3GPP SA4#35 meeting
Tdoc S4-050283
9-13 Mai 2005, San-diego, USA

Source:
Streamezzo

Title:
LASeR and SAF for dynamic and interactive multimedia scenes
Document for:
discussion and approval
Agenda Item:
13.4
1. Consideration about dynamic and interactive multimedia scenes
a. Objective
The objectives are to provide a very simple and efficient updates of scene to leverage interaction from the end-user when he is consuming a multimedia application.

b. Dynamic updates

Dynamic updates are a key to efficient representation of server-driven or user-triggered scene changes over time. This feature, present in Macromedia Flash, is necessary to enable:

· The efficient representation of streamable cartoons,

· The partitioning of scenes into small packets that fit in size-limited delivery mechanisms (such as cell broadcast),

· The dynamic creation of answers to a user request, and their integration in the current scene,

· Or the dynamic push of content into an existing scene.

Such scenarios are currently not available in SVG, which supports only the following options for the viewing of rich media content:

· The first option is the classical “download and play” mode. The user waits until the end of the download to start viewing the content.

· The second option is the progressive rendering mode. This mode is an improved version of the previous one enabling visualization while downloading the content. But the downloaded content only adds new content to the existing one making it difficult to manage long-running documents.

· The third option is based on the use of scripting and DOM Network API and an ad-hoc protocol to communicate scene modification from the server to the client.

None of these options are satisfactory in terms of interoperability, ease of authoring, and performance. To complement SVG, SMIL or XHTML, dynamic updating can be provided as in LASeR through LASeR Commands. LASeR Commands are the following:

· NewScene: this command installs a new scene in the browser. The scene time is reset to 0. Previous scene or media elements are removed, resources are reclaimed.

· Insert: this command inserts new elements to the list of children of a grouping element, or new points in a point sequence.

· Replace: this command modifies the value of an attribute of an element, or replaces an element by another element.

· Delete: this command removes an element from the scene tree.

· Add: this command is a variant of Replace which increments the target value instead of just replacing it.

· SendEvent: this command sends an event to the target element. Typical use of this command is to send an activate/pause/resume event to a media element to start/pause/resume it.

· Save, Restore and Clean: these commands are an interface to persistent storage of the values of a set of attributes. Scoped like cookies for security, these confer to LASeR scenes the ability to store typically user preferences, on a best effort basis.

2. Existing solution in MBMS, PSS (and MMS) specifications

a. SVGT + Ecmascript

b. SMIL + Ecmascript
c. XHTML-MP + Ecmascript
The use of scripting and DOM Network API and an ad-hoc protocol to communicate scene modification from the server to the client can be used in any of the above. None of these options are satisfactory in terms of interoperability, ease of authoring, and performance. They require:

· an ECMA-Script implementation, with its large memory footprint and performance penalty

· the use of a Network API is required. This API is proven to be hazardous (i.e., enables creation of unsafe programs) and it is not yet stable in the current SVGT1.2 specifications,
· the exchange of XML messages, à la SOAP, to be parsed and interpreted in ECMA-Script: XML parsing is already expensive in compiled code, just imagine XML parsing in an interpreted script…
· a non-standard communication protocol, emulating the type of commands that are described in the previous section

3. Services as Incremental Scenes

Many Rich Media services rely on a small but key feature: incremental scenes, made possible by the existence of scene fragments. Scene fragments are documents containing not an independent scene, but an addition to another existing scene. With dynamic updating, this feature can be ported easily to SMIL and XHTML.
There are two typical use cases of incremental scenes:

· streaming style: the scene is designed as a sequence of frames, and there is a continuous stream of updates to change the current frame into the next frame. Bandwidth usage is varying but never drops to 0. The incremental scenes of this kind are usually best transported over streaming protocols like RTP. A typical use case is a cartoon-like animation.

· interactive style: the scene is interactive and user requests are processed by the server. The response to user request is a change to the existing scene, not a new scene. Such a scenario also requires continuous updates to the scene, but the statistics of the transmission are totally different from the previous style: bandwidth is heavily used for a short time after a user request, and then drops to 0 until the next user request. Given the variety of usages of mobiles, the next user request could come a few seconds or a few hours later.

From a server-side point of view, the interactive transmissions can be considered as a series of separate connections, as opposed to the continuous connection of the streaming style. It is typically implemented using separate HTTP connections, since each data burst results from a user request. However, from a viewer point of view, it is the same scene/service that is modified. Hence the requirement for the server to be capable of signaling a scene fragment, or a scene in an append mode: “this stream does not contain a totally new scene, but an improvement to the scene the viewer is currently processing”.

Using scene fragments also allows creating in advance multiple responses to possible user requests. If the service is modeled as a state machine, each transition of the state machine represents a change to the current scene and may be implemented as a scene fragment. Careful authoring and scope management is required, in particular to avoid clashes of id between elements added by different scene components. Still, this functionality opens the way to servers caching most of the responses to users, therefore dramatically improving the service’s performance.

4. Transport of dynamic updates

a. Functionalities
Here are the requirements for a transport layer for a stream of dynamic updates of a scene description:

1. capability to transport a sequence of timed packets;

2. capability to interleave multiple streams, as dynamic updates of a scene are mostly sent together with media streams;

3. low overhead;

4. capability to add new streams after the beginning of the session, e.g. when a video element is added to the scene, a video stream and possibly an audio stream need to be added to the transport multiplex;

5. capability to carry decoder configuration information;

6. capability to carry textual and/or binary information;

7. easy to carry over popular interactive transport protocol (e.g. HTTP);
8. easily mapped on popular streaming protocol (e.g. RTP);

9. extensible in an efficient manner.

b. transport of XML document fragments
Consecutive access units for an XML description are consecutive XML fragments representing the dynamic updates applicable at the time of the access unit. Here is an example:

	<generic …>

 … initial scene …
	first access unit, from the beginning of the file till the first top level par, i.e. the initial scene

	<par begin=”1”>

 … additional content …

</par>
	Second access unit, content of the first timed top level par

	<par begin=”2s”>

 … additional content …

</par>
	third access unit, content of the second timed top level par

	</generic>
	fourth access unit, the rest of the file

Such XML splitting is compatible with the definition of progressive rendering in SVG Tiny 1.2
c. SAF description

We propose to use SAF for the transport of dynamic updates, together with other media stream. Dynamic updates applying to the same scene shall be grouped in the same stream. Dynamic updates that need to be composited at the same time shall be placed in the same access unit (AU).

The SAF specification defines tools to fulfill all the requirements of rich-media service design at the interface between scene representation and transport mechanisms. SAF features the following functionality:

· simple aggregation of any type of stream,

· signaling of MPEG and non-MPEG streams,

· low overhead multiplexing schema for low bandwidth networks,

· definition of a mapping to popular streaming formats,

· and extensibility.

SAF is suitable for delivery mechanisms like: download-and-play, progressive download, streaming and broadcasting.

The SAF specification defines the binary representation of a compound data stream composed of different data elementary streams such as LASeR scenes, video, audio, image, font, metadata streams. Data from these various elementary streams results in one SAF stream by multiplexing them for simple, efficient and synchronous delivery.

A SAF stream is a sequence of SAF Packets. The SAF Packet is made of a header, on 8 bytes, which contains a Random Access Point flag, an AU sequence number, a Composition Time Stamp and the length of the payload. The payload of the SAF Packet is called a SAF Access Unit. A SAF Access Unit is also made of a header, on 2 bytes, made of an access unit type indicator and a stream identifier. The structure of a SAF Packet is described in Figure 4.

[image: image1.emf]RAP

Flag

AU

Sequence

Number

DTS

Flag

= 0

CTS

Flag

= 1

CTS

SAF AU

length

SAF AU type

SAF Packet Header

(8 bytes)

ES identifier SAF Payload

SAF AU Header

(2 bytes)

Figure 4 – Structure of a SAF Packet
10. Proposed solution for MBMS

We propose to consider laser media format in MBMS specification to provide Dynamic update of multimedia scene.

As a consequence we propose either to create a new mime-type in TS-26346 called Rich-Media as follows:

10.8a
Rich Media

If dynamic updates are supported for dynamic and interactive multimedia scenes, Laser shall be supported (see ISO/IEC-14496-20).

or we propose to add the support of dynamic updates in section 10.8 of the TS 26346 as follows:

10.8
Vector graphics

If vector graphics is supported, SVG Tiny 1.2 [66], [67] and ECMAScript [68] [should/shall] be supported.
NOTE 1:
The compression format for SVG content is GZIP [42], in accordance with the SVG specification [66].

NOTE 2
Content creators of SVG Tiny 1.2 are strongly recommended to follow the content creation guidelines provided in annex L of 3GPP TS 26.234 [47].

NOTE 3:
If SVG Tiny 1.2 will not be published within a reasonable timeframe, the decision to adopt SVG Tiny 1.2 in favour of SVG Tiny 1.1 may be reconsidered.

When dynamic updates over Vector Graphics are supported for enabling dynamic and interactive multimedia scenes, Laser shall be supported as described in ISO/IEC-14496-20.

11. Proposed solution for PSS

We propose to consider laser media format in PSS specification to provide Dynamic update of multimedia scene.

As a consequence we propose first to add the following description in section 8.1:

8.1
General

The 3GPP PSS uses a subset of SMIL 2.0 [31] as format of the scene description. PSS clients and servers with support for scene descriptions shall support the 3GPP SMIL Language Profile defined in [52]. This profile is a subset of the SMIL 2.0 Language Profile, but a superset of the SMIL 2.0 Basic Language Profile. Document [52] also includes an informative Annex A that provides guidelines for SMIL content authors.

NOTE:
The interpretation of this is not that all streaming sessions are required to use SMIL. For some types of sessions, e.g. consisting of one single continuous media or two media synchronised by using RTP timestamps, SMIL may not be needed.

The 3GPP PSS uses dynamic updates and the Laser format (see ISO/IEC 14496-20) for supporting of dynamic and interactive multimedia scenes.

We propose in addition either to create a new mime-type in TS-26234 called Rich-Media as follows:

7.7a
Rich Media

If dynamic updates are supported for dynamic and interactive multimedia scenes, Laser shall be supported (see ISO/IEC-14496-20).

or we propose to add the support of dynamic updates in section 10.8 of the TS 26234 as follows:

7.7
Vector graphics

If vector graphics is supported, SVG Tiny 1.2 [42] [43] and ECMAScript [94] shall be supported.

NOTE 1:
The compression format for SVG content is GZIP [59], in accordance with the SVG specification [42].

NOTE 2
Only codecs and MIME media types supported by PSS, as specified in clause 7 and in subclause 5.4, respectively, shall be used. PSS clients do not support the Ogg Vorbis format.

NOTE 3
Content creators of SVG Tiny 1.2 are strongly recommended to follow the content creation guidelines provided in Annex L.

NOTE 4:
If SVG Tiny 1.2 will not be published within a reasonable timeframe, the decision to adopt SVG Tiny 1.2 in favour of SVG Tiny 1.1 may be reconsidered.

When dynamic updates over Vector Graphics are supported for enabling dynamic and interactive multimedia scenes, Laser shall be supported as described in ISO/IEC-14496-20.

12. Proposed solution for the transport of Dynamic and interactive multimedia scenes

We propose to consider SAF transport format in PSS specification to deliver Dynamic updates of multimedia scenes.

The proposal is to add in section 6.2.4 of TS 26234 the following items:

- Laser format specified for dynamic updates of multimedia scenes (see section 7.7 or 7.7a) SAF transport format according to RFC 3640 shall be supported;
In section 5.1 the following paragraph shall be changed:

As an alternative to conventional streaming, a PSS client should also support progressive download of 3GP files [50] delivered via HTTP. A progressive-download session is established with one or more HTTP GET requests. In order to improve playback performance for 3GP files that are not authored for progressive download, a PSS client may issue (multiple pipelined) HTTP GET requests with byte ranges [17]. Example of a valid URL is http://example.com/morning_news.3gp.
As an alternative to conventional streaming, a PSS client should also support progressive download of 3GP files [50] or dynamic and interactive multimedia scenes with SAF transport format delivered via HTTP. A progressive-download session is established with one or more HTTP GET requests. In order to improve playback performance for 3GP files that are not authored for progressive download, a PSS client may issue (multiple pipelined) HTTP GET requests with byte ranges [17]. Example of a valid URL is http://example.com/morning_news.3gp .
In section 4, the figure 2 shall be replaced by the following figure:

[image: image2.wmf]

IP

UDP

TCP

RTP

RTSP

Payload formats

Video

Audio

Speech

Capability exchange

Scene description

Presentation description

Still images

Bitmap graph

ics

Vector graphics

Text

Timed text

Synt

hetic audio

HTTP

Capability exchange

Presentation

description

UDP

Timed Text

Dynamic and interactive

multimedia scenes

multimedia scenes

We propose to consider SAF transport format in MBMS specification to deliver Dynamic updates of multimedia scenes.

The proposal is to add in section 8.2.1 of TS 26346 the following items:

- Laser format specified for dynamic updates of multimedia scenes SAF transport format according to RFC 3640 shall be supported;
�	Gaëlle MARTIN-COCHER	Tel: +33 1 53 63 28 33�Streamezzo 	�86 bd du Montparnasse – 75006 Paris - France�Email: gaelle.martin-cocher@streamezzo.com

Page: 1/6

Page: 6/6

_1176559428.ppt

RAP

Flag

AU

Sequence Number

DTS

Flag

= 0

CTS

Flag

= 1

CTS

SAF AU length

SAF AU type

SAF Packet Header

(8 bytes)

ES identifier

SAF Payload

SAF AU Header

(2 bytes)

_1176642682.doc

IP

UDP

TCP

RTP

RTSP

Payload formats

Video

Audio

Speech

Capability exchange

Scene description

Presentation description

Still images

Bitmap graphics

Vector graphics

Text

Timed text

Synt

hetic audio

HTTP

Capability exchange

Presentation

description

UDP

Timed Text

Dynamic and interactive multimedia scenes

Dynamic and interactive multimedia scenes

