TSG System Aspects WG4#34
S4-050039
Lisbon, Portugal, 21-25 February 2005

Source:
Digital Fountain, Vodafone Group
Title:
Background file download
Document for:
Discussion and decision

Agenda Item:
PSM MBMS 6.5.4.1
1.
Introduction

This contribution discusses the use of MBMS for ‘background’ file download. This is where MBMS is used to download or update a file in the background, over a slow link, potentially during quiet periods where there is little other network traffic.
As described in 23.246, MBMS Bearer Services can be of either background or streaming traffic class. Background class bearers do not offer any guaranteed bit-rate and may attempt to adjust the datastream to the available resources in each cell. Mechanisms to do this, as described in 23.246, include buffering, shaping and packet dropping. However, as described in S2-040561 and agreed in CR 38r2 to TS23.246 (S2-040979) packet dropping is the preferred approach, since the other approaches actually reduce efficiency over cell changes.

Background bearers are (unsurprisingly) ideal for background file download. In this contribution we simulate a file download over a background bearer using various erasure codes.

2.
Simulation approach
The mechanisms used by the RAN to adjust incoming data to the available resources are implementation dependent. We assume an approach in which the RAN periodically adjusts the resources allocated to the MBMS bearer. In our simulations this is done every 30 seconds. The resources allocated to the MBMS bearer will be one of a few fixed bit-rates according to the following probabilities:

	Bit-rate
	Probability

	0kbit/s
	0.2

	8kbit/s
	0.4

	12kbit/s
	0.4

	16kbit/s
	0.2

Since the available bit-rate in each cell may be different, the source must send at 16kbit/s – the maximum bit-rate of the MBMS bearer service. Packets will be randomly dropped to adapt the datastream to the available bit-rate in each cell – the erasure code must then recover from these packet losses.
In the case of Reed-Solomon, different rate codes were tested with a carousel approach used for the cases where the code did not provide sufficient data – i.e. the packets from the RS code were repeated. For 2-dimesional Reed-Solomon, a single rate 0.2 code was used (n1=n2=256 and k1=k2=64).
3.
Simulation results

Figure 1 shows the fraction of users that have completely received the file against the broadcast duration for various codes. Figure 2 shows results for the same simulation but with the addition of a 5% RLC Block Error Rate (based on 80ms TTI).

[image: image1.emf]2MB background file download

16kbit/s max bit-rate, 80ms TTI

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

20 40 60 80 100

Transmission duration (min)

%age successful users

Ideal

Raptor

RS(256,52)

RS(256,128)

RS(256,86)

2D RS

Figure 1: 2Mb background download, no additional channel loss

[image: image2.emf]2MB background file download

16kbit/s max bitrate, 5% BLER, 80ms TTI

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

20 40 60 80 100 120

Transmission duration (min)

%age successful users

Ideal

Raptor

RS(256,52)

RS(256,128)

RS(256,86)

2D RS

Figure 2: 2Mb background download, 5% RLC Block Error Rate
Clearly, Reed-Solomon codes perform far worse than Raptor codes for this application: There are several reasons for this:

· When a low rate Reed-Solomon code is used (e.g. (256,52)) then the file must be broken into a large number of small blocks, which are protected independently. Even with interleaving, this introduces a considerable overhead due to variance in the number of symbols from each block which are received.

· When a higher rate Reed-Solomon code is used, then not enough parity data is available to complete the download and information must be repeated. This is highly inefficient, since many users receive duplicate data.

Furthermore, the computational load of the Reed-Solomon codes is dramatically higher than that of the Raptor code as is shown in the Figure 3 below. This figure shows the computational cost of the various codes scaled so that Raptor codes have cost 1 and is based on actual timings from a 206Mhz ARM9 handheld platform.
[image: image3.emf]Background file download - 5% BLER

2Mb file - 99.9% target success

Ideal

RS(256,52)

Raptor

RS(256,128)

RS(256,86)

0

2

4

6

8

10

12

14

16

18

20

0% 20% 40% 60% 80% 100%

Transmission time above ideal

Computational cost

Figure 3: Overhead and computational load of tested codes
One further important point to note about the above figure is that in the simulation it turned out that the RS(256,52) and the 2D RS code did not need to be repeated for all the users to receive the file. By contrast the other RS codes did need to be repeated and this is the reason for the dramatic increase in transmission time with these codes. However, a small increase in the loss rate would cause a need to repeat the RS(256,52) or 2D RS code, making the performance of these codes fragile and unpredictable.
4.
Conclusion and proposal
We propose that this use-case should be considered as important for Release 6 MBMS. In order to efficiently implement this case, an FEC code which supports computationally efficient low-rate operation, such as Raptor codes, is needed. We therefore propose that an FEC code with this property should be chosen for MBMS FEC.

1
3

