3GPP SA4 PSM Ad-Hoc #31
Tdoc S4-040230

Montreal, Canada, May 17-21 2004
Agenda Item: 7

Source:
Digital Fountain
Title:
Raptor code specification for MBMS file download
Document For:
Discussion and Approval
1. Introduction

The present contribution specifies an FEC erasure code suitable for the MBMS file download service. The FEC erasure code, hereafter called Raptor, has properties that meet all of the current and future requirements of an MBMS file download service. The basic properties of Raptor are that, for any packet loss conditions, for delivery of source files of any relevant size: (a) reception overhead of each individual UE is minimized; (b) the total transmission time needed to deliver source files to any number of UEs can be minimized (this depends on choosing the transmission schedule wisely).

The amount of working memory needed for decoding can easily fit into the MBMS requirements and still provide the above properties, and the amount of computation needed to encode and decode is minimal. In this document, we provide a simple and easy to implement description of the Raptor code. For a more technical description of the theory that underlies the design and analysis of Raptor, see for example [1], [2].

Raptor is a fountain code (as for example defined in [2]), i.e., as many encoding packets as needed can be generated on-the-fly, each containing unique encoding symbols that are equally useful for recovering a source file. There are many advantages to using fountain codes versus other types of FEC codes, some of which are described in [2] and [3]. One advantage is that, regardless of packet loss conditions and UE availability, fountain codes minimize the number of encoding packets each UE needs to receive to reconstruct a source file. This is true even under harsh packet loss conditions and when for example mobile UEs are only intermittently turned-on or available over a long file download session.

Another advantage is the ability to generate exactly as many encoding packets as needed, making the decision on how many encoding packets to generate on-the-fly while the transmission is in progress. This can be useful if for example there is feedback from UEs indicating whether or not they received enough encoding packets to recover a source file. When packet loss conditions are less severe than expected the transmission can be terminated early. When packet loss conditions are more severe than expected or UEs are unavailable more often than expected the transmission can be seamlessly extended.

Another advantage is the ability to inverse multiplex. Inverse multiplexing is when a UE is able to combine received encoding packets generated at independent senders to reconstruct a source file. One practical use of inverse multiplexing is described in Section 8.

Since for the MBMS file download service the variety of future packet loss, UE availability and application conditions is hard to predict, it is important to choose an FEC solution that is as flexible as possible to work well under unpredictable conditions. Raptor codes provide maximum flexibility unmatched by other types of FEC codes.

2. Encoding overview

Symbols are the fundamental data units of the encoding and decoding process, and for each source file all symbols are the same size, typically a few bytes in length. The atomic operation performed on symbols for both encoding and decoding is the exclusive-or operation. A source file is partitioned into one or more source blocks. Each source block is partitioned into some number K of source symbols. A pre-coding step is used to produce L-K redundant symbols from the K source symbols, where L > K, and the combination of the K source symbols and the L-K redundant symbols form the L pre-coding symbols. The Raptor encoder uses keys to produce encoding symbols from the pre-coding symbols. The encoding symbols are organized into encoding packets. Each encoding packet contains encoding symbols together with a key that identifies all of the encoding symbols carried in that encoding packet. The details of these steps are explained in the subsequent sections.

3. Encoding a source block

In this section we describe how pre-coding symbols are generated from the source symbols of a source block, and then how encoding symbols are generated from the pre-coding symbols.

We use the following terminology hereafter. For a positive value x let floor(x) be x rounded down to the nearest integer and let ceil(x) be x rounded up to the nearest integer. For positive integers i and j let i % j denote i modulo j. For equal-length data strings X and Y let X ^ Y denote the bit-by-bit exclusive-or of X and Y. For two values x and y let pow(x,y) denote x raised to the power y. Let K denote 1,024, let M denote 1,024·K and let B denote bytes. For example, 2 KB denotes 2,048 bytes, 3 KB denotes 3,072 bytes and MB denotes 1,048,576 bytes.
3.1. Pre-coding

The pre-coding step consists of generating redundant symbols from the K source symbols as follows. The redundant symbols consist of S static symbols, H Hamming symbols and Z padding symbols. The value of S is the smallest positive prime integer such that S·(S–1) ≥ K. The value of H is the smallest integer such that pow(2,H) – H – 1 > K + S. The value of Z is the smallest positive integer such that L = K+S+H+Z is a prime integer. Let the positions of the pre-coding symbols range from 0 to L-1, where the first K are the source symbols, the next S are the static symbols, the next H are the Hamming symbols, and the final Z are the padding symbols.

For i = 0,…,L-1 let C[i] denote the ith pre-coding symbol. Note that C[0], …, C[K-1] are the original source symbols. Initialize all the redundant symbols C[K],…,C[L-1] to all zeroes. The Z padding symbols are left unchanged, and thus these values are known to the decoder to be all zeroes.

The static symbols are computed as follows. For i = 0,…,K-1,

· Compute a = 1 + (floor(i/S) % (S-1))

· Compute b = i % S
· Compute C[K + b] = C[K + b] ^ C[i]

· b = (b + a) % S
· Compute C[K + b] = C[K + b] ^ C[i]

· b = (b + a) % S
· Compute C[K + b] = C[K + b] ^ C[i]

The Hamming symbols are computed as follows. For h = 0,…,H-1,

· Initialize a counter c = 2.

· Repeat the following for i= 0,…,K+S-1

· Increment c by one, and if the result is an integer power of two then increment c by one again (thus c skips over powers of two)

· If bit h of c is equal to 1 then C[h+K+S] = C[h+K+S] ^ C[i].

3.2. Keys

Keys are used to uniquely identify encoding symbols generated from the L pre-coding symbols. Each key is 4-bytes in length, and thus the number of potential distinct keys is pow(2,32). When an encoding symbol is to be produced, a key is used to uniquely determine how the encoding symbol is generated from the pre-coding symbols. The pre-coding symbols and thus the source block can be successfully decoded when enough encoding packets carrying encoding symbols with distinct keys have been received.

3.3. Generating encoding symbols

The encoding symbol E[X] that corresponds to key X is generated as follows from the pre-coding symbols C[0],…, C[L-1] of the source block. For j = 0,…,3, let Xj be the jth byte of X. Let V​0​​, V​1​​, V​2 and V​3​​ be arrays of 256 entries each, where each entry is a random 4-byte unsigned integer.

1) Generate v from X
a. v = (V​0[X0] ^ V​1[X1] ^ V​2[X2] ^ V​3[X3]) % M

2) Generate the degree D from v
a. In Table 1, find the index j such that f[j-1] ≤ v < f[j]

b. Set D = d[j]

3) Generate two positive integers (a, b) from X
a. For j = 0,…,3, yj = (Xj + 1) % 256

b. a = 1 + ((V​0[y0] ^ V​1[y1] ^ V​2[y2] ^ V​3[y3]) % (L-1))

c. For j = 0,…,3, yj = (yj + 1) % 256

d. b = (V​0[y0] ^ V​1[y1] ^ V​2[y2] ^ V​3[y3]) % L
4) Generate E[X] from D and (a, b)
a. Initialize E[X] = C[b]. Repeat the following for j = 1,…,D-1

i. b = (b + a) % L
ii. E[X] = E[X] ^ C[b]

	Index j
	f[j]
	d[j]

	0
	0
	--

	1
	19,650
	1

	2
	524,686
	2

	3
	698,163
	3

	4
	763,164
	4

	5
	862,307
	5

	6
	889,759
	8

	7
	957,685
	9

	8
	973,446
	19

	9
	1,015,766
	20

	10
	1,022,959
	69

	11
	1,048,576
	70

Table 1 – Defines the degree distribution for encoding symbols

3.4. Encoding and decoding speeds

The workload measure is used to evaluate the computational speed for both encoding and decoding. The workload is measured in terms of exclusive-or and copy operations on symbols.

The pre-coding workload is the number of operations on source symbols needed per source symbol to produce the redundant symbols. The number of exclusive-ors to produce the static symbols is three times the number of source symbols. The Hamming symbols can be computed in a way such that the number of exclusive-ors to produce the Hamming symbols is approximately two times the number of source symbols. Thus, the pre-coding workload is approximately 5.

The encoding workload is the average number operations needed to generate an encoding symbol. From the degree distribution described in Section 3.3 via Table 1, it is not hard to see that the encoding workload is approximately 6.3.

The decoding workload is the average number of operations needed to decode a source symbol, and thus the total number of operations needed to decode is the product of the decoding workload and K. It turns out that the decoding workload is a little higher than the sum of the pre-coding workload and the encoding workload, and thus it is a little more than 11.

4. Encoding a source file

Suppose F is the length of the source file in bytes, P is the space in bytes for encoding symbols in each encoding packet, and W is the largest source block size in bytes that can be decoded in working memory by a UE. The algorithms described below compute the number N of source blocks into which the source file is partitioned, the number G of encoding symbols for each source block carried in each encoding packet, the number K of source symbols in each source block and the symbol size T in bytes. The number of encoding symbols carried in each packet is then N·G.

In this document the value of P is set to 512 bytes. This means that the total encoding packet length, which includes the IP, UDP and FLUTE headers totaling 44 bytes, is 556 bytes. The symbol size is a power of two times 16 bytes, e.g., 16 bytes, 32 bytes, 64 bytes, etc., depending on the file size. Other values of P and symbol sizes could also be suitable, e.g., P = 256 bytes and the symbol size a power of two times 16 bytes, or P = 480 bytes and the symbol size is a power of two times 20 bytes.

In this document the maximum size W of a source block that can be decoded in working memory is set to 256 KB. Other values of W could also be suitable, e.g., W = 512 KB or W = 128 KB. How the source file is partitioned into source blocks depends on whether the source file size F is smaller or larger than working memory W.

4.1. Smaller files

When the source file size F ≤ 256 KB the source file is encoded and decoded as a single source block, i.e., N = 1. The number G of encoding symbols placed into each encoding packet and the symbol size T is determined by Table 2 based on the file size F. The number K of source symbols in the source file is computed as ceil(F/T). There is one key X contained in each encoding packet.

The values of the G encoding symbols E0 [X],…, EG-1[X] placed into the packet with key X are then computed as follows:

· Generate v from X as described in Step 1) of Section 3.3

· Set v0 = v and for i = 1,…,G-1 compute vi = (vi-1 + M/G) % M

· For i = 0,…,G-1, generate degree Di from vi as described in Step 2) of Section 3.3

· For i = 0,…,G -1, compute Xi = (X·G + i) % pow(2,32)

· For i = 0,…,G -1, generate (ai,bi) from Xi as described in Step 3) of Section 3.3

· For i = 0,…,G-1, generate Ei [X] from Di and (ai,bi) as described in Step 4) of Section 3.3

	F range
	N
	G
	T
	K range

	0 KB < F ≤ 32 KB
	1
	32
	16 bytes
	32 < K ≤ 2 K

	32 KB < F ≤ 64 KB
	1
	16
	32 bytes
	1 K < K ≤ 2 K

	64 KB < F ≤ 128 KB
	1
	8
	64 bytes
	1 K < K ≤ 2 K

	128 KB < F ≤ 256 KB
	1
	4
	128 bytes
	1 K < K ≤ 2 K

Table 2 – Source block parameters for small files

EXAMPLE 1

Source file size F = 10 KB

Number of source file packets = 20

Number of source blocks N = 1

Number of encoding symbols per source block per encoding packet G = 32

Symbol size T = 16 bytes

Number of source symbols K = 640

EXAMPLE 2

Source file size F = 50 KB bytes

Number of source file packets = 100

Number of source blocks N = 1

Number of encoding symbols per source block per encoding packet G = 16

Symbol size T = 32 bytes

Number of source symbols K = 1,600

4.2. Larger files

When the source file size F > 256 KB the source file is partitioned into more than one source block, where the length of each source block is greater than 128 KB but at most 256 KB. Table 3 is used to determine the source block parameters based on the file size F. The size B of each source block is computed as ceil(F/N), and the number K of source symbols per source block is computed as ceil(B/T).
When F is greater than 256 KB but at most 512 KB there are N = 2 source blocks, and each encoding packet contains G = 2 encoding symbols for each of the two source blocks. There is one key X contained in each encoding packet, and the two encoding symbols for each of the two source blocks are generated from X as described in Section 4.1 and placed into the encoding packet.

When F is greater than 512 KB then G = 1 as can be seen in Table 3. Each encoding packet contains one encoding symbol for each of the N source blocks. There is one key X contained in each encoding packet, and an encoding symbol for each of the N source blocks is generated from X as described in Section 3.3 and placed into the encoding packet.

	F range
	N
	G
	T
	K range

	256 KB < F ≤ 512 KB
	2
	2
	128 bytes
	1 K < K ≤ 2 K

	512 KB < F ≤ 1 MB
	4
	1
	128 bytes
	1 K < K ≤ 2 K

	1 MB < F ≤ 2 MB
	8
	1
	64 bytes
	2 K < K ≤ 4 K

	2 MB < F ≤ 4 MB
	16
	1
	32 bytes
	4 K < K ≤ 8 K

	4 MB < F ≤ 8 MB
	32
	1
	16 bytes
	8 K < K ≤ 16 K

Table 3 – Source block parameters for large files

EXAMPLE 3

Source file size F = 400 KB

Number of source blocks N = 2

Size of a source block in bytes B = 200 KB

Number of encoding symbols per source block per encoding packet G = 2

Symbol size T = 128 bytes

Number of source symbols per source block K = 1,600

EXAMPLE 4

Source file size F = 3 MB

Number of source blocks N = 16

Size of a source block in bytes B = 192 KB

Number of encoding symbols per source block per encoding packet G = 1

Symbol size T = 32 bytes

Number of source symbols per source block K = 6,144
5. Decoding a source file

Just like for encoding, there are two cases of how to decide how to recover the source file, depending on whether the source file size F is smaller or larger than working memory W. When F ≤ W then the source file is decoded as a single source block. Each received encoding packet contains a key and one or more encoding symbols. The key is used to reconstruct how each encoding symbol contained in the encoding packet was generated, and then when enough encoding packets have arrived the source file is decoded.

When F > W then the multiple source blocks are decoded in a coordinated way. As each encoding packet arrives, the key is stored, and each encoding symbol corresponding to a source block is stored in a temporary location dedicated to that source block. Then, based on the received keys, it is determined when the source blocks can be decoded. A decoding schedule is computed based on the received keys, and then that decoding schedule is applied to the encoding symbols for each source block in sequence, decoding each source block within the limits of the working memory resources.

6. Reception overhead and decoding failure probability

The source file packet length is defined to be ceil(F/P) = ceil(F/512). For source files up to 10 KB the decoding succeeds with overwhelming probability from the reception of one more encoding packet than source file packet length, e.g., if the source file is 10 KB in length then the source file packet length is 20 and the reception of 21 encoding packets virtually guarantees successfully decoding of the source file with decoding failure around 5e-6.

Table 4 provides the reception overhead/decoding failure probability for some relevant source file sizes. The decoding failure probability δ for a given reception overhead ε is the probability the decoding process fails to recover the source block when the number of received encoding symbols is (1+ ε) ·K. For example, for a 10 KB source file where K = 640 and G = 32, when ε = 0.05 (which corresponds to the reception of one additional encoding packet beyond the number of source file packets) then δ = 2e-6.
Because each encoding packet is generated at random independently of all other encoding packets, the received encoding packets are random for any loss pattern of encoding packets that does not depend on their values. Since packet loss is independent of packet content, the value of δ is independent of packet loss patterns. Thus, Table 4 is valid for any pattern of packet loss.

The coordinated way encoding symbols from all source blocks of the source file are placed into encoding packets ensures that the reception overhead/failure probability tradeoff for a source file is the same as the reception overhead/failure probability tradeoff for each source block of the source file.

For all values of G and K in Table 4, as ε increases the value of δ decreases very quickly. For example, even though decoding is not successful with probability 4e-3 from 0.02 reception overhead for a 400 KB source file, by just receiving a few more encoding packets until the reception overhead is 0.03 the decoding failure probability drops by a factor of approximately 100 to 3e-5. Thus, if the decoder cannot decode from received encoding packets in aggregate slightly more than the length of the source file, with overwhelming probability the source file can be decoded after just a few more encoding packets arrive. Note also that the trade-off between ε and δ is improves as G and K increase. The entries with “--“ values are irrelevant because they represent a fractional packet of reception overhead. The entries indicated by “*” are conservatively estimated because not enough trials have been run yet to provide high confidence estimates.

	F
	K
	G
	Reception overhead ε

	
	
	
	0.01
	0.02
	0.03
	0.05

	10 KB
	640
	32
	--
	--
	--
	*2e-6

	50 KB
	1,600
	16
	9e-2
	8e-4
	*5e-6
	*5e-7

	400 KB
	1,600
	2
	5e-2
	4e-3
	3e-5
	*1e-6

	3 MB
	6,144
	1
	1e-2
	2e-5
	*5e-6
	*1e-6

Table 4 – Decoding failure probability for various file sizes as a function of K, G and ε
7. Other considerations

The Raptor code as described is not a systematic code, i.e., all of the original source symbols of a source block are not necessarily among the encoding symbols that are sent. However, if a systematic FEC code is deemed as an important requirement for the MBMS file download service, the Raptor code can be modified to be systematic and still maintain the fountain and other described properties. Some of the ideas that can achieve this are described in [2].

The decoding failure probabilities for the version of the Raptor code described in this specification seem to be more than adequate for the MBMS file download service. However, if significantly smaller decoding failure probabilities are deemed to be desirable for the MBMS file download service then a slightly more complex design of the Raptor code specification presented here can achieve these goals. For example, some versions of the Raptor codes that have been implemented achieve decoding failure probability 1e-13 for reception overhead 0.05.
8. Receiving encoding packets from different senders

One reason why it is easy to architect a variety of supplemental services using Raptor codes is that a UE can combine received encoding symbols from multiple senders to reconstruct a source file without coordination among the senders. The only requirement is that the senders use different keys to generate the encoding symbols that they send in encoding packets to the UE. Ways to achieve this include designating different ranges of the key space to be used by each such sender, or generating keys randomly at each sender.

As an example of the use of this property, consider providing a supplemental service to the MBMS file download service that allows UEs that did not receive enough encoding packets to reconstruct a source file from the MBMS file download session to request additional encoding packets to be sent from a make-up sender, e.g., via a HTTP session. The make-up sender generates encoding symbols from the source file and sends them for example using HTTP, and all these encoding symbols can be combined with those received from the MBMS file download session by the UE to recover the source file. Using this approach allows different senders to provide incremental source file delivery services without coordination between the senders, and ensuring that each individual UE need receive only the minimal number of encoding packets to recover each source file.

9. Conclusions

A description of the Raptor code has been provided that minimizes, under all packet loss and UE availability conditions, the transmission time needed to reliably deliver files to UEs. Furthermore, under all packet loss and UE availability conditions, the number of SDUs that each individual UE needs to receive to fully recover files is minimal. Because Raptor codes are fountain codes that are designed to work well in all conditions and provide unprecedented flexibility, testing the properties of Raptor codes under a wide variety of simulation conditions will only prove the superior performance of Raptor codes versus any other type of reliable file delivery mechanism.

10. References

[1] M. Luby. “LT Codes”, Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science, November 16-19 2002, pp. 271-282.
[2] A. Shokrollahi, “Raptor Codes”, Digital Fountain Technical Report, DF2003-06-001

[3] J. Byers, M. Luby, M. Mitzenmacher, “A Digital Fountain Approach to Asynchronous Reliable Multicast”, IEEE J. on Selected Areas in Communications, Special Issue on Network Support for Multicast Communication, Vol. 20, No. 8, October 2002, pp. 1528 – 1540

[4] T. Paila, M. Luby, R. Lehtonen, V. Roca, R. Walsh, “FLUTE - File Delivery over Unidirectional Transport”, IETF RMT working group, draft-ietf-rmt-flute-07.txt, December 11, 2003

