Page 1

3GPP TSG SA WG4#36
S4-050499
Paris, France, 5-9 September 2005

	CR-Form-v7.1

	CHANGE REQUEST

	

	(

	26.346
	CR
	22
	(

rev
	-
	(

Current version:
	6.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	TS26.346: Miscellaneous corrections

	
	

	Source:
(

	Digital Fountain

	
	

	Work item code:
(

	MBMS
	
	Date: (

	24/08/2005

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Ph2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

 Rel-7
(Release 7)

	
	

	Reason for change:
(

	Miscellaneous corrections

Correction requested by SA#28 to move informative aspects of the forward error correction code to a separate annex.

	
	

	Summary of change:
(

	Miscellaneous corrections within main body of TS
Miscellaneous corrections to Raptor encoder specification (Annex B)

Move of Raptor decoder (Section B.8) to new Annex X

	
	

	Consequences if
(

not approved:
	Incorrect specification

	
	

	Clauses affected:
(

	8.2.2, 8.3.1, 8.4.1, 8.4.2.1, 8.4.2.2, 8.4.2.3, 8.4.2.4, 8.4.2.5, 8.4.2.6, 9.3.6.1, 9.4.6, Annex B, (new) Annex X.

	
	

	
	Y
	N
	
	

	Other specs
(

	
	N
	 Other core specifications
(

	

	affected:
	
	N
	 Test specifications
	

	
	
	N
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

******************************** First Change ***************************

8.2.2
FEC mechanism for RTP

The “MBMS FEC scheme” is described in clause 8.2.2.8.

A UE that supports MBMS User Services shall support a decoder for the “MBMS FEC scheme”.
This section defines a generic mechanism for applying Forward Error Correction to streaming media. The mechanism consists of three components:

(i)
construction of an FEC source block from the source media packets belonging to one or several UDP packet flows related to a particular segment of the stream(s) (in time). The UDP flows include RTP, RTCP, SRTP and MIKEY packets.

(ii)
modification of source packets to indicate the position of the source data from the source packet within the source block

(iii)definition of repair packets, sent over UDP, which can be used by the FEC decoder to reconstruct missing portions of the source block.

****************************** Next Change ***************************

8.3.1
SDP Parameters for MBMS streaming session

The semantics of a Session Description of an MBMS streaming session shall include the parameters:

· The sender IP address.
· The number of media in the session.
· The destination IP address and port number for each and all of the RTP sessions in the MBMS streaming session.
· The start time and end time of the session.
· The protocol ID (i.e. RTP/AVP).
· Media type(s) and fmt-list.
· Data rate using existing SDP bandwidth modifiers.
· Mode of MBMS bearer per media.
· FEC configuration and related parameters.
· Service-language(s) per media.
· QoE Metrics (defined in clause 8.3.2.1).

****************************** Next Change ***************************

8.4.1
General

The MBMS Quality of Experience (QoE) metrics feature is optional for both MBMS streaming server and MBMS client, and shall not disturb the MBMS service. An MBMS Server that supports the QoE metrics feature shall activate the gathering of client QoE metrics with SDP as described in clause 8.3.2.1 and via the reception reporting procedure as described in clause 9.4. An MBMS client supporting the feature shall perform the quality measurements in accordance to the measurement definitions, aggregate them into client QoE metrics and report the metrics to the MBMS server using the content reception reporting procedure. The way the QoE metrics are processed and made available is out of the scope of the present document.

****************************** Next Change ***************************

8.4.2.1
Corruption duration metric

Corruption duration, M, is the time period from the NPT time of the last good frame before the corruption, to the NPT time of the first subsequent good frame or the end of the reporting period (whichever is sooner). A corrupted frame may either be an entirely lost frame, or a media frame that has quality degradation and the decoded frame is not the same as in error-free decoding. A good frame is a "completely received" frame X that, either:
· it is a refresh frame (does not reference any previously decoded frames AND where none of the subsequently decoded frames reference any frames decoded prior to X); or
· does not reference any previously decoded frames; or
· references previously decoded "good frames".

"Completely received" means that all the bits are received and no bit error has occurred.
Corruption duration, M, in milliseconds can be calculated as below:

a)
M can be derived by the client using the codec layer, in which case the codec layer signals the decoding of a good frame to the client. A good frame could also be derived by error tracking methods, but decoding quality evaluation methods shall not be used.

b)
In the absence of information from the codec layer, M should be derived from the NPT time of the last frame before the corruption and N, where N is optionally signalled from MBMS streaming server (via SDP) to the MBMS client and represents the maximum duration between two subsequent refresh frames in milliseconds.
c)
In the absence of information from the codec layer and if N is not signalled, then M defaults to ((for video) or to one frame duration (for audio), or the end of the reporting period (whichever is sooner).
The optional parameter N as defined in point b is used with the "Corruption_Duration" parameter. Another optional parameter T is defined to indicate whether the client uses error tracking or not. The value of T shall be set by the client via reception reporting (clause 9.5.2) as on or off. The syntax for N to be included in the "att-measure-spec" (clause 8.3.2.1) is as follows:
· N = "N" "=" 1*DIGIT

In MBMS reception reporting will be done only once at the end of streaming, hence all the occurred corruption durations are summed up over the period of the stream as the value TotalCorruptionDuration. The unit of this metrics is expressed in milliseconds. The number of individual corruption events over the stream duration are summed up in the value NumberOfCorruptionEvents. These two values are reported by the MBMS client as part of the reception report (clauses 9.4.6 and 9.5.2).

8.4.2.2
Rebuffering duration metric

Rebuffering is defined as any stall in playback time due to any involuntary event at the client side.
The syntax for the metric "Rebuffering_Duration" for the QoE-Feedback header is as defined in clause 8.3.2.1.
Rebuffering starts at the NPT time of the last played frame before the occurrence of the rebuffering.
In MBMS reception reporting will be done only once at the end of streaming, hence all the occurred rebuffering durations are summed up over the period of the stream as the value TotalRebufferinfDuration. The unit of this metrics is expressed in seconds, and can be a fractional value. The number of individual rebuffering events over the stream duration are summed up in the value NumberOfRebufferingEvents. These two values are reported by the MBMS client as part of the reception report (clauses 9.4.6 and 9.5.2).

8.4.2.3
Initial buffering duration metric

Initial buffering duration is the time from receiving the first RTP packet until playing starts.

The syntax for the "Initial_Buffering_Duration" is as defined in clause 8.3.2.1.
If the reporting period is shorter than the "Initial_Buffering_Duration" then the MBMS client should send this parameter for the reporting period as long as it observes it. The metric value indicates the initial buffering duration where the unit of this metrics is expressed in seconds, and can be a fractional value. There can be only one measure and it can only take one value. "Initial_Buffering_Duration" is a session level parameter.This value is reported by the MBMS client as part of the reception report (clauses 9.4.6 and 9.5.2).

8.4.2.4
Successive loss of RTP packets

The metric "Successive_Loss" indicates the number of RTP packets lost in succession (excluding FEC packets) per media channel.
The syntax for the metrics "Successive_Loss" is as defined in clause 8.3.2.1.

In MBMS reception reporting will be done only once at the end of streaming, hence all the number of successively lost RTP packets are summed up over the period of the stream as the value TotalNumberofSuccessivePacketLoss. The unit of this metric is expressed as an integer equal to or larger than 1. The number of individual events over the stream duration are summed up in the value NumberOfSuccessiveLossEvents. These two values are reported by the MBMS client as part of the reception report (clauses 9.4.6 and 9.5.2).

8.4.2.5
Frame rate deviation

Frame rate deviation indicates the playback frame rate information. Frame rate deviation happens when the actual playback frame rate during a reporting period is deviated from a pre-defined value.
The actual playback frame rate is equal to the number of frames played during the reporting period divided by the time duration, in seconds, of the reporting period.
The parameter FR that denotes the pre-defined frame rate value is used with the "Framerate_Deviation" parameter in the "3GPP-QoE-Metrics" attribute. The value of FR shall be set by the server. The syntax for FR to be included in the "att-measure-spec" (clause 8.3.2.1) is as follows:

· FR = "FR" "=" 1*DIGIT "." 1*DIGIT

The syntax for the metric "Framerate_Deviation" is defined in clause 8.3.2.1.
For the Metrics-Name "Framerate_Deviation", the value field indicates the frame rate deviation value that is equal to the pre-defined frame rate minus the actual playback frame rate. This metric is expressed in frames per second, and can be a fractional value, and can be negative. This value is reported by the MBMS client as part of the reception report (clauses 9.4.6 and 9.5.2).

8.4.2.6
Jitter duration

Jitter happens when the absolute difference between the actual playback time and the expected playback time is larger than a pre-defined value, which is 100 milliseconds. The expected time of a frame is equal to the actual playback time of the last played frame plus the difference between the NPT time of the frame and the NPT time of the last played frame.

The syntax for the metric "Jitter_Duration" is defined in clause 8.3.2.1.

In MBMS reception reporting will be done only once at the end of streaming, hence all the Jitter_Durations are summed up over the period of the stream as the value TotalJitterDuration. The unit of this metrics is expressed in seconds, and can be a fractional value. The number of individual events over the stream duration are summed up in the value NumberOfJitterEvents. These two values are reported by the MBMS client as part of the reception report (clauses 9.4.6 and 9.5.2).

****************************** Next Change ***************************

9.3.6.1
File Repair Request Message Format

After the MBMS download session, the receiver identifies a set of FLUTE encoding symbols which allows recovery of the missing file data and requests for their transmission in a file repair session. Specific encoding symbols are uniquely identified by the combination (URI, SBN, ESI).
The file repair request shall include the URI of the file for which it is requesting the repair data. URI is required to uniquely identify the file (resource) and is found from the download delivery method (the FLUTE FDT Instances describe file URIs). The (SBN, ESI) pair uniquely identifies an encoding symbol. For completely missed files, a Repair Request may give only the URI of the file.

The client makes a file repair request using the HTTP (RFC 2616 [18]) request method GET. If specific symbols are requested, the (SBN, ESI) of requested encoding symbols are URL-encoded (RFC 1738 [19]) and included in the HTTP GET request. If a number of previously unreceived symbols are requested for a specific Source Block, then the SBN is provided along with the ESI of the symbol which is subsequent in the symbol sequence to the latest received symbol for that source block and the number of symbols requested.
For example, assume that in a FLUTE session a 3gp file with URI = www.example.com/news/latest.3gp was delivered to an MBMS client. After the FLUTE session, the MBMS client recognized that it did not receive two packets with SBN = 5, ESI = 12 and SBN=20, ESI = 27. Then the HTTP GET request is as follows:

GET
www.example.com/news/latest.3gp?mbms-rel6-FLUTE-repair&SBN=5;ESI=12&SBN=20;ESI=27
HTTP/1.1

A file repair session shall be used to recover the missing file data from a single MBMS download session only. If more than one file were downloaded in a particular MBMS download session, and, if the MBMS client needs repair data for more than one file received in that session, the MBMS client shall send separate HTTP GET requests for each file.
An HTTP client implementation might limit the length of the URL to a finite value, for example 256 bytes. In the case that the length of the URL-encoded (SBN, ESI) data exceeds this limit, the MBMS client shall distribute the URL‑encoded data into multiple HTTP GET requests.

In any case, all the HTTP GETs of a single file repair session shall be performed within a single TCP session and they shall be performed immediately one after the other.

In the following, we give the details of the syntax used for the above request method in ABNF.

In this case an HTTP GET with a normal query shall be used to request the missing data.

The general HTTP URI syntax is as follows RFC 2616 [18]:

· http_URL = "http:" "//" host [":" port] [abs_path ["?" query]]

Where, for MBMS File Repair Request:

· query = application *("&" sbn_info)
· application = "mbms-rel6-flute-repair"

· sbn_info = "SBN=" sbn_range

· sbn_range = (sbnA ["-" sbnZ]) / (sbnA [";" esi_info])

· esi_info = "ESI=" ((esi_range *("," esi_range))) / (esiA “+” number_symbols)
· esi_range = esiA ["-" esiZ]

· sbnA = 1*DIGIT; the SBN, or the first of a range of SBNs

· sbnZ = 1*DIGIT; the last SBN of a range of SBNs

· esiA = 1*DIGIT; the ESI, or the first of a range of ESIs
· esiZ = 1*DIGIT; the last ESI of a range of ESIs
· number_symbols = 1*DIGIT; the number of additional symbols required
Thus, the following symbols adopt a special meaning for MBMS FLUTE: ? - + , ; & =

One example of a query on encoding symbol 34 of source block 12 of a music file "number1.aac" is:

· http://www.operator.com/greatmusic/number1.aac?mbms-rel6-flute-repair&SBN=12;ESI=34

For messaging efficiency, the formal definition enables several contiguous and non-contiguous ranges to be expressed, as well as a number of symbols with ESIs of a given value or above in a single query:

· A symbol of a source block (like in the above example).
· A range of symbols for a certain source block (e.g. ...&SBN=12;ESI=23-28).
· A number of symbols with ESIs of a given value or above (e.g. …&SBN=12;ESI=120+10).
· A list of symbols for a certain source block (e.g. ...&SBN=12;ESI=23,26,28).
· All symbols of a source block (e.g. ...&SBN=12).
· All symbols of a range of source blocks (e.g. ...&SBN=12-19).
· non-contiguous ranges (e.g.1. ...&SBN=12;ESI=34&SBN=20;ESI=23 also, e.g. 2. ...&SBN=12‑19&SBN=28;ESI=23-59&SBN=30;ESI=101).
****************************** Next Change ***************************

9.4.6
Reception Report Message

Once the need for reception reporting has been established, the MBMS receiver sends one or more Reception Report messages to the BM-SC. All Reception Report requests and responses for a particular MBMS transmission should take place in a single TCP session using the HTTP protocol (RFC 2616 [18]).

The Reception Report request shall include the URI of the file for which delivery is being confirmed. URI is required to uniquely identify the file (resource).

The client shall make a Reception Report request using the HTTP (RFC 2616 [18]) POST request carrying XML formatted metadata for each reported received content (file). An HTTP session shall be used to confirm the successful delivery of a single file. If more than one file were downloaded in a particular MBMS download multiple descriptions shall be added in a single POST request.

Each Reception Report is formatted in XML according the following XML schema (clause 9.5.2). An informative example of a single reception report XML object is also given (clause 9.5.2.2).

Multipart MIME (multipart/mixed) may be used to aggregate several small XML files of reception reports to a larger object.

For Reception Acknowledgement (RAck) a receptionAcknowledgement element shall provide the relevant data.

For Statistical Reporting (StaR) a statisticalReporting element shall provide the relevant data.

For both RAck and StaR/StaR-all (mandatory):

· For download, one or more fileURI elements shall specify the list of files which are reported.

For only StaR/StaR-all (all optional):

· Each fileURI element has an optional receptionSuccess status code attribute which defaults to "true" ("1") when not used. This attribute shall be used for StaR-all reports. This attribute shall not be used for StaR reports.

· Each QoE Metrics element has eleven attributes as defined in clause 9.5.2 that correspond to the QoE metrics listed in clause 8.4.2. Individual metrics, both at session and at media level can be selected via SDP as described in clause 8.3.2.1.
· The sessionID attribute identified the delivery session. This is of the format source_IP_address + ":" + FLUTE_TSI/RTP_source_port.
· The sessionType attribute defines the basic delivery method session type used = "download" || "streaming" || "mixed".
· The serviceId attribute is value and format is taken from the respective userServiceDescription serviceID definition.
· The clientId attribute is unique identifier for the receiver. [format is FFS].
· The serverURI attribute value and format is taken from the respective associatedDeliveryProcedureDescription serverURI which was selected by the UE for the current report. This attribute expresses the reception report server to which the reception report is addressed.
****************************** Next Change ***************************

Annex B (normative):
FEC encoder specification
This Annex specifies the systematic Raptor forward error correction code and its application to MBMS [7]. Raptor is a fountain code, i.e., as many encoding symbols as needed can be generated by the encoder on-the-fly from the source symbols of a block. The decoder is able to recover the source block from any set of encoding symbols only slightly more in number than the number of source symbols.

The code described in this document is a Systematic code, that is, the original source symbols are sent unmodified from sender to receiver, as well as a number of repair symbols.

****************************** Next Change ***************************

B.5.2.3
Pre-coding relationships
The pre-coding relationships amongst the L intermediate symbols are defined by expressing the last L-K intermediate symbols in terms of the first K intermediate symbols.
The last L-K intermediate symbols C[K],…,C[L-1] consist of S LDPC symbols and H Half symbols The values of S and H are determined from K as described below. Then L= K+S+H.

Let

X
be the smallest positive integer such that X·(X–1) ≥ 2·K.

S
be the smallest prime integer such that S ≥ ceil(0.01·K) + X
H
be the smallest integer such that choose(H,ceil(H/2)) ≥ K + S
H’
= ceil(H/2)
L
= K+S+H

C[0],…, C[K-1] denote the first K intermediate symbols
C[K],…, C[K+S-1] denote the S LDPC symbols, initialised to zero

C[K+S],…, C[L-1] denote the H Half symbols, initialised to zero

 The S LDPC symbols are defined to be the values of C[K],…, C[K+S-1] at the end of the following process:

For i = 0,…,K-1 do

a = 1 + (floor(i/S) % (S-1))

b = i % S
C[K + b] = C[K + b] ^ C[i]

b = (b + a) % S
C[K + b] = C[K + b] ^ C[i]

b = (b + a) % S
C[K + b] = C[K + b] ^ C[i]

The H Half symbols are defined as follows:

Let

g[i] = i ^ (floor(i/2)) for all positive integers i

Note: g[i] is the Gray sequence, in which each element differs from the previous one in a single bit position

g[j,k] denote the jth element, j=0, 1, 2, …, of the subsequence of g[i] whose elements have exactly k non-zero bits in their binary representation

Then, the Half symbols are defined as the values of C[K+S],…, C[L-1] after the following process:

For h = 0,…,H-1 do

For j = 0,…,K+S-1 do

If bit h of g[j,H’] is equal to 1 then C[h+K+S] = C[h+K+S] ^ C[j].

****************************** Next Change ***************************

B.5.2.4.2
Example method for calculation of intermediate symbols
This subsection describes a possible method for calculation of the L intermediate symbols C[0], C[1],…, C[L-1] satisfying the constraints in B.5.2.4.1

The generator matrix G for a code which generates N output symbols from K input symbols is an NxK matrix over GF(2), where each row corresponds to one of the output symbols and each column to one of the input symbols and where the ith output symbol is equal to the sum of those input symbols whose column contains a non-zero entry in row i.

Then, the L intermediate symbols can be calculated as follows:

Let

C denote the column vector of the L intermediate symbols, C[0], C[1],…, C[L-1].

D denote the column vector consisting of S+H zero symbols followed by the K source symbols C’[0], C’[1], …, C’[K-1]

Then the above constraints define an LxL matrix over GF(2), A, such that:

A·C = D
The matrix A can be constructed as follows:

Let:

GLDPC be the S x K generator matrix of the LDPC symbols. So,
GLDPC · (C[0], …, C[K-1])T = (C[K], …, C[K+S-1])T
GHalf be the H x (K+S) generator matrix of the Half symbols, So,
GHalf · (C[0], …, C[S+K-1])T = (C[K+S], …, C[K+S+H-1])T
IS be the S x S identity matrix

IH be the H x H identity matrix

0SxH be the S x H zero matrix

GLT be the KxL generator matrix of the encoding symbols generated by the LT Encoder.

So,

GLT · (C[0], …, C[L-1])T = (C’[0], C’[1],…, C’[K-1])T
i.e. GLTi,j = 1 if and only if C[j] is included in the symbols which are XORed to produce LTEnc[K, (C[0], …, C[L-1]), (d[i], a[i], b[i])].
Then:

The first S rows of A are equal to GLDPC | IS |ZSxH.

The next H rows of A are equal to GHalf | IH.

The remaining K rows of A are equal to GLT.

The matrix A is depicted in the figure below:

	
	K
	S
	H

	S
	GLDPC
	IS
	ZSxH

	H
	GHalf
	IH

	K
	GLT

Figure B.5.2.5.2-1: The matrix A
The intermediate symbols can then be calculated as:

C = A-1·D
The source triples are generated such that for any K matrix A has full rank and is therefore invertible. This calculation can be realized by applying a Raptor decoding process to the K source symbols C’[0], C’[1],…, C’[K-1] to produce the L intermediate symbols C[0], C[1],…, C[L-1].

To efficiently generate the intermediate symbols from the source symbols, it is recommended that an efficient decoder implementation such as that described in Annex X be used. The source symbol triples are designed to facilitate efficient decoding of the source symbols using that algorithm.

****************************** Next Change ***************************

B.8
(deleted)

·
·
·

	
	
	

	
	
	

****************************** Next Change ***************************

Annex X (informative):
Example FEC decoder

X.1
General

This section describes an efficient decoding algorithm for the Raptor codes described in this specification. Note that each received encoding symbol can be considered as the value of an equation amongst the intermediate symbols. From these simultaneous equations, and the known pre-coding relationships amongst the intermediate symbols, any algorithm for solving simultaneous equations can successfully decode the intermediate symbols and hence the source symbols. However, the algorithm chosen has a major effect on the computational efficiency of the decoding.

X.2
Decoding a source block
X.2.1
General

It is assumed that the decoder knows the structure of the source block it is to decode, including the symbol size, T, and the number K of symbols in the source block.

From the algorithms described in Sections B.5, the Raptor decoder can calculate the total number L = K+S+H of pre-coding symbols and determine how they were generated from the source block to be decoded. In this description it is assumed that the received encoding symbols for the source block to be decoded are passed to the decoder. Furthermore, for each such encoding symbol it is assumed that the number and set of intermediate symbols whose exclusive-or is equal to the encoding symbol is passed to the decoder. In the case of source symbols, the source symbol triples described in Section B.5.2.2 indicate the number and set of intermediate symbols which sum to give each source symbol.

Let N ≥ K be the number of received encoding symbols for a source block and let M = S+H+N. The following M by L bit matrix A can be derived from the information passed to the decoder for the source block to be decoded. Let C be the column vector of the L intermediate symbols, and let D be the column vector of M symbols with values known to the receiver, where the first S+H of the M symbols are zero-valued symbols that correspond to LDPC and Half symbols (these are check symbols for the LDPC and Half symbols, and not the LDPC and Half symbols themselves), and the remaining N of the M symbols are the received encoding symbols for the source block. Then, A is the bit matrix that satisfies A·C = D, where here · denotes matrix multiplication over GF[2]. In particular, A[i,j] = 1 if the intermediate symbol corresponding to index j is exclusive-ORed into the LDPC, Half or encoding symbol corresponding to index i in the encoding, or if index i corresponds to a LDPC or Half symbol and index j corresponds to the same LDPC or Half symbol. For all other i and j, A[i,j] = 0.

Decoding a source block is equivalent to decoding C from known A and D. It is clear that C can be decoded if and only if the rank of A over GF[2] is L. Once C has been decoded, missing source symbols can be obtained by using the source symbol triples to determine the number and set of intermediate symbols which must be exclusive-ORed to obtain each missing source symbol.

The first step in decoding C is to form a decoding schedule. In this step A is converted, using Gaussian elimination (using row operations and row and column reorderings) and after discarding M – L rows, into the L by L identity matrix. The decoding schedule consists of the sequence of row operations and row and column re-orderings during the Gaussian elimination process, and only depends on A and not on D. The decoding of C from D can take place concurrently with the forming of the decoding schedule, or the decoding can take place afterwards based on the decoding schedule.

 The correspondence between the decoding schedule and the decoding of C is as follows. Let c[0] = 0, c[1] = 1…,c[L-1] = L-1 and d[0] = 0, d[1] = 1…,d[M-1] = M-1 initially.

· Each time row i of A is exclusive-ORed into row i’ in the decoding schedule then in the decoding process symbol D[d[i]] is exclusive-ORed into symbol D[d[i’]] .

· Each time row i is exchanged with row i’ in the decoding schedule then in the decoding process the value of d[i] is exchanged with the value of d[i’].

· Each time column j is exchanged with column j’ in the decoding schedule then in the decoding process the value of c[j] is exchanged with the value of c[j’].

From this correspondence it is clear that the total number of exclusive-ORs of symbols in the decoding of the source block is the number of row operations (not exchanges) in the Gaussian elimination. Since A is the L by L identity matrix after the Gaussian elimination and after discarding the last M – L rows, it is clear at the end of successful decoding that the L symbols D[d[0]], D[d[1]],…, D[d[L-1]] are the values of the L symbols C[c[0]], C[c[1]],…, C[c[L-1]].

The order in which Gaussian elimination is performed to form the decoding schedule has no bearing on whether or not the decoding is successful. However, the speed of the decoding depends heavily on the order in which Gaussian elimination is performed. (Furthermore, maintaining a sparse representation of A is crucial, although this is not described here). The remainder of this section describes an order in which Gaussian elimination could be performed that is relatively efficient.

X.2.2
First Phase

The first phase of the Gaussian elimination the matrix A is conceptually partitioned into submatrices. The submatrix sizes are parameterized by non-negative integers i and u which are initialized to 0. The submatrices of A are:

(1)
The submatrix I defined by the intersection of the first i rows and first i columns. This is the identity matrix at the end of each step in the phase.

(2)
The submatrix defined by the intersection of the first i rows and all but the first i columns and last u columns. All entries of this submatrix are zero.

(3)
The submatrix defined by the intersection of the first i columns and all but the first i rows. All entries of this submatrix are zero.

(4)
The submatrix U defined by the intersection of all the rows and the last u columns.

(5)
The submatrix V formed by the intersection of all but the first i columns and the last u columns and all but the first i rows.

Figure B.2.2-1 illustrates the submatrices of A. At the beginning of the first phase V = A. In each step, a row of A is chosen.

	Identity matrix I
	All zeroes
	U

	All zeroes
	V
	

Figure B.2.2-1 – Submatrices of A in the first phase

The following graph defined by the structure of V is used in determining which row of A is chosen. The columns that intersect V are the nodes in the graph, and the rows that have exactly 2 ones in V are the edges of the graph that connect the two columns (nodes) in the positions of the two ones. A component in this graph is a maximal set of nodes (columns) and edges (rows) such that there is a path between each pair of nodes/edges in the graph. The size of a component is the number of nodes (columns) in the component.

There are at most L steps in the first phase. The phase ends successfully when i + u = L, i.e., when V and the all zeroes submatrix above V have disappeared and A consists of I, the all zeroes submatrix below I, and U. The phase ends unsuccessfully in decoding failure if at some step before V disappears there is no non-zero row in V to choose in that step. In each step, a row of A is chosen as follows:

-
If all entries of V are zero then no row is chosen and decoding fails.

-
Let r be the minimum integer such that at least one row of A has exactly r ones in V.

-
If r ≠ 2 then choose a row with exactly r ones in V with minimum original degree among all such rows.

-
If r = 2 then choose any row with exactly 2 ones in V that is part of a maximum size component in the graph defined by X.

After the row is chosen in this step the first row of A that intersects V is exchanged with the chosen row so that the chosen row is the first row that intersects V. The columns of A among those that intersect V are reordered so that one of the r ones in the chosen row appears in the first column of V and so that the remaining r-1 ones appear in the last columns of V. Then, the chosen row is exclusive-ORed into all the other rows of A below the chosen row that have a one in the first column of V. Finally, i is incremented by 1 and u is incremented by r-1, which completes the step.

X.2.3
Second Phase
The submatrix U is further partitioned into the first i rows, Uupper, and the remaining M – i rows, Ulower. Gaussian elimination is performed in the second phase on Ulower to either determine that its rank is less than u (decoding failure) or to convert it into a matrix where the first u rows is the identity matrix (success of the second phase). Call this u by u identity matrix Iu. The M – L rows of A that intersect Ulower – Iu are discarded. After this phase A has L rows and L columns.

X.2.4
Third Phase
After the second phase the only portion of A which needs to be zeroed out to finish converting A into the L by L identity matrix is Uupper. The number of rows i of the submatrix Uupper is generally much larger than the number of columns u of Uupper. To zero out Uupper efficiently, the following precomputation matrix U’ is computed based on Iu in the third phase and then U’ is used in the fourth phase to zero out Uupper. The u rows of Iu are partitioned into ceil(u/8) groups of 8 rows each. Then, for each group of 8 rows all non-zero combinations of the 8 rows are computed, resulting in 28 - 1 = 255 rows (this can be done with 28-8-1 = 247 exclusive-ors of rows per group, since the combinations of Hamming weight one that appear in Iu do not need to be recomputed). Thus, the resulting precomputation matrix U’ has ceil(u/8) ·255 rows and u columns. Note that U’ is not formally a part of matrix A, but will be used in the fourth phase to zero out Uupper.

X.2.5
Fourth Phase
For each of the first i rows of A, for each group of 8 columns in the Uuppersubmatrix of this row, if the set of 8 column entries in Uupper are not all zero then the row of the precomputation matrix U’ that matches the pattern in the 8 columns is exclusive-ORed into the row, thus zeroing out those 8 columns in the row at the cost of exclusive-oring one row of U’ into the row.

After this phase A is the L by L identity matrix and a complete decoding schedule has been successfully formed. Then, as explained in Section C.2.1, the corresponding decoding consisting of exclusive-ORing known encoding symbols can be executed to recover the intermediate symbols based on the decoding schedule.

The triples associated with all source symbols are computed according to B.5.2.2.The triples for received source symbols are used in the decoding. The triples for missing source symbols are used to determine which intermediate symbols need to be exclusive-ORed to recover the missing source symbols.
****************************** End of Changes ***************************

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

