3GPP TSG-SA Meeting S4#30
Tdoc S4- 040104

Malaga, Spain, February 23-27

Source:
RealNetworks

Title:
Proposal for clarifying the usage of RTSP and RTP keepalives for Release 6

Document for:
Discussion and approval

Agenda Item:

PSM subgroup, 6.5.1

Proposal for clarifying the usage of RTSP and RTP keepalives for Release 6

1. Introduction

Keepalive functionality has been specified only in general terms. The mechanism is only loosely defined and usage is underspecified. It has become clear, both in interoperability testing and in discussions between implementers, that clarification is needed before keepalives can be used in a meaningful way.

Section A.2.2.2 in TS26.234 indicates that both RTCP and OPTIONS with a Session header are recommended methods of signalling link-aliveness. However, the current language is unclear on whether the server or client is responsible for initiating a keep-alive request and does not describe the policy that should be implemented by the server and expected by the client in the event that link-aliveness cannot be determined. This proposal addresses these issues.

2. DEFINITIONS

1. Session

The term “session” refers to an RTSP session and all RTP sessions associated with it. RTP sessions are associated with an RTSP session via the RTSP SETUP request and the association is broken via the RTSP TEARDOWN request.

2. Association

RTSP sessions exist independent from control channels. It is possible for a client to refer to the same RTSP session via multiple control channels (though we hope this is not done in practice). An RTSP session is initially associated with a control channel when a SETUP request is received and results in a successful response. An RTSP session may (optionally, at the server's sole discretion) be reassocated with a different control channel when an RTSP request referring to that session is received on that control channel. An RTSP session may only be associated with one control channel at any point in time.

3. Proposal

We propose the following as mandatory:

1. Responsibility

Keepalive is entirely the client's responsibility. The client must ensure that the session is active from the time it is created until the time it is torn down. If it fails to do so, the server may expire the session with no warning or notification. If a UDP transport is in use and the client has reason to believe that the server is not receiving its UDP packets, the client is responsible for sending OPTIONS requests on the RTSP channel.

2. Timing

The server must consider all activity related to a session sufficient to keep that session alive. This includes both RTSP messages (with Session header) and RTCP reports associated with the session. Consider an aggregate RTSP session with two tracks and two RTP transports. Receipt of an RTCP report for either track is considered activity for that session.

3. Discretion

The server may or may not terminate the session after the session timeout, or at any point thereafter, at its sole discretion. The server is not required to terminate a session at exactly the specified timeout or any predictable time thereafter.

We propose the following as recommended:

1. Server warning

It is not always possible for the client to be absolutely certain that the server will receive its messages in a timely manner. Therefore the server should give advance warning before terminating a session by sending an RTSP OPTIONS request to the client at the session timeout and wait an additional timeout period for a reply.

2. Client timing

It is not always possible for the client to know how long it will take for a message reach the server. The client should ensure that the session is idle for no longer than half of the session timeout.

3. Consistency

The timeout parameter follows the session identifier in the RTSP Session header. It is optional if the timeout is equal to the default of 60 seconds. Implementations should be consistent in using the timeout parameter by either not sending the timeout parameter at all, or always sending the same value (including whitespace). Further, the server should not change the timeout for a session after the session is established. This enhances interoperability with implementations that do not consider the timeout parameter when parsing the Session header.

4. Control channel

Control channels consume resources on the server. It is appropriate to have a control channel timeout in addition to a session timeout. The server may consider a control channel inactive if (1) no sessions are associated with it, AND (2) no valid RTSP messages have been received within one session timeout period.

4. References

[1] Real Time Streaming Protocol, http://www.rfc-editor.org/rfc/rfc2326.txt

� Contact: Tom Marshall <� HYPERLINK "mailto:tmarshall@real.com" ��tmarshall@real.com�>, Jeremy Worley <jworley@real.com>

