TSG SA4#38 meeting
Tdoc S4 060024
13-17 February, 2006, Rennes, France  


Source:

Alcatel, Bouygues, ETRI, KPN, Orange, Streamezzo, Telefonica, 3
Title:
LASeR analysis versus DIMS/RME requirements
Document for:
Discussion and Approval
Agenda Item:
13.4
1 Introduction

This document provides an evaluation of LASeR against the DIMS/RME requirements and includes additional technologies to meet the need of a complete Rich-Media Enabler. This document completes the liaison from MPEG.
2 Scene requirements

2.1 Alignment of LASeR with SVG Tiny 1.1 and 1.2

There is a clear consensus that the RME/DIMS enabler will be based on the SVG Tiny 1.2 specification.

LASeR is an MPEG encoding of the W3C SVG Tiny specification and a full compliancy with the rendering model is provided as described in the figure below:


[image: image1.emf]LASeR

decoder

LASeR

Scene

Tree

Manager

SVGT1.2

Renderer

Scene

Stream

Decoded

Access

Units

Scene

Tree

Rendered

Scene

Normative in LASeRNormative in SVGT1.2


Figure 1: LASeR engine components and normative parts (from section 6.4 of the LASeR specification)

LASeR v1 extends the feature set of SVGT1.1, including features of SVG1.1 Full and SMIL2 which will be present in SVGT1.2.

LASeR first amendment (called LASeR v2 in this document) will be a superset of SVGT1.2 and will complete the alignment with the  not-yet-stable features of SVGT1.2.

LASeR v1 is already able to encode and transmit SVGT1.2 ( and other XML data, e.g.: proprietary extension, CDF) content due to its generic, extensible binary encoding scheme.

The non-v1 part of the SVGTiny 1.2 or LASeR v2 content will be skipped by a LASeR v1 decoder, will be rendered by a LASeR v2 decoder. It can also be transmitted to an SVGTiny 1.2 player depending on the implementation choice specify by OMA.

In this document when LASeR is mentioned, it refers to features that are relevant in LASeR v1 and v2. When features are only relevant for one version, it will be explicitly mentioned. 

2.2 LASeR scene extensions 

The LASeR v1 scene extensions cover:

· The management of any input device to ease the content adaptation to any particular MMI and terminal.

· The association of a precise timing model to any attribute.

· The clipping by a pixel-aligned rectangle with horizontal and vertical borders, which is crucial to create UI widgets.

· The possible use of any font system, including OpenType.

· A fullscreen mode for videos and images.

· A means to stop non-rendered animations to optimize CPU usage.

· The use of the SMIL mediaClipping module to allow VCR-like control of media.

· A simple way to underline text.

The LASeR v2 scene extensions cover:
· advanced text scrolling

· access to media decoding chain information
· advanced stream switching capabilities
· extension of uDOM to LASeR
The overview of the components of a LASeR client and of the global architecture using MPEG4 part 20 for an application is as follows:


[image: image2.emf]SVG SceneTree

LASeR

Commands

BinaryEncoding

LASeR

Extensions

SAF

AudioVideoFontImage…

Application

Network

Transport


Figure 2: Architecture of LASeR and SAF
2.3 Font requirement
LASeR does not mandate any font system but recommends the usage of Open Type fonts. So the preferred way of sending font information with LASeR is as a companion font stream using the OpenType format. However, there are other options: SVG Tiny fonts can be sent separately in a companion stream (encoded as OpenType or in XML form), or in the LASeR scene, encoded with the anyXML encoding (non-schema encoding of any XML data). 

When a requested font is not present, LASeR provides the same fallback to system/device fonts as SVG Tiny 1.2.

About compatibility of SVG Tiny Fonts and OpenType: the subset of SVG fonts mandated by SVGT1.1 and SVGT1.2 is a subset of OpenType. An existing open source tool can extract SVG font information from OpenType fonts. It is also possible to translate SVG Tiny fonts to OpenType format. 

3 DIMS/RME Dynamic updates requirements

One key additional feature provided by LASeR over the SVG Tiny 1.2 specification is the ability for dynamic modification of the scene.

Dynamic updates are a key to efficient representation of server-driven or user-triggered scene changes over time. This feature, present in Macromedia Flash, is necessary to enable:

· The efficient representation of streamable cartoons,

· The partitioning of scenes into small packets that fit in size-limited delivery mechanisms (such as cell broadcast),

· The dynamic creation of answers to a user request, and their integration in the current scene,

· Or the dynamic push of content into an existing scene.

The dynamic update mechanism can be achieved with two complementary technologies: using LASeR Commands and using a scripting mechanism.

3.1 Using the LASeR command 
The LASeR Commands are a declarative way (as opposed to programmatic as in a script) of specifying changes to the scene. The following commands are defined:

3.1.1 General commands

· Insert: to insert any element in a group, a point in a sequence.

· Delete: to delete any element by id or from a group by index, a point in a sequence.

· Replace: to replace an element by another element (by id or from a group by index), or to replace the value of any attribute of any element.

3.1.2 Commands specified for streaming and broadcast

· NewScene: to create a new scene. 

· RefreshScene: to repeat the current state of the scene, for use as a random access point into the LASeR stream or as a means to recover from packet loss.
3.1.3 Commands defined in LASeR for additional requirements

· Add: similar to replace, but with the notion of adding to the value rather than replacing it. 

· Save, Restore and Clean: to save, reload or remove persistent scene information in the form of the value of a list of attributes. Other commands have no influence on persistent scene information.

· SendEvent: to send an event to any element in the scene.
3.1.4 Extensibility and genericity

LASeR includes a mechanism to extend the LASeR Commands to add other functionality.

LASeR Commands are not specific to LASeR, but can be used on any XML document with minimal extensions. ISO/IEC 15938-1 defines a similar mechanism as the group of commands in 3.1.1, with slightly different requirements, proving the applicability of the concept to any XML document. One possible application of XML document update commands generalized from LASeR Commands is to Compound Document Format (CDF), and more specifically to Web Interactive Compound Documents (WICD) which are based on a mix of xHTML and SVG Tiny 1.2.

The LASeR specification defines an XML syntax (LAseRML) for use in authoring or other applications of XML versions of the LASeR scenes. LASeRML is a superset of the SVG Tiny (XML) syntax. LASeR Commands, as part of the LASeR specification, also have an equivalent XML syntax, which is immediately applicable to SVG Tiny 1.1 and 1.2 documents.

3.1.5 Timing model

A timing model is associated to the LASeR commands, allowing the player to provide a very tight synchronization, with an accuracy specified by the content creator wishes (frame accurate synchronization, synchronization on a user interaction, on a time basis, etc…). This timing model defines the link between the time stamps used by transport layers and the scene time or composition time and is the key to any streaming and/or synchronization of scene information with other media.  See § 6.4 in the ISO/IEC 14496-20:2006 specification

3.1.6 Compatibility Issues
LASeR scenes and updates are defined as complete and well-formed packet. The first LASeR packet contains a complete, well-formed SVG Tiny scene (with end tag) which represents the first state of the content. The next LASeR packets are sets of commands (with end tag) to build the next states of the content. After each packet is received and each update command is executed, the scene in the browser is a valid, well-formed SVG scene.
In the LASeR v1 specification, an informative ECMA-Script/DOM equivalent of the LASeR Commands is provided. Using this equivalent code, LASeR Commands can be implemented at minimal cost on SVG Tiny 1.2 implementations including a DOM interface and an ECMA-Script interpreter. This informative equivalent also serves as an indication of the complexity of the implementation in compiled languages on top of an SVGTiny1.2+DOM player, as the total complexity of the group of commands in 3.1.1 is less than 100 lines of code.

LASeR extends SVG Tiny, and as such, reuses DOM Level 3 Events, also known as the XML Events specification in order to provide a generic extensible
The usage of uDOM in LASeR v1 is possible, but not mandated. LASeR v2 will specify the usage of uDOM and its extensions to the (few) LASeR scene tree extensions.

3.2 Updates through Scripting
In addition or in parallel to the LASeR command, the use of scripting and DOM Network API and an ad-hoc protocol to communicate scene modification from the server to the client can be used. Note: the extra cost incurred by defining an alternate protocol in script and the requirement of an ad-hoc server makes this solution only worthwhile in very specific services. 

3.3 Combination of updates 

LASeR Commands are used in two contexts :

· in a timed context

· in an interactive context

LASeR Commands are used in a timed context when they are part of a LASeR Access Unit. The LASeR Access Unit has a presentation time which is the time at which the LASeR Commands in it shall be executed. LASeR Commands from a LASeR Access Unit are executed in step 3 of the LASeR execution model (section 6.4 of ISO/IEC 14496-20). Such LASeR Commands can never interfere with scripts with another scriptContentType, since these are executed as part of step 4.

LASeR Commands are also used in a non-timed, interactive context when they are contained in a script element. Upon activation of the script element, e.g. through an event channelled to the script element by a listener element, the LASeR Commands are executed as if their presentation time was the current scene time. LASeR Commands from a script element are executed in step 4 of the LASeR execution model (section 6.4 of ISO/IEC 14496-20). Interaction between the execution of LASeR Commands in a script and the execution of DOM calls by a script with another scriptContentType is resolved by the processing order of the events which trigger the scripts’ execution. 

Since the execution of the two flavours of LASeR Commands are clearly specified to happen in different steps of the LASeR execution model, there can be no unforeseen interference between the two. The author can precisely predict what will happen. For two script executions happening within the same rendering cycle, the same rule shall be applied to order any mix of LASeR Command script and script with other scriptContentType. 

4 Streaming and reliability requirements

The LASeR format allows streaming over reliable and non reliable network. As its parent SVG Tiny 1.2 specification LASeR supports the following scenarii:

· The first option is the classical “download and play” mode. The user waits until the end of the download to start viewing the content.

· The second option is the progressive rendering mode. This mode is an improved version of the previous one enabling visualization while downloading the content. But the downloaded content only adds new content to the existing one, making it difficult to manage long-running documents.
In addition to this, LASeR supports true streaming, allowing long-running documents with a high-rate of updates, such as cartoons or vector graphics commercials, as well as the synchronization of streamed scene information with other media.

4.1 Progressive download and rendering

4.1.1 In SVGT 1.2

SVGT1.2 introduces progressive rendering, and a mode where the scene time can begin to progress and rendering can start before the end tag is received. Thus, players cannot rely anymore on the reception of the end tag to make integrity checks. If any packet is lost, the SVG decoder will reject the content and stop rendering.

In order to allow rendering before the end of the download, SVG constraints on well-formedness have to be dropped. Once the end tag has been received, nothing else can ever be sent any more, so the end tag is only received when the scene is at end. In the case of an interactive scene, in order to leave to the user the opportunity to interact, the scene needs to be left open, so the end tag is never received. As a result, a streamed SVG scene is never well-formed. The SVGT1.2 specification works around this problem by defining the well-formedness of SVG fragments.

4.1.2 In LASeR

LASeR scenes can be modeled as a series of SVGTiny scenes. The first frame consist of the initial SVGTiny scene, the next frames contain the differences, i.e. the set of scene updates required to transform the previous scene into the next scene. 


[image: image3.emf]LASeR

update

LASeR

update

LASeR

update

LASeR

update

LASeR

NewScene

What the author wants the user to see:

The LASeR stream:

time

SVG 

scene 1

SVG 

scene 2

SVG 

scene 3

SVG 

scene 4

SVG 

scene …

time

SVG 

scene 1

scene 2 

–

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

The fact that the scenes are equidistant is a simplification

What the browser contains after updates execution:

time

SVG 

scene 1

SVG 

scene 2

SVG 

scene 3

SVG 

scene 4

SVG 

scene …


Figure 3: updates construction

The first LASeR packet contains a complete, well-formed SVGTiny scene (with end tag) which represents the first state of the content. The next LASeR packets are sets of commands to build the next states of the content. Each packet is complete and well-formed. After each packet is received and each update command is executed, the scene in the browser is a valid, well-formed SVGT scene.

4.2 Streaming

4.2.1 In SVGT1.2

Progressive rendering is not streaming. Let us model the reception of an SVGT1.2 scene as a series of packets. Let us further assume for simplicity that each packet contains a single top element (with children): this is not necessary but simplifies explanations. Each packet/top element is received at a certain time, which depends on the network, and is executed ASAP. This is impossible to synchronize, because there is no way to associate a time stamp with a scene time. If the packet is conveyed in RTP, there is no way to translate the RTP time stamp information into scene time, in order to possibly wait before the insertion of the element in the packet. From the other end, the author has no means to specify: this element shall be inserted in the scene at time T. 

.
4.2.2 In LASeR

LASeR content is always a stream. LASeR introduces the scene updates mechanism, in order to transpose to scenes the well-known structure of video streams: intra-coded frames followed by predictive-coded frames. 

In a LASeR stream, the first packet contains the initial (SVGTiny) scene. As a result, at the end of the first packet, an end tag is received, allowing well-formedness checking and other optimizations. 

The next packets contain update instructions. The instructions themselves can be expressed in XML or binary, but in both cases are well-formed and complete. The result of the execution of the update instructions is a complete and well-formed SVGTiny scene.
Each LASeR packet has a specific time stamp. This time stamp may need to be adapted to the underlying transport, but the LASeR specification defines precisely how to recover the scene time information from the transport time stamp. The author needs to specify the scene time at which each update will be executed. As a result, precise synchronization of scene updates with media is feasible.

Within the browser, between packets, the content is complete, well-formed SVG content.

LASeR stream can be packetised over RTP using the RFC 3640 payload, other packetisations can be considered. 

[image: image4.emf]LASeR

update

LASeR

update

LASeR

update

LASeR

update

LASeR

NewScene

The LASeR stream as transmitted:

time

SVG 

scene 1

scene 2 

–

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

What the browser contains after updates execution:

time

SVG 

scene 1

SVG 

scene 2

SVG 

scene 3

SVG 

scene 4

SVG 

scene …

Complete 

well-

formed 

SVG 

scene

Each is a complete well-formed SVG scene

Well-formed differences between two SVG 

scenes expressed as a list of insert, delete and

replace commands


Figure 4: Overview of a LASeR stream

Tuning in into the middle of a scene stream is possible through the use of RefreshScene commands. RefreshScene commands contain a copy of the current state of the scene which can be skipped by all LASeR players but the ones currently trying to tune in. Not all LASeR streams have to contain RefreshScene commands, as many delivery scenarios do not require error recovery (for example, TCP/IP uses packet retransmission to ensure error-free delivery). It is the content author’s or provider’s choice to include RefreshScene commands into the scene stream.
RefreshScene prove useful both in streaming and in broadcast scenarios.

5 Reliability requirements
The use of non reliable delivery mechanisms (such as RTP) implies potential packet loss. In order to provide error-resilient playerq to be implemented for streamed application, LASeR specifies how to:

· Handle packet loss gracefully: after a packet loss, LASeR commands which have become meaningless are ignored.

· errors located in packets containing transient information can be recovered naturally

· errors which cause more significant damage to the scene will cause a refresh request by the user.

· Recover from packet loss:

· through the use of RefreshScene commands, a player after a packet loss is in a state similar to the “tune in” state.

· RefreshScene commands are ignored by the players as redundant.

6 Caching and private data management requirements
LASeR specifies means to achieve data management on both client and server sides. This is achieved partially by the scene format and partially by the packaging format.

In the scene format, LASeR and SAF specify interfaces to:

· local caching of RM data on the end-user device and updating of cached RM data,

· secure temporary storage of a large amount of persistent information for content cache and offline navigation,

· content storing mechanisms and storing priority according to the rich-media service logic,
· private data permanent storage in a memory area reserved by the RM enabler.

In order to protect end-user data privacy, LASeR specifies a cookies-like mechanism to limit the above functionality. LASeR uses signaling similar to the one defined in RFC 2965, which defines a state management mechanism for Rich Media presentations.

7 Synchronization requirements
LASeR extends the SVG/SMIL timing model, to make it compatible with the MPEG timing model and thus optimize its interfaces with MPEG media decoders.
In addition, together with SAF, LASeR offers a platform for efficient and frame-accurate synchronization of media and scene: both SVG-like scenes with SMIL animations and Flash-like scene with sequences of frames can be synchronized with the best achievable precision.

The next table summarizes the respective synchronization features of LASeR and SVG Tiny 1.2. Note: both require the support from an adequate transport layer to synchronize, such as SAF.

	Feature
	SVGT1.2
	LASeR 

	Specification of the synchronization of streams
	Yes
	Yes

	Ability to synchronize of events and static animations 
based on scene time with other media
	Yes
	Yes

	Ability to synchronize scene modifications with other media
	No
	Yes


8 Efficiency requirements
One of the key underlying requirement when designing LASeR was the global efficiency that need to be provided. To fulfill this objective, LASeR provides:

· the dynamic update mechanism,

· an efficient data caching management,
· a binary format, necessary for a fast parsing and a fast, bit-efficient transmission of data,

· an append mode providing means to create fluid, dynamic services, free of the one-new-page-per-request client/server paradigm, as well as making it possible to prepare in advance multiple possible responses to user requests.
· and together with the SAF aggregation format, a means to reduce the number of necessary http connections and the round trip delay.
8.1 Binary Format, compression requirements
The binary format specified in LASeR allows the encoding of SVG Tiny content. It uses a compact representation for the structure of the SVG elements and uses specific coding algorithms to encode the attribute values of the SVG elements. Because the mobile platforms usually lack hardware float processing, the compression of these attribute values has to be simpler than on other target platforms (PC). Complex computations that would improve the compression ratio by a small amount at the cost of doubling the decoding time have been rejected during the standardization process. Thus, the binary encoding of LASeR is straightforward, and its quality resides in the complexity/efficiency balance. Special care was taken for the encoding of values for some attribute types, like list of float coordinates, vector graphics paths or transformation matrices. 

The LASeR binary syntax is extensible, so that private extensions can be mixed among normal LASeR elements and attributes, to be ignored by decoders that do not know how to process them. One possible extension is the encoding of CDF documents with LASeR, which allows the encoding of xHTML and other XML components in the fast-to-parse any-XML encoding extension of LASeR.
As with SVG, small media such as images and short A/V clips can be packaged with the scene. The following should be noted: 

· such embedding usually incurs, in SVG Tiny, the 33% compression efficiency penalty inherent to Base64 encoding required for the embedding,

· the same embedding is done in LASeR at no extra cost in compression efficiency,

· as such usage does not follow the MPEG terminal model, it is recommended to avoid this mechanism in favor of the more powerful SAF mechanism.

LASeR v1 encoded streams can be decoded by an adhoc decoder.

LASeR v1 encoded streams can be decoded by suitably configured BiM decoders.
LASeR v2 is integrating a code point to allow different compression mechanisms to be used.
8.2 Server side efficiency: the append mode
Many Rich Media services rely on a key feature of LASeR: incremental scenes, made possible by the LASeR append mode. The append mode is the possibility to create a LASeR stream containing not an independent scene, but an addition to another existing scene. 

There are two typical use cases of incremental scenes:  

· Streaming style: the scene is designed as a sequence of frames, and there is a continuous stream of updates to change the current frame into the next frame. Bandwidth usage is varying but never drops to 0. The incremental scenes of this kind are usually best transported over streaming protocols like RTP. A typical use case is a cartoon-like animation.

· Interactive style: the scene is interactive and user requests are processed by the server. The response to user request is a change to the existing scene, not a new scene. Such scenario also requires continuous updates to the scene, but the statistics of the transmission are totally different from the previous style: bandwidth is heavily used for a short time after a user request, and then drops to 0 until the next user request. Given the variety of usages of mobiles, the next user request could come a few seconds or a few hours later.

From a server-side point of view, the interactive transmissions can be considered as a series of separate connections, as opposed to the continuous connection of the streaming style. It is typically implemented using separate HTTP connections, since each data burst results from a user request. However, from a LASeR viewer point of view, it is the same scene/service that is modified. Hence the requirement for the server to be capable of signaling an append mode: “this stream does not contain a totally new scene, but an improvement to the scene the viewer is currently processing”.

The append mode also allows the creation in advance of multiple responses to possible user requests. If the service is modeled as a state machine, each transition of the state machine represents a change to the current scene and may be implemented as an append component. Careful authoring and scope management is required, in particular to avoid clashes of id between elements added by different append components. Still, this functionality opens the way to servers caching most of the responses to users, therefore dramatically improving the service’s performance.
9 Storage format requirement: LASeR in 3GPP Extended File Format

LASeR content can be stored within files compatible with the 3GPP Extended File Format. As a LASeR stream is a timed stream, made of AUs, the storage of LASeR streams in 3GP files is straightforward and similar to the storage of audio or video streams. Each LASeR AU is stored as a sample. All these samples form a LASeR track identified by a four character code. The configuration for the LASeR decoder is stored as an entry the sample description box. In case of a LASeR stream comprising only one AU, it is also possible to store this AU, as it is done in the 3GPP specification for SMIL presentation, i.e. as a primary item of the file, using the Metadata box structure. 

:
10 Integration

This section presents the integration of LASeR with other related technologies such as SVGT1.2 and Browsers.
Integration with other client shall be decided by OMA as agreed in the work split. However these sections provide information that demonstrate the capacity of LASeR to be integrated with.
10.1 LASeR client

The LASeR client is composed of various independent components


[image: image5.emf]Rendering 

SVG Tiny1.2

SGV Tiny 1.2

Scene Tree

LASeRScene Tree 

extensions

Decoding

LASER 

Commands

Demux

uDOM

Video / 

Audio / 

Image

Decoders

Font 

Decoder

APIs

LASeRdata

LASeR-encoded

SVGTinyData 

Private Data

Wrapped in SAF

Specific LASeR partCommon with SVGT1.2

LASeR Scene Tree extensions

LASeR Commands

LASeR binary decoding

Stream demux

Font decoding&   uDOM extensions

SVG scene tree management

SVG renderer

uDOM interfaces

A/V/I decoders

uDOM extensions


Figure 5: Component architecture of a LASeR client

The uDOM extension are part of LASeR v2.

The Font decoder is not mandated in LASeR.

10.2 Integration with the SVGT client

[image: image6.png]
Figure 6: Dual SVG Tiny/LASeR Client

To complement the figure above, the SVG Font subsystem can be a common element.

We estimate a dual player LASeR/SVG Tiny 1.2 to share more than 60% of the code.

The current footprint of the LASeR v1 reference software, (Jar file) in Java, non optimized, is about 100K (excluding SVG Font, codecs, XML parser and uDOM).

10.3 Integration with the Browser

Same as an SVG Tiny player, the LASeR client or the dual LASeR/SVG client can be integrated in a browser in multiple ways:

· As a plugin: the choice of interfacing is left to the responsibility of implementations, i.e. providing Netscape API or to particular APIs of specific browsers.

· As a plugin using the uDOM API: the integration is more generic and offers interoperable services.

· Integrated according to CDF/WICD recommendations: the integration is generic, offers interoperable services and compound documents are reliably rendered the same way on all implementations. 

[image: image7.emf]uDOM

LASeR

updates

LASeR

scene tree

/ renderer

LASeR binary

SAF / 3GP / Multipart

Script (ECMA or Java)

xHTML DOM

xHTML + CSSA/V

HTTP

LASeR pluginxHTML browserstd components


Figure 7: Architecture of LASeR as a plugin in the browser
The above works for a dual LASeR/SVG Tiny 1.2 player as plugin to a browser, and below as a CDF/WICD application.

[image: image8.emf]LASeR

Updates

uDOM

LASeR

SVGT1.2

Rich Media

Engine

LASeRBinary

SAF / 3GP / RTP / Multipart/ Flute

Server

LASeR/SVG + xHTML

xHTMLDOM

xHTML+ CSS

A/V

Player

Codecs

CDF

Server SideArchitecture

Client SideArchitecture

A/V

Streaming

Server

Script(Ecmaor Java)

Font

other

clients

(CBMS…)


Figure 8: LASeR –CDF Architecture

10.4 Processing Model

Here is a copy of the LASeR execution model :
	The playback algorithm of a compliant LASeR Engine shall produce the same result as the algorithm described below with the following high-level steps for each execution cycle:

1. Compute the new scene time Ts (begin of execution cycle);

2. Decode any LASeR AU with a scene time below or equal to Ts, and not yet presented in earlier execution cycles;

3. Execute LASeR Commands from LASeR AUs decoded at step 2;

4. Process all events (DOM, SVG or LASeR) according to the DOM event model [3] and resolve all begin and end times that can be resolved according to the SMIL Timing Model, in clause 10 of [SMIL2];

5. Determine active media objects by inspecting begin and end times,

6. For each active media object, present the media access unit with the normal play time equal to clipBegin + (Ts – begin time) and clamp it using clipEnd.

7. Render the audio and visual element of the scene tree according to the SVG rendering model as described in Clause 3 of [W3C SVG11] (end of execution cycle).


As a consequence the laser processing model does not violate and is compliant with the XML processing model and allows a safe integration within the browser. Some examples are provided in Annex 1.
11 Conclusion

MPEG4 part 20 fulfills DIMS and RME requirements.

We recommend SA4 to include this document in the TS document for DIMS and to issue the relevant CR for MBMS, PSS and MMS specifications.

ANNEX 1
Here is an example of a SAF + LASeR XML description of an application:

<?xml version="1.0" encoding="UTF-8"?>

<!-- authoring wrapper: does not exist in the binary -->

<saf:SAFSession xmlns:saf="urn:mpeg:mpeg4:SAF:2005"

                xmlns:xlink="http://www.w3.org/1999/xlink"

                xmlns="http://www.w3.org/2000/svg"

                xmlns:ev="http://www.w3.org/2001/xml-events"

                xmlns:lsr="urn:mpeg:mpeg4:LASeR:2005">

    <!-- first packet containing the encoding parameters -->

    <saf:sceneHeader>

        <lsr:LASeRHeader .../>

    </saf:sceneHeader>

    <!-- first scene packet containing a new scene

         the time information allows sending the packet in advance 

         and presenting the updates at the right time -->

    <saf:sceneUnit time="0">

        <!-- the first packet of most scenes is a NewScene update

             containing the first "state" of the application -->

        <lsr:NewScene>

            <!-- simple SVG scene, complete, represents the initial state

                 of the application -->

            <svg id="root" width="180" height="177" viewBox="0 0 180 177">

                <rect id="rect" transform="translate(90 88)"

                      stroke="rgb(0,0,0)" fill="rgb(0,0,255)"

                      stroke-width="3" width="40" height="60"/>

            </svg>

        </lsr:NewScene>

    </saf:sceneUnit>

    <!-- list of updates to be executed at time 3s 

         (3000 with default time resolution) -->

    <saf:sceneUnit time="3000">

        <lsr:Replace ref="#rect" attributeName="stroke"

                     value="rgb(255,0,0)"/>

        <!-- any number of updates can be placed here -->

    </saf:sceneUnit>

    <!-- update to be presented at 5s -->

    <saf:sceneUnit time="5000">

        <lsr:Replace ref="#rect" attributeName="fill"

                     value="rgb(127,51,204)"/>

    </saf:sceneUnit>

    <!-- any number of additional sceneUnit or other media headers

         or units can be placed here -->

    <!-- last packet of the application, signals that resources can be

         reclaimed -->

    <saf:endOfSAFSession/>

</saf:SAFSession>

 Compared progressive rendering in SVG and LASeR

Example of a SVG file to be progressively rendered:

<?xml version="1.0" encoding="iso-8859-1"?>

<svg width="176" height="144" viewBox="-4593 -100 9197 5749">


<g fill="#B7DDC8" stroke="black" stroke-width="1">



<rect id="reg00" x="-4593" y="-100" width="9197"

                                height="5749" fill="#EEEEEE"/>



<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>



<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>



<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>



<path id="reg10" fill="white" d="M2758 3969l-12 0 0 -14 ..."/>



<path id="reg02" fill="white" d="M1892 3661l2 -25 -13 ..."/>



<path id="reg43" fill="white" d="M927 2945l0 -23 -14 ..."/>



<path id="reg18" fill="white" d="M1767 2154l-32 -39 0 ..."/>



<path id="reg25" fill="white" d="M925 2945l131 0 0 -9 ..."/>



<path id="reg19" fill="white" d="M323 4070l15 14 0 13 ..."/>



<path id="reg04" fill="white" d="M123 2716l762 -37 15 ..."/>



<path id="reg26" fill="white" d="M523 1924l73 35 14 7 ..."/>



<path id="reg44" fill="white" d="M252 3409l0 216 31 36 ..."/>



<path id="reg32" fill="white" d="M-1277 2679l2 74 0 885 ..."/>



<path id="reg03" fill="white" d="M-3079 2509l852 127 2 0 ..."/>



<path id="reg05" fill="white" d="M-4404 1383l27 -39 608 ..."/>



<path id="reg29" fill="white" d="M-3360 1472l50 9 404 ..."/>



<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>



<path id="reg38" fill="white" d="M-3360 1472l-409 -34 ..."/>



<path id="reg13" fill="white" d="M-3310 1481l27 -321 ..."/>



<path id="reg48" fill="white" d="M-3838 1l384 62 389 ..."/>



<path id="reg27" fill="white" d="M-2327 1137l-73 -76 ..."/>



<path id="reg51" fill="white" d="M-1319 1100l-1000 ..."/>



<path id="reg35" fill="white" d="M-283 965l-59 -624 ..."/>



<path id="reg42" fill="white" d="M-1319 921l1036 44 ..."/>



<path id="reg28" fill="white" d="M-1346 1881l13 -372 ..."/>



<path id="reg17" fill="white" d="M35 2094l17 11 15 0 ..."/>



<path id="reg06" fill="white" d="M-1346 1881l283 6 3 ..."/>



<path id="reg37" fill="white" d="M-1275 2753l-2 -74 ..."/>



<path id="reg24" fill="white" d="M-342 341l59 624 0 ..."/>



<path id="reg50" fill="white" d="M677 1564l-110 -200 ..."/>



<path id="reg16" fill="white" d="M567 1364l110 200 ..."/>



<path id="reg23" fill="white" d="M669 713l27 25 29 ..."/>



<path id="reg14" fill="white" d="M1244 1669l73 560 ..."/>



<path id="reg15" fill="white" d="M1290 1619l375 -39 ..."/>



<path id="reg36" fill="white" d="M2156 2257l-14 0 0 ..."/>



<path id="reg39" fill="white" d="M2744 1899l-190 39 ..."/>



<path id="reg33" fill="white" d="M3452 1451l-75 -36 ..."/>



<path id="reg20" fill="white" d="M3898 660l71 344 29 ..."/>



<path id="reg47" fill="white" d="M3350 2092l71 -12 -19 ..."/>



<path id="reg49" fill="white" d="M3021 1975l0 11 -17 ..."/>



<path id="reg30" fill="white" d="M3840 671l12 0 15 ..."/>



<path id="reg22" fill="white" d="M3625 1144l142 -23 ..."/>



<path id="reg31" fill="white" d="M3452 1451l-31 51 ..."/>



<path id="reg07" fill="white" d="M3625 1451l13 -13 ..."/>



<path id="reg46" fill="white" d="M3552 733l271 -34 ..."/>



<path id="reg40" fill="white" d="M3956 1250l-14 -3 ..."/>



<path id="reg21" fill="white" d="M3294 1787l41 229 ..."/>



<path id="reg01" fill="white" d="M-3017 4994l-17 -13 ..."/>



<path id="reg08" fill="white" d="M3350 1773l-15 36 0 ..."/>



<path id="reg12" fill="white" d="M-2152 4659l16 -9 -..."/>



<path id="reg09" fill="white" d="M3050 1978l-32 62 ..."/>


</g>                                                      

</svg>

Here is a proposed packetisation in SVG:

<?xml version="1.0" encoding="iso-8859-1"?>

<svg width="176" height="144" viewBox="-4593 -100 9197 5749">


<g fill="#B7DDC8" stroke="black" stroke-width="1">



<rect id="reg00" x="-4593" y="-100" width="9197"

                                height="5749" fill="#EEEEEE"/>



<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>



<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>



<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>



<path id="reg10" fill="white" d="M2758 3969l-12 0 0 -14 ..."/>



<path id="reg02" fill="white" d="M1892 3661l2 -25 -13 ..."/>



<path id="reg43" fill="white" d="M927 2945l0 -23 -14 ..."/>



<path id="reg18" fill="white" d="M1767 2154l-32 -39 0 ..."/>



<path id="reg25" fill="white" d="M925 2945l131 0 0 -9 ..."/>



<path id="reg19" fill="white" d="M323 4070l15 14 0 13 ..."/>



<path id="reg04" fill="white" d="M123 2716l762 -37 15 ..."/>



<path id="reg26" fill="white" d="M523 1924l73 35 14 7 ..."/>



<path id="reg44" fill="white" d="M252 3409l0 216 31 36 ..."/>



<path id="reg32" fill="white" d="M-1277 2679l2 74 0 885 ..."/>



<path id="reg03" fill="white" d="M-3079 2509l852 127 2 0 ..."/>



<path id="reg05" fill="white" d="M-4404 1383l27 -39 608 ..."/>



<path id="reg29" fill="white" d="M-3360 1472l50 9 404 ..."/>



<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>

<!—SVG renderer will try to render here -->



<path id="reg38" fill="white" d="M-3360 1472l-409 -34 ..."/>



<path id="reg13" fill="white" d="M-3310 1481l27 -321 ..."/>



<path id="reg48" fill="white" d="M-3838 1l384 62 389 ..."/>



<path id="reg27" fill="white" d="M-2327 1137l-73 -76 ..."/>



<path id="reg51" fill="white" d="M-1319 1100l-1000 ..."/>



<path id="reg35" fill="white" d="M-283 965l-59 -624 ..."/>



<path id="reg42" fill="white" d="M-1319 921l1036 44 ..."/>



<path id="reg28" fill="white" d="M-1346 1881l13 -372 ..."/>



<path id="reg17" fill="white" d="M35 2094l17 11 15 0 ..."/>



<path id="reg06" fill="white" d="M-1346 1881l283 6 3 ..."/>



<path id="reg37" fill="white" d="M-1275 2753l-2 -74 ..."/>



<path id="reg24" fill="white" d="M-342 341l59 624 0 ..."/>



<path id="reg50" fill="white" d="M677 1564l-110 -200 ..."/>



<path id="reg16" fill="white" d="M567 1364l110 200 ..."/>



<path id="reg23" fill="white" d="M669 713l27 25 29 ..."/>



<path id="reg14" fill="white" d="M1244 1669l73 560 ..."/>



<path id="reg15" fill="white" d="M1290 1619l375 -39 ..."/>



<path id="reg36" fill="white" d="M2156 2257l-14 0 0 ..."/>

<!—SVG renderer will try to render here -->



<path id="reg39" fill="white" d="M2744 1899l-190 39 ..."/>



<path id="reg33" fill="white" d="M3452 1451l-75 -36 ..."/>



<path id="reg20" fill="white" d="M3898 660l71 344 29 ..."/>



<path id="reg47" fill="white" d="M3350 2092l71 -12 -19 ..."/>



<path id="reg49" fill="white" d="M3021 1975l0 11 -17 ..."/>



<path id="reg30" fill="white" d="M3840 671l12 0 15 ..."/>



<path id="reg22" fill="white" d="M3625 1144l142 -23 ..."/>



<path id="reg31" fill="white" d="M3452 1451l-31 51 ..."/>



<path id="reg07" fill="white" d="M3625 1451l13 -13 ..."/>



<path id="reg46" fill="white" d="M3552 733l271 -34 ..."/>



<path id="reg40" fill="white" d="M3956 1250l-14 -3 ..."/>



<path id="reg21" fill="white" d="M3294 1787l41 229 ..."/>



<path id="reg01" fill="white" d="M-3017 4994l-17 -13 ..."/>



<path id="reg08" fill="white" d="M3350 1773l-15 36 0 ..."/>



<path id="reg12" fill="white" d="M-2152 4659l16 -9 -..."/>



<path id="reg09" fill="white" d="M3050 1978l-32 62 ..."/>


</g>                                                      

</svg>

<!—SVG renderer will definitely render here -->

At each rendering points, the SVG UA renders a non-well formed XML tree. At the first rendering point, the current tree is:

<?xml version="1.0" encoding="iso-8859-1"?>

<svg width="176" height="144" viewBox="-4593 -100 9197 5749">


<g fill="#B7DDC8" stroke="black" stroke-width="1">



<rect id="reg00" x="-4593" y="-100" width="9197"

                                height="5749" fill="#EEEEEE"/>



<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>



<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>



<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>



<path id="reg10" fill="white" d="M2758 3969l-12 0 0 -14 ..."/>



<path id="reg02" fill="white" d="M1892 3661l2 -25 -13 ..."/>



<path id="reg43" fill="white" d="M927 2945l0 -23 -14 ..."/>



<path id="reg18" fill="white" d="M1767 2154l-32 -39 0 ..."/>



<path id="reg25" fill="white" d="M925 2945l131 0 0 -9 ..."/>



<path id="reg19" fill="white" d="M323 4070l15 14 0 13 ..."/>



<path id="reg04" fill="white" d="M123 2716l762 -37 15 ..."/>



<path id="reg26" fill="white" d="M523 1924l73 35 14 7 ..."/>



<path id="reg44" fill="white" d="M252 3409l0 216 31 36 ..."/>



<path id="reg32" fill="white" d="M-1277 2679l2 74 0 885 ..."/>



<path id="reg03" fill="white" d="M-3079 2509l852 127 2 0 ..."/>



<path id="reg05" fill="white" d="M-4404 1383l27 -39 608 ..."/>



<path id="reg29" fill="white" d="M-3360 1472l50 9 404 ..."/>



<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>

which, as Alastair writes, violates the XML model.

LASeR would do this:

<?xml version="1.0" encoding="UTF-8"?>

<saf:SAFSession xmlns:saf="urn:mpeg:mpeg4:SAF:2005"

    xmlns:lsr="urn:mpeg:mpeg4:LASeR:2005" xmlns="http://www.w3.org/2000/svg"

    xmlns:xlink="http://www.w3.org/1999/xlink">

    <saf:sceneHeader>

        <lsr:LASeRHeader .../>

    </saf:sceneHeader>

    <saf:sceneUnit>

        <lsr:NewScene>

          <svg width="176" height="144" 

               viewBox="-4593 -100 9197 5749">


     <g id="root" fill="#B7DDC8" stroke="black" stroke-width="1">



<rect id="reg00" x="-4593" y="-100" width="9197"

                                height="5749" fill="#EEEEEE"/>



<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>



<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>



<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>



<path id="reg10" fill="white" d="M2758 3969l-12 0 0 -14 ..."/>



<path id="reg02" fill="white" d="M1892 3661l2 -25 -13 ..."/>



<path id="reg43" fill="white" d="M927 2945l0 -23 -14 ..."/>



<path id="reg18" fill="white" d="M1767 2154l-32 -39 0 ..."/>



<path id="reg25" fill="white" d="M925 2945l131 0 0 -9 ..."/>



<path id="reg19" fill="white" d="M323 4070l15 14 0 13 ..."/>



<path id="reg04" fill="white" d="M123 2716l762 -37 15 ..."/>



<path id="reg26" fill="white" d="M523 1924l73 35 14 7 ..."/>



<path id="reg44" fill="white" d="M252 3409l0 216 31 36 ..."/>



<path id="reg32" fill="white" d="M-1277 2679l2 74 0 885 ..."/>



<path id="reg03" fill="white" d="M-3079 2509l852 127 2 0 ..."/>



<path id="reg05" fill="white" d="M-4404 1383l27 -39 608 ..."/>



<path id="reg29" fill="white" d="M-3360 1472l50 9 404 ..."/>



<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>

             </g>

           </svg>
        </lsr:NewScene>

    </saf:sceneUnit>

<!-- other packets here -->

    <saf:endOfSAFSession/>

</saf:SAFSession>

The SVG content in the LASeR first packet is highlighted in blue. It is a complete and well-formed subtree. It obeys the XML model.

The complete content in LASeR would be:

<?xml version="1.0" encoding="UTF-8"?>

<saf:SAFSession xmlns:saf="urn:mpeg:mpeg4:SAF:2005"

    xmlns:lsr="urn:mpeg:mpeg4:LASeR:2005" xmlns="http://www.w3.org/2000/svg"

    xmlns:xlink="http://www.w3.org/1999/xlink">

    <saf:sceneHeader>

        <lsr:LASeRHeader .../>

    </saf:sceneHeader>

    <saf:sceneUnit>

        <lsr:NewScene>

          <svg width="176" height="144" 

               viewBox="-4593 -100 9197 5749">


     <g id="root" fill="#B7DDC8" stroke="black" stroke-width="1">



<rect id="reg00" x="-4593" y="-100" width="9197"

                                height="5749" fill="#EEEEEE"/>



<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>



<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>



<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>



<path id="reg10" fill="white" d="M2758 3969l-12 0 0 -14 ..."/>



<path id="reg02" fill="white" d="M1892 3661l2 -25 -13 ..."/>



<path id="reg43" fill="white" d="M927 2945l0 -23 -14 ..."/>



<path id="reg18" fill="white" d="M1767 2154l-32 -39 0 ..."/>



<path id="reg25" fill="white" d="M925 2945l131 0 0 -9 ..."/>



<path id="reg19" fill="white" d="M323 4070l15 14 0 13 ..."/>



<path id="reg04" fill="white" d="M123 2716l762 -37 15 ..."/>



<path id="reg26" fill="white" d="M523 1924l73 35 14 7 ..."/>



<path id="reg44" fill="white" d="M252 3409l0 216 31 36 ..."/>



<path id="reg32" fill="white" d="M-1277 2679l2 74 0 885 ..."/>



<path id="reg03" fill="white" d="M-3079 2509l852 127 2 0 ..."/>



<path id="reg05" fill="white" d="M-4404 1383l27 -39 608 ..."/>



<path id="reg29" fill="white" d="M-3360 1472l50 9 404 ..."/>



<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>

             </g>

           </svg>

        </lsr:NewScene>

    </saf:sceneUnit>

    <saf:sceneUnit time="1000">

        <lsr:Insert id=”root”>



<path id="reg38" fill="white" d="M-3360 1472l-409 -34 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg13" fill="white" d="M-3310 1481l27 -321 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg48" fill="white" d="M-3838 1l384 62 389 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg27" fill="white" d="M-2327 1137l-73 -76 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg51" fill="white" d="M-1319 1100l-1000 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg35" fill="white" d="M-283 965l-59 -624 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg42" fill="white" d="M-1319 921l1036 44 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg28" fill="white" d="M-1346 1881l13 -372 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg17" fill="white" d="M35 2094l17 11 15 0 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg06" fill="white" d="M-1346 1881l283 6 3 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg37" fill="white" d="M-1275 2753l-2 -74 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg24" fill="white" d="M-342 341l59 624 0 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg50" fill="white" d="M677 1564l-110 -200 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg16" fill="white" d="M567 1364l110 200 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg23" fill="white" d="M669 713l27 25 29 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg14" fill="white" d="M1244 1669l73 560 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg15" fill="white" d="M1290 1619l375 -39 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg36" fill="white" d="M2156 2257l-14 0 0 ..."/>

        </lsr:Insert>

    </saf:sceneUnit>

    <saf:sceneUnit time="2000">

        <lsr:Insert id=”root”>



<path id="reg39" fill="white" d="M2744 1899l-190 39 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg33" fill="white" d="M3452 1451l-75 -36 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg20" fill="white" d="M3898 660l71 344 29 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg47" fill="white" d="M3350 2092l71 -12 -19 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg49" fill="white" d="M3021 1975l0 11 -17 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg30" fill="white" d="M3840 671l12 0 15 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg22" fill="white" d="M3625 1144l142 -23 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg31" fill="white" d="M3452 1451l-31 51 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg07" fill="white" d="M3625 1451l13 -13 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg46" fill="white" d="M3552 733l271 -34 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg40" fill="white" d="M3956 1250l-14 -3 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg21" fill="white" d="M3294 1787l41 229 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg01" fill="white" d="M-3017 4994l-17 -13 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg08" fill="white" d="M3350 1773l-15 36 0 ..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg12" fill="white" d="M-2152 4659l16 -9 -..."/>

        </lsr:Insert>

        <lsr:Insert id=”root”>



<path id="reg09" fill="white" d="M3050 1978l-32 62 ..."/>

        </lsr:Insert>

    </saf:sceneUnit>

    <saf:endOfSAFSession/>

</saf:SAFSession>

The scene tree in the SVG UA after the first LASeR packet has been received and decoded, is:

          <svg id="root" width="176" height="144" 

               viewBox="-4593 -100 9197 5749">


     <g fill="#B7DDC8" stroke="black" stroke-width="1">



<rect id="reg00" x="-4593" y="-100" width="9197"

                                height="5749" fill="#EEEEEE"/>



<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>



<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>



<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>



...



<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>

             </g>

           </svg>

The scene tree in the SVG UA after the second LASeR packet has been received and decoded, is:

      <svg id="root" width="176" height="144" 

               viewBox="-4593 -100 9197 5749">


     <g fill="#B7DDC8" stroke="black" stroke-width="1">



<rect id="reg00" x="-4593" y="-100" width="9197"

                                height="5749" fill="#EEEEEE"/>



<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>



<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>



<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>



...



<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>



<path id="reg38" fill="white" d="M-3360 1472l-409 -34 ..."/>



<path id="reg13" fill="white" d="M-3310 1481l27 -321 ..."/>



<path id="reg48" fill="white" d="M-3838 1l384 62 389 ..."/>



...



<path id="reg36" fill="white" d="M2156 2257l-14 0 0 ..."/>

             </g>

      </svg>

The scene tree in the SVG UA after the third LASeR packet has been received and decoded, is:

      <svg id="root" width="176" height="144" 

               viewBox="-4593 -100 9197 5749">


     <g fill="#B7DDC8" stroke="black" stroke-width="1">



<rect id="reg00" x="-4593" y="-100" width="9197"

                                height="5749" fill="#EEEEEE"/>



<path id="reg34" fill="white" d="M2283 2525l1038 -114 31..."/>



<path id="reg41" fill="white" d="M2542 3342l-13 0 0 12 ..."/>



<path id="reg11" fill="white" d="M1894 3636l-2 25 16 14 ..."/>



...



<path id="reg45" fill="white" d="M-2369 1557l-537 -48 ..."/>



<path id="reg38" fill="white" d="M-3360 1472l-409 -34 ..."/>



<path id="reg13" fill="white" d="M-3310 1481l27 -321 ..."/>



<path id="reg48" fill="white" d="M-3838 1l384 62 389 ..."/>



...



<path id="reg36" fill="white" d="M2156 2257l-14 0 0 ..."/>



<path id="reg39" fill="white" d="M2744 1899l-190 39 ..."/>



<path id="reg33" fill="white" d="M3452 1451l-75 -36 ..."/>



<path id="reg20" fill="white" d="M3898 660l71 344 29 ..."/>



...



<path id="reg09" fill="white" d="M3050 1978l-32 62 ..."/>


      </g>                                                      

      </svg>











Page: 1/22


Page: 2/22

_1194515864.ppt






LASeR

update





LASeR

update





LASeR

update





LASeR

update





LASeR

NewScene





What the author wants the user to see:

The LASeR stream:

time

SVG 

scene 1

SVG 

scene 2

SVG 

scene 3

SVG 

scene 4

SVG 

scene …

time

SVG 

scene 1

scene 2 

– 

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

The fact that the scenes are equidistant is a simplification

What the browser contains after updates execution:

time

SVG 

scene 1

SVG 

scene 2

SVG 

scene 3

SVG 

scene 4

SVG 

scene …














_1195105517.ppt






LASeR

Updates

uDOM

LASeR

SVGT1.2

Rich Media

Engine

LASeR Binary

SAF / 3GP / RTP / Multipart / Flute

Server

LASeR/SVG + xHTML

xHTML DOM

xHTML + CSS

A/V

Player

Codecs

CDF

Server Side Architecture

Client Side Architecture

A/V

Streaming

Server

Script (Ecma or Java)

Font

other 

clients

(CBMS…)














_1199754811.ppt






LASeR

decoder

LASeR

Scene

Tree

Manager

SVGT1.2

Renderer

Scene

Stream

Decoded

Access

Units

Scene

Tree

Rendered

Scene

Normative in LASeR

Normative in SVGT1.2














_1194517087.ppt






LASeR

update





LASeR

update





LASeR

update





LASeR

update





LASeR

NewScene





The LASeR stream as transmitted:

time

SVG 

scene 1

scene 2 

– 

scene 1

scene 3

-

scene 2

scene 4

-

scene 3

…

What the browser contains after updates execution:

time

SVG 

scene 1

SVG 

scene 2

SVG 

scene 3

SVG 

scene 4

SVG 

scene …

Complete well-formed SVG scene

Each is a complete well-formed SVG scene

Well-formed differences between two SVG scenes expressed as a list of insert, delete and

replace commands














_1175158129.ppt






SVG Scene Tree

LASeR

Commands

Binary Encoding

LASeR

Extensions

SAF

Audio

Video

Font

Image

…

Application

Network

Transport














