Annex H (normative): BiM Encoding Scheme Description

1 BiM profile for SVGT

In order to use BiM for the SVGT compression in the 3GPP SA4 framework, we propose the following adaptation compatible with the ISO/IEC 15938-1 specification:

Update mechanism: the update mechanism might be avoided at this stage if there is no need to stream or update the document tree.

Specific datatype codec: The proposed BiM profile uses the type-codec mechanism defined in ISO/IEC 15938-1 to plug specific decoder into the BiM compression algorithm. As a result, the generic BiM mechanism is used to compress the entire document structure and many datatypes. Some other codecs are plugged to better deal with the specific semantics of the domain. The proposed specific codecs have been developed using usual and common compression techniques. Some better compression scheme could be defined and inserted easily if necessary in the BiM framework.
1.1 Implications on the terminal architecture

The terminal architecture can be simply extended by a specific BiM-SVG decoder. Indeed, a BiM decoder can be compiled to be as small and efficient as a specific decoder is. In this case the decoder can generate SAX events and therefore can be plugged into most of the legacy applications. Moreover, a dedicated application can receive sax-like events and typed values (integers are received as integers not as strings). The parsing is in this case faster and the application can directly process the data (in a typed fashion) saving more CPU cycles.

But if desired, the terminal architecture can contain a semi generic decoder. The advantage of such decoder is that it allows one single decoding kernel to decode many different binary encoded XML languages. The decoder is still a light decoder since the most time consuming task (the schema compilation) is performed at server side. The terminal architecture remains the same; the decoder is slightly more complex.

Finally a fully generic decoder can be inserted in more advanced terminals to deal with any XML language which schema is available.

1.2 Additional features: extensibility

BiM is a generic binary format inferred from the schema definition of an XML Language. There is very few development cost for a new binary format. The binary format is deduced from the schema definition. Moreover, a terminal dealing with many XML languages can use the same kernel for the compression of all these languages.

2 BiM main features

BiM binary format is not dedicated to any specific XML language

BiM coders and decoders can deal with any XML language. Technically, the schema definition (DTD or XML Schema) of the XML document is processed and used to generate a binary format. This binary format has two main properties. First, due to the schema knowledge, structural redundancy (element name, attribute names, aso) is removed from the document. Therefore the document structure is highly compressed (98% in average). Second, elements and attributes values are encoded according to some dedicated codecs. A library of basic datatype codecs is provided by the specification (IEEE 754, UTF_8, compact integers, VLC integers, lists of values, aso...). Other codecs can easily be plugged using the type-codec mapping mechanism defined in the standard.

BiM is a schema oriented encoding scheme

One of the main technical advantages of the BiM binary encoding process is to be guided by schema information. In BiM, the schema is known both by the encoder and the decoder. This has several advantages compared to schema independent encoding scheme like WBXML or Zip or a specific encoding scheme.

First the binary format is deduced from the schema definition. There is no need to define coding tables or a specific encoding mechanism (like with the WBML encoding scheme). The binary format is inferred from the XML textual format. As a main result, very little extra work is needed to define the binary encoding of an XML language.

BiM is a pre-parsed format

In a typical Internet use case, the terminal has to validate a received document to recover default values, exact namespace information, aso… BiM performs the validation at encoder side and sends the document in pre-parsed format. Therefore, when encoded, a document has already reached a very good level of validity. Very few extra processing is needed on the receiver side to validate the received document.

BiM is a typed binary format

The validation process (performed by an XML validating parser) is used to associate a type information to every component of an XML document (attribute, element, leaf nodes), gives default values, aso. This mapping is performed at encoder side to improve compression ratio and to facilitate document processing
. It is used to select the proper encoding scheme for each leaf of the XML document tree. The document values are therefore transmitted in a typed format and can directly be processed by the terminal without performing any string conversion (like the time consuming "atoi" function needed when working at textual level). As a result, BiM binary document can be processed up to 100 times faster than its equivalent XML file.

BiM is backward and forward compatible binary format

A BiM decoder can deal with evolution of XML languages. Technically, at encoding phase a level of compatibility is chosen for the bitstream. The encoding process adds necessary information to ensure that an old decoder will be able to skip unknown part of the bitstream. This feature allows also XML private extensions to be easily inserted within the original XML document without breaking interoperability. If forward compatibility is not needed, the redundancy is removed and the bitstream becomes more compact.

BiM allows a parameterized transmission of XML document.

Each document can be transmitted in one or more pieces. At the lowest level of granularity, each attribute value or document leaf can be modified to allow a minimal transmission in case of a minimal change in the sent document, like depicted in the following figure.

[image: image1.wmf]

Different streaming strategies of the same XML file

For instance, the streaming capability of BiM enables to cut a large XML document in many pieces. These pieces can be delivered separately to the client. It is not required for the decoder to download (and keep in memory) the entire XML file before being capable of processing it. It can reduce both memory required at terminal side and consumed bandwidth. It improves overall quality of service and response time of XML based services.

In a streamed environment, a single XML document can be maintained at terminal side by constantly refreshing its sub parts. Different refresh rate can be imposed to different sub part of the same XML document. This updating capability allows to finely manage consumed bandwidth and to provide the best quality of service for the minimal bandwidth consumption.

BiM decoder provides usual XML and other optimized APIs.

A BiM decoder can easily be plugged in a legacy application, as it is capable to provide SAX APIs (for the static part) and to update a DOM tree (for the dynamic part). When providing SAX APIs, a BiM file is decoded between 10 to 30 times faster than its textual equivalent (compared to Xerces C).

For a dedicated application, a BiM decoder can provide optimized APIs to speed up document processing. These SAX-like APIs provide values to the applications in a binary format and therefore it avoids the application to handle the burden of string conversions algorithm (which are very time consuming in case of integers or floats). This feature is very useful for application dealing with large number of numerical values, like XML graphical representation (SVG for instance).

BiM decoder can be efficiently processed at binary level

Unlike a zipped XML document, a BiM file can be processed directly at binary level. Moreover, document sub-trees can be skipped improving the overall performance of an application dealing with large documents. This optional “skipping” process can be triggered on the basis of element names, types or attribute values. This feature considerably improves browsing and searching through large XML files.

[image: image2.wmf]

Example of the fast access functionality

BiM can be adapted to better suit a specific language

BiM is an open framework, which can receive, dedicated codec to better deal with specific domain constraints. For instance, BiM can receive quantification or zip compression algorithms. The joint use of BiM and quantization is used in this contribution to improve the overall compression ratio of SVGT files.

BiM can be used in several ways depending on terminal capability and desired QoS

Several kinds of BiM decoders can be defined:

· BiM specific decoders: The schema required for the decoder is not uploaded, it is hardwired. As a result, the BiM decoder can not be extended but is capable of parsing and decoding BiM conformant stream in a very fast manner. This "profile" is dedicated to low-cost terminals.

· BiM semi-generic decoders: Some BiM decoders can download pre-compiled schema in order to satisfy the generic behavior of a BiM decoder. This "profile" is dedicated to middle-cost terminals.

· BiM fully generic decoders: Advanced BiM decoders are capable of processing schema definitions and automatically generate BiM decoder. This "profile" is dedicated to advanced terminals.

From a technical point of view, the schema compilation phase can be done before the industrialization of the terminal, at server side and sent to the terminal, or at terminal side. It allows a high flexibility for designing the framework of XML compression. It allows having terminals with different costs and capabilities while preserving a high degree of interoperability.

There are several functionalities that can be used independently:

· BiM payload decoder: The compression of an XML file can be done independently of the update mechanism. For an application which does not need an update mechanism, the payload encoding procedure can be used alone.

· BiM update + payload decoder: A fully functional decoder can deal with both the update mechanism and the XML subtree decoder.

3 Profiling BiM

BiM can be adapted through several mechanisms to provide best results for specific domains.

3.1 Specific codecs

A set of specific codecs can be defined and plugged with no modification of the MPEG-7 specification. Indeed some very specific datatypes deserves a better encoding scheme that the default ones. For instance, a color is represented in SVG as "#60FF80" and coded in the basic framework as an UTF-8 string. Thanks to the plug-in mechanism of BiM, a specific encoding scheme can be associated to the every element or attribute type. For instance, the mentioned color datatype can be associated to a 24 bits or a 12 bits value. In section, we define several specific codecs to improve the SVGT encoding.

3.2 Constraining the update mechanism

Some domain doesn't need the dynamic update mechanism (for instance in case of the transmission of many small documents). In this case, Clause 8 of the MPEG-7 Systems specification can be used independently of the rest of the specification. Some higher level of update mechanism can be used.

3.3 Defining Delivery Layer

BiM is defined to be independent of any transport mechanism. Some domains have to deal with specific transport mechanisms; in this case the interface with the delivery layer has to be defined. MPEG currently leads an activity (called MPEG-7 on MPEG-2) to define MPEG-2 as a transport mechanism for MPEG-7 descriptions.

4 The proposed BiM profile for SVGT

4.1 SVGT Schema

In order to achieve optimal compression ratios, BiM uses the proposed SVGT Schema (designed from the SVG DTD) to constrain the structure of a SVGT documents. Then, the structural information (tag names, attributes names, content model rules) of a BiM encoded file is minimal.

Moreover, the expressiveness of XML Schema is strong enough to constrain efficiently the data leaves of a SVGT document. The use of union, pattern, enumeration, minLength and maxLength XML Schema facets can express efficiently some common SVG basic datatypes such as <paint>, or <color>. As an example, the SVG Mobile basic datatypes specification of these types can be easily expressed with XML Schema :

<simpleType name="svgPaintType">

<union memberTypes="svgColorType">

<simpleType>

<restriction base="xs:string">

<enumeration value="none"/>

<enumeration value="currentColor"/>

<enumeration value="inherit"/>

</restriction>

</simpleType>

</union>

</simpleType>

<simpleType name="svgColorType">

<union memberTypes="svgSRGBColorType svgKeywordColorType"/>

</simpleType>

<simpleType name="svgSRGBColorType">

<restriction base="string"/>

</simpleType>

<simpleType name="svgKeywordColorType">

<restriction base="xs:string">

<enumeration value="black"/>

<enumeration value="blue"/>

<enumeration value="cyan"/>

<enumeration value="grey"/>

<enumeration value="green"/>

...

</restriction>

</simpleType>
BiM takes into account all these Schema constraints to encode efficiently datatypes.

4.2 Specific codecs

It is possible to plug specific codecs into BiM to take advantage of the domain semantics or to decrease coding size.

4.2.1 Definition of BiM specific codecs for SVGT

We propose to encode some of the SVGT basic datatypes values by using the proposed specific mechanisms. The proposed BiM SVGT profile defines 7 codecs, mapped as :

· <number>, <length>, <duration>, <angle>, <coordinates> and <integer> values are encoded with the SVGNumberCodec

· <list of coordinates> values are encoded with the SVGListOfCoordinatesCodec

· <uri> values are encoded with the SVGIDCodec

· "path data" values are encoded with the SVGPathDataCodec

· <transform-list> values are encoded with the SVGTransformCodec

· "style attributes" values are encoded with the SVGStylePropertiesCodec

· "sRGB" values are encoded with the SVGSRGBCodec

The use of the these specific codecs is signaled by the codec configuration mechanism defined in ISO/IEC 15938-1. The following classification scheme is defined for this purpose:

<ClassificationScheme uri="3GPP:PSS:SVGProfile">

<Term termID="1">

<Name xml:lang="en">SVGNumberCodec</Name>

<Definition xml:lang="en">Encodes SVGT numbers possibly followed by a spatial or a duration unit</Definition>

</Term>

<Term termID="2">

<Name xml:lang="en">SVGSRGBCodec</Name>

<Definition xml:lang="en">Encodes SVGT sRGB color format</Definition>

</Term>

<Term termID="3">

<Name xml:lang="en">SVGListOfCoordinatesCodec</Name>

<Definition xml:lang="en">Encodes a list of quantified number and uses if needed a prediction algorithm</Definition>

</Term>

<Term termID="4">

<Name xml:lang="en">SVGIDCodec</Name>

<Definition xml:lang="en">Encodes SVGT document IDs</Definition>

</Term>

<Term termID="5">

<Name xml:lang="en">SVGTransformCodec</Name>

<Definition xml:lang="en">Encodes types of transformation</Definition>

</Term>

<Term termID="6">

<Name xml:lang="en">SVGPathDataCodec</Name>

<Definition xml:lang="en">Encode efficiently the SVG "path data" types</Definition>

</Term>

<Term termID="7">

<Name xml:lang="en">SVGStylePropertiesCodec</Name>

<Definition xml:lang="en">Encodes lists of properties</Definition>

</Term>

</ClassificationScheme>

4.2.2 Codecs toolbox : Linear quantization

Linear quantization is a mathematical tool commonly used in compression to reduce the coding size of a real number while managing error.

Definition
If v is a number between min (inclusive) and max (exclusive), then it can be quantized and encoded as a integer q on nbits bits, with the following formula:

[image: image3.wmf]ë

û

)

1

2

(

min

max

min

-

-

-

=

nbits

v

q

The integer q can then be dequantized to the restituted value v :

[image: image4.wmf]1

2

min

max

min

-

-

+

=

nbits

q

v

The triplet (min, max, nbits) is the parameter of a linear quantizer.

In the proposed BiM profile for SVGT, all real numbers are encoded with linear quantization algorithm. The decoding rely on five global static linear quantization parameters and sometimes on some local quantization parameters:

· SPATIAL, to encode spatial numbers

· TIME, to encode time/duration numbers

· COLOR, to encode color components

· SCALE, to encode scale-related numbers

· ANGLE, to encode angle-related numbers

The parameters of these 5 global parameters are written before the first quantized number. The min, max and nbits values must be integer and are coded with VLC5 code (1 bits continuation and 4 bits of values). The min parameter is coded only for the SPATIAL quantization, the others are 0. The COLOR quantization max parameter is 255 and its nbits parameter can only take the values 1, 4 or 8 bits, therefore only 2 bits are used to encode the COLOR quantization.

4.2.3 Specific codecs for SVGT

4.2.3.1 SVGNumberCodec

Numbers in SVGT can be floats or integers and sometimes, can be followed by a specific spatial CCS unit or a duration unit. This codec is able to encode efficiently these kind of numbers.

Coding rules
· <number>, <coordinate>, <integer> values are encoded with the SPATIAL global quantization.

· <duration> values must have a duration unit 'ms' or 's', as specified in SVG. The number part is encoded using the TIME global quantization and one bit is used to encode the unit.

· <length> values may have a length unit. The number part is encoded with the SPATIAL global quantization, one boolean bit is used to signal the presence of a unit, and in this case, 3 bits are used to encode the unit.

· <angle> values are encoded with the ANGLE global quantization.

4.2.3.2 SVGSRGBCodec

The sRGB color format : '#' followed by 3 or 6 hexadecimal digits cannot be encoded efficiently with the Schema constraints. This specific codec is designed to encodes efficiently sRGB datatypes.

Coding rules

The '#' is not coded. Each component of the 3 color sRGB components are encoded with the COLOR global quantization.

4.2.3.3 SVGListOfCoordinatesCodec

This codec is used to encode a list of values. It takes advantage of the coherency of values and possibly defines a new local quantizer. If needed a predictive algorithm is used to reduce the dynamic of the list, and therefore reduce the coding size of each item of the list.

Coding rules

First, the codec writes the number of element of the list with an VLC5 code (1 bits continuation and 4 bits of values). Then the codec decodes the strategy to apply for the decoding (is it a global or local quantization strategy, is it a predictive strategy):

· One bit is used to select if either the global quantization strategy or a local one.

· If local quantization strategy is used :

· the min and max parameters of the local quantization are encoded (using the SPATIAL global quantization)

· the nbits parameters is encoded with VLC5

· the use of prediction is coded with one bit

Each value is then decoded according to the selected strategy.

4.2.3.4 SVGIDCodec

Mobile SVG specifies that "all referenced objects, except hyperlinking through the 'a' element, must be internal". The main goal of this codec is to reduce ID coding size by using a numerical index.

Coding rules

This codec associates an integer to each ID. The coding size of this integer is equal to the minimal number of bits to code it. More formally it is equal to "ceil(log2(number of id already decoded+1)".

4.2.3.5 SVGTransformCodec

This codec is able to encode efficiently the <transform-attribute> SVG type.

Coding rules

The transformation type (translate, rotate, scale, matrix, skewX, skewY, END) is encoded with 3 bits. Then, the following numbers are encoded either with the SPATIAL global quantization or the ANGLE global quantization. If a parameter can be optional, one boolean bit is used. END code is used if the transform list is ended.

4.2.3.6 SVGPathDataCodec

This codec is able to encode efficiently the SVG "path data" types.

Coding rules

This codec basically extends the SVGListOfCoordinatesCodec by handling path commands. One bit is used to encode if a implicit path command is used. An explicit path command (from the 'MLCZHSQTmlczh…' set) path is encoded with 5 bits. Then, the expected numbers follows. The 'Z' and 'z' command are used to close the path.

4.2.3.7 SVGStylePropertiesCodec

This codec encodes SVG Style properties.

Coding rules

A list of properties consists of a set of couples (property-name, value). Each property name is encoded with 4 bits (according to the maximum number of properties the style attribute can handle), and the value is encoded with the corresponding and best adapted codec. A special END property name is used to end the list of properties.

5 Technical overview: XML tree encoding

5.1 Decoding document structure

5.1.1 Overview

The document encoding scheme relies on a prior schema analysis process. It allows to perform a validation at sender side and to carry validation information up to the receiver. This format generates a binary encoding of an XML document based on its schema definition.

An XML Document is a tree of nodes (where a node is defined as an element or an attribute). The encoder and decoder use the schema definition (e.g. number of possible occurrences, element and attribute types, declaration of options, etc.) to encode or decode an XML description. For instance, the resulting binary format encodes an optional element with only one bit (0 absent, 1 present). A mandatory element needs no bit to be encoded. This is why the proposed binary representation of the XML document structure (elements and attributes name) is optimized.

[image: image5.wmf]

XML tree encoding overview

The previous figure shows how an XML tree is encoded by a binary encoder:

· Optional nodes are coded (white),

· Mandatory nodes are not coded (gray).

5.1.2 Payload decoding

The binary format is composed of one global header the decodingModes, which specifies some general parameters of the encoding, and a set of consecutive and nested coding patterns. These patterns are nested in the same way the elements are nested in the original XML file (i.e. as a tree). As only one root element is allowed in an XML document, all the patterns are contained in one large root element-coding pattern.

[image: image6.wmf]Root Element-coding

allows_

skipping

allows_

partial_instantiation

allows_

sub-typing

DecodingModes

Payload coding pattern

5.1.3 Element decoding

An element-coding pattern is used to code XML elements. Each element coding is composed of a 'length', a 'substitution code' which encodes the XML Schema substitution information, a 'type code' which encodes the XML Schema type information, an 'attributes' and a 'content' fields.

The general form of an element-coding pattern is the following:

[image: image7.wmf]Length

TypeCode

attributes

content

SubstitutionCode

Simple element coding pattern
Length: The length field specifies the coding length in bits of the element. This feature allows a decoder to skip the entire element, saving CPU. Its presence can be optional, mandatory or forbidden according to a parameter defined in the DecodingModes header.

Substitution code: XML-schema allows some elements to be substituted by other elements. Such substitution is constrained to elements belonging to the same substitution group. For such elements, a flag codes if the substitution occurs. If this flag is equal to true, the code of the substitute element is coded. This code is built using all the possible substitute elements.

Type code: The type code is used to code subtyping information, nil and partially instantiated elements:
· subtyping. The specific attribute 'xsi:type' defined in XML schema allows to change the type of an element, directly within the description. The type code is built using the set of all the possible subtypes.

· nil elements. To specify that a type is nil

· partially instantiated elements. Partial instantiations allows an MPEG-7 description to be cut into pieces. Some elements are partially instantiated meaning their value and attributes are not present in the current fragment unit but will be sent later. In order to encode this feature, a specific type 'uncoded' is artificially added at the first place of the set of all possible subtypes.

Attributes: The attributes are coded as a set of consecutive patterns. These patterns are composed of two components:

· The attribute presence flag : this flag is present if the attribute is optional, it indicates if the attribute is coded or not;

· The attribute value: the value of the attribute is coded according to the datatype of the attribute.

Before being encoded the following rules apply:

· All the attributes defined as "fixed" or "prohibited" are suppressed;

· The attributes are lexicographically sorted according to their Expanded Name i.e. the concatenation of the attribute namespace and name, separated by a ':' character.

Content: The content of an element is either a simple type or a complex type. The decoding processes are described in the following sections.
5.1.4 ComplexType decoding

5.1.4.1 Finite state automaton decoders

The decoding/encoding process of complex type is performed by a set of "finite state automaton decoders" built according to the schema definition of the complex type. These automata are constructed according to the structure of its content model (a sequence, a choice of elements, a sequence of choices, aso…) and the cardinality of the content model components ('minOccurs' and 'maxOccurs' attributes).

For, instance the following type t:

<complexType name="t">

<element name="a" type="ta" minOccurs="0" maxOccurs="1"/>

<choice minOccurs="1" maxOccurs="1">

<element name="b" type="Tb" minOccurs="1" maxOccurs="unbounded"/>

<element name="c" type="Tc" minOccurs="1" maxOccurs="1"/>

</choice>

</complexType>

is decoded by the following finite state automaton decoder:

[image: image8.wmf]1

b

1

Tb

Tc

Ta

0

0

a

c

loop

Example of a finite state automaton decoder

5.1.4.2 Decoding a complex type using its finite state automaton decoder

The decoding of a complex type is done by the propagation of a token through its associated automaton. When the token can follow different directions (i.e. when it can reach different states), it reads the bit stream to find the right way to go. Codes are assigned to each transition.

Let's consider the following bit stream:

	Bit stream
	
	1
[a]
1
[c]

	
	
	

	Path followed by the token during the decoding of the content of the complex type 't'
	
	
[image: image9.wmf]

1

b

1

Tb

Tc

Ta

0

0

a

c

loop

	
	
	

	Resulting description

	
	<Y>

 <a>…

 <c>…</c>

</Y>

Example of a decoding using an FSAdecoder

The number of occurrences in the description is coded according to the minimal and maximal number of occurrences defined in its schema definition. In the example, b is the only element whose number of occurrences is encoded.

Therefore, the two following examples will be encoded as:

	XML element
	XML binary encoding

	<Y>

 <a>…

 …

 …

</Y>
	
1
[a]

0
2
[b]
[b]

	<Y>

 …

 …

 …

</Y>
	
0

0
3
[b]
[b]
[b]

5.1.4.3 Generation of finite state automaton decoders

The finite state automaton decoders used to decode the bitstream can be generated on decoder side, on server side (and sent to the decoder). They can even be hardwired in the terminal to be specific.

The finite state automaton decoders generation is composed of 4 phases:

[image: image10.wmf]2

DDL Schema

1

Finite State

Automata

4

Syntax Trees

Normalized

Syntax Trees

3

Realized

schema

Phases of the finite state automaton decoder generation process

Phase 1 – Schema realization: This phase generates a reduced schema which solves references made in the schema.

Phase 2 – Content model syntax tree generation: This phase produces a reduced syntax tree for every complex content.

Phase 3 – Content model syntax tree normalization: This phase associates unambiguously signatures schema components.

Phase 4 – Finite State Automaton Decoder generation: This final phase produces the finite state automaton decoder based on normalized syntax trees.

5.1.4.4 Extensions and Forward/Backward compatibility

Different versions of a same XML language is possible both for versioning or private extensions. These evolutions will be made using XML Schema tools by designing new schema importing an old one. The binary format supports the backward and the forward compatibility.

The element encoding is cut into schema dependent pieces. A decoder can skip the pieces defined in an unknown schema.

[image: image11.wmf]Length

SubstitutionCode

SchemaDependentContent

SchemaDependentContent

SchemaDependentContent

...

 A forward compatible element coding pattern
This format allows a partial interpretation (or decoding) of a received description although needed schemas are not available. For that purpose the encoder uses type hierarchy information to generate a compatible binary format.

Let's consider a simple example, a type T2 is defined in a schema S2 as an extension of a type T1, defined in a schema S1. According to XML schema rules, the effective content model of T1 is composed of two parts, the first part comes from S1 while the second part comes from S2.

Defined in S1:

<complexType name="T1">

<element name="x" type="integer”/>

</complexType>

Defined in S2:

<complexType name="T2">

<extension base="S1:T1">

<element name="y" type="integer”/>

</restriction>

</complexType>

Actually, the “effective” content model of T2 is:

<complexType name="T2">

<element name="x" type="integer”/> <!-- T1 part -->

<element name="y" type="integer”/> <!-- T2 part -->
</complexType>

[image: image12.wmf]T1

T2

Extension

S1

S2

import

Example of an extended type through different versions
Let's consider the following description :

<anElement>

<S1:x>10</S1:x>

<S2:y>20</S2:y>

</anElement>

The element "anElement" can be encoded in two different ways:

· The first ensures the compatibility with S1-decoder

[image: image13.wmf]10

20

S1 part

S2 part

length

x

y

S1:T1

S2:T2

Example of element encoding compatible with S1 and S2

Therefore an S1-decoder will be able to decode the S1 part and skip the S2 part (using the length). While an S2 decoder will be able to decode both parts.

This multiple schema coding is not used for each element of the description. Actually, in order to improve the coding ratio, a mode is used to track elements which are coded as forward compatible or not. This schema mode allows for example to freeze a schema in a sub-tree, i.e. the overall sub-tree will be coded using only one schema.

· The second, more compact, does not preserve the compatibility with an S1-decoder: an encoder could choose to increase coding size but decrease interoperability between versions, it can therefore encode the element in the following way:

[image: image14.wmf]S1+S2 part

20

y

10

x

Example of an element encoding compatible with S2 only
5.2 Decoding document leaves

Document leaves are encoded according to their primitive XML Schema datatype (integer, float, UTF-8 for strings, etc.). It allows the binary stream to be handled directly at binary level. All primitive datatypes are coded using well-known encoding standards (for instance float is coded as an IEEE 754 floating-point “single precision”). The coding of some specific datatypes has been improved:

· integer: Constrained integer decoder uses the 'minInclusive', 'maxInclusive', 'minExclusive' and 'maxExclusive' facets to deduce the minimum coding length of an integer.

· enumeration: Every enumerated datatype is encoded according to a sorted dictionary of its possible values.

Moreover to deal better with domain semantics or very specific datatypes, It is possible to plug a datatype codec into the BiM framework.
� Formally, BiM carries information of the PSVI (Post Schema Validation Infoset) (c.f. W3C – XML Infosets specification) and uses it to guide compression/decompression and to improve compression performance.

_1067330069.doc

_1068129968.doc

_1068130874.unknown

_1068131386.unknown

_1067334495.doc

1

b

1

Tb

Tc

Ta

0

0

a

c

loop

_1067335447.vsd
Length�

...�

SubstitutionCode�

SchemaDependentContent�

SchemaDependentContent�

SchemaDependentContent�

_1067175115.vsd
�

Root Element-coding�

allows_�skipping�

allows_�partial_instantiation�

allows_�sub-typing�

DecodingModes�

_1067175135.vsd
Length�

TypeCode�

attributes�

content�

SubstitutionCode�

_1049808389.vsd
T1�

T2�

Extension�

S1�

S2�

import�

_1051703758.vsd
S1 part�

S2 part�

length�

10�

20�

x�

y�

S1:T1�

S2:T2�

_1065615876.doc

_1065615181.doc

_1065615182.doc

_1049808433.vsd
S1+S2 part�

10�

20�

x�

y�

_1049807752.vsd
2�

DDL Schema�

1�

Finite State Automata�

4�

Syntax Trees�

Normalized Syntax Trees�

3�

Realized schema�

