0.252.
The penalty for using a value for p to determine P that is larger or smaller than the actual average PDU loss is that there will be wasted bandwidth, either from a header too large if the value of p is estimated higher than the actual PDU loss rate or from too much SDU loss induced by PDU loss if the value of p is estimated lower than the actual PDU loss rate. If for example the actual PDU loss is p and the value used to compute P is β·p then the overall wastage will be p + (sqrt{β}+sqrt{1/β})·A instead of p + 2·A. Since the first term p is the same in both expressions, the ratio of the second terms is an upper bound on the relative wastage of choosing an incorrect p value as a function of β, and this ratio is (sqrt{β}+sqrt{1/β})/2. For example if β is anywhere in the range from ¼ to 4 then the relative wastage is at most a factor of 1.25 higher than it would be if p were estimated precisely, and typically the actual factor (when the first terms are accounted for) is less than 1.25. For example if H = 44 bytes, B = 640 bytes and p = 0.1 and β = ¼ (meaning that the estimate of the PDU loss used to set the value of P is β·p = 0.025 whereas the actual PDU loss is p = 0.1) then the chosen value of P is 1,062 bytes and the wastage is 0.1 + 2.5·A where A = 0.083, and thus the wastage is 0.307. If the correct value of PDU loss were used instead to choose the value of P then P would be set to 531 bytes and the wastage would be 0.1 + 2·A = 0.266. Thus, the ratio of the actual to the idea wastage is 1.15.

************************* Next Change **************************

7.2.1.2 Announced Metadata Fragments

The MBMS User Service is active from the 5th of August until the 18th of December. The MBMS bearers are activated, if there is any video clip to distribute. Video clips are mostly distributed during weekends, seldom during the week.

To activate the video clip service, the client has received the following metadata fragments through a service announcement procedure:

User Service Description Fragment:

<?xml version="1.0" encoding="UTF-8"?>

<userServiceDescription

 xmlns="urn:3gpp:metadata:2004:userservicedescription"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:3gpp:metadata:2004:userservicedescription

 C:\data\MyTDocs\ALTOVA~1\SA4-XML\USD.xsd"

 serviceId="urn:VideoClipDistr-1">

 <deliveryMethod

 sessionDescriptionURI="http://example.org/videoclip-distr.sdp"

 associatedProcedureDescriptionURI="http://www.example.com/default-repair-settings.xml"/>

</userServiceDescription>

Session Description Fragment:

v=0

o=user123 3332188800 3343766400 IN IP4 192.168.1.1

s=VideoClip Distribution Service example

i=More information

t=3332188800 3343766400

a=mbms-mode:broadcast 1234

a=FEC-declaration:0 encoding-id=1

a=source-filter: incl IN IP4 * 192.168.1.1

a=flute-tsi:116

m=application 12345 FLUTE/UDP 0

c=IN IP4 224.20.20.4

b=64

a=lang:DE

a=FEC:0

The t= lines includes the session start and session stop information. Session start is 3332188800 (== 5th of August 2005) and session stop is 3343766400 (== 18th of December 2005).

The User service description and the session description fragments are used to activate the MBMS bearer service with multicast IP address 224.20.20.4 and TMGI 1234. The user service uses in this use-case an MBMS broadcast bearer service. The bearer service remains active until the 18th of December.

File Repair Procedure Fragment:

The post delivery file repair procedure is configured with a back-off window of 40seconds. It was assumed, that a group of 5000 UEs need 10kByte each of repair data, assuming that the file repair server can provide repair data with a capacity of 10Mbps.

<?xml version="1.0" encoding="UTF-8"?>

<associatedProcedureDescription

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.example.com/mbms-associated-descrition.xsd">

<postFileRepair offsetTime="5" maxBackOff="40">

<serverURI>"http://mbmsrepair.operator.umts/path/repair-service"</serverURI>

<serverURI>"http://mbmsrepair2.operator.umts/ path/repair-service"</serverURI>

</postFileRepair>

</associatedProcedureDescription>
************************* Next Change **************************

7.2.1.4
File Repair procedure

The File correction use case is based on the file reception use-case described in 7.2.2.3. The following table is created assuming the recommended MBMS FEC parameter configurations.
	File-Size
	300 kbyte

	FEC Overhead
	16%

	Z (Number of Source Blocks)
	1

	N (Number of sub-blocks)
	2

	A (Alignment factor)
	4

	P (Payload size)
	512 byte

	G (Symbols per packet)
	2

	T (Symbol Size)
	256 byte

	
	

	Generated Source Packets
	600

	Generated Repair Packets
	96

UE_A

It is assumed that UE_A switched from a very good coverage to almost no coverage 20 seconds before the transmission ended. It is assumed for UE_A, that a user enters a subterranean garage or a sub-way station while receiving an MBMS download transmission session.

The UE_A misses the last half of the MBMS transmission, thus packet 348 until packet 696 are lost. The file transmission was organized such that the repair packets are transmitted after the source packets. Thus, a part of the source and all repair packets are lost. Since there are two symbols per packet, the corresponding start ESI of the lost packets is 696.

After the FDT instance has expired (thus 46 seconds after receiving the FLUTE FDT packet), the UE_A starts the file repair procedure with calculating the procedure back-off time.

Backoff-time = rnd() * 40s + 5s

The UE_A selects randomly one server URI from the Associated delivery procedure. In this use-case the UE chooses the second server URI: http://mbmsrepair2.operator.umts

For this use-case the rnd() function has returned “0.275” as result. Thus, the UE defers the opening of the TCP connection to the host mbmsrepair2.operator.umts by 16 seconds. As soon as the TCP connection is established, the UE sends the following HTTP GET request to the file repair server.

The File Repair request line:

GET
http://mbmsrepair2.operator.umts/ path/repair-service?fileURI=www.example.com/bundesliga/VideoClip-10.3gp&SBN=1;ESI=696-1198
HTTP/1.1

Since the MBMS UE has successfully received the first part of the source block, it needs to request only the remaining part of the source block to completely recover the file. The MBMS FEC decoder need not be invoked in this example.

The UE_A gets the remaining parts of the file as response.

UE_B

UE_B switched from a very good coverage to almost no coverage 20 seconds before the transmission ended and re-entered good coverage 15 seconds later.
The UE_B thus misses packets 348 to packet 607 (inclusive). The file transmission was organized such that the repair packets are transmitted after the source packets. Thus, a part of the source is lost (i.e. 251 source packets), but most repair packets have been received (i.e. 88). The total number of received packets is 435 and since there are two symbols per packet, then 870 symbols have been received.
After the FDT instance has expired (thus 46 seconds after receiving the FLUTE FDT packet), the UE_A starts the file repair procedure with calculating the procedure back-off time.

Backoff-time = rnd() * 40s + 5s

The UE_B selects randomly one server URI from the Associated delivery procedure. In this use-case the UE chooses the second server URI: http://mbmsrepair2.operator.umts

For this use-case the rnd() function has returned “0.275” as result. Thus, the UE defers the opening of the TCP connection to the host mbmsrepair2.operator.umts by 16 seconds. As soon as the TCP connection is established, the UE sends the following HTTP GET request to the file repair server.
A minimum of 330 additional symbols are required to ensure successful decoding of the file. The UE should use one of the algorithms defined in section 6.1.3 to determine a range of ESIs that will result in successful reception. In this case, the UE determines that an additional 12 symbols (1%) will be sufficient to ensure recovery. The UE thus requests an additional 342 symbols with ESIs of 1392 (one greater than the highest ESI received) or above.
The File Repair request line:

GET http:// mbmsrepair2.operator.umts/path/repair-service?fileURI=www.example.com/bundesliga/VideoClip-10.3gp&SBN=1;ESI=1392+342
HTTP/1.1

UE_B receives the repair symbols in response and can thus decode the file. Note that the UE is not permitted to request all missing source symbols, since this would result in an unnecessary load on the repair server (in this case 504 symbols).
**************** End of Changes *******************

