3GPP TSG-SA WG4 Meeting #19
Tdoc S4-010622

December 3-7, 2001, Tokyo, Japan

Proposed text format

Source:
NTT DoCoMo Inc., Apple Computer Inc.

Title:
Proposed framework for text streams

Document for:
Discussion

Agenda Item:
Release 5

Following the requirements presented to S1 in October, and the discussion in Erlangen, this document outlines some design criteria, and two possible design directions.

1 Design Criteria

There are a number of criteria for a good text stream design which should be recognized.

1.1 Characters and Language

Text streams must be usable internationally, and it should be possible to extract text from these streams, sort that text, and present it; some terminals may desire the ability to translate or speak the text. Therefore:

a) The text streams must have explicit support for both UTF-8 and 16-bit Unicode characters.

b) Support for other multi-byte formats is desirable but not required.

c) All text should carry a language code, using an ISO code (probably ISO 639-1 or 639-2). Note that these standards have explicit support for “unknown” and “multiple languages”. Without a language code neither sorting, translation, nor text-to-speech are possible.

d) The rendering system must be able to handle differences between byte-count, resulting character count (adjusting for multi-byte characters) and glyph count (adjusting for contextual forms and ligatures).

e) It should be possible to specify the writing direction for text, and also to derive the expected writing direction from the chosen font. Not all text is left-right/top-bottom.

1.2 Rendering Issues

Text streams will be rendered by multiple systems. However, multimedia designers may need some predictability of handling of formatting. Therefore:

a) Either 3GPP should standardize on a set of fonts of established metrics, or there should be provision for the author to specify a bounding box (as used in many systems) or textlength (as in SVG) for the resulting rendered text. Without this, text placement can be unpredictable.

b) In order to facilitate terminal resource management, it is best if the stream setup information provide an inventory of at least the font-families used, and possibly the faces and styles. This avoids the problem of having to make font loading or substitution decisions on the fly, in the middle of a presentation.

c) Text wrapping is a desirable feature but can be problematic, especially in the presence of multiple-language strings (when the writing direction may vary), or unpredictable font metrics. It is resource intensive. Text wrapping behavior should be carefully specified, or most probably specified out.

1.3 Delivery issues

In streaming, RTP packets can get lost. Care should be taken in the design of an RTP stream format for text. In particular:

a) The RTP packing format for text should probably be designed explicitly for the text stream problem.

b) The rendering of an RTP packet should be possible given that packet only, and the stream setup information. Packets should not depend on each other: material such as style definitions or style changes, or rendering position, should not carry from one packet to the next.

c) To facilitate stream management, the text stream RTP format should probably be registered under the MIME sub-tree of “text” (i.e. in an SDP file, under an m=text line).

d) For efficient streaming, it can be desirable to setup a pool of commonly used text-strings in the stream setup, and use them by reference. (This compares to the SVG “use” construct).

e) In must be possible to store a timed text stream within an MP4 file. The MP4 file may use data URL references to text outside the file, if that is desired.

These suggest that stream setup should carry at least a set of shared styles; if this is not the only source of style definitions, it may be necessary to carry a font inventory also; and also the setup should provide for shared text strings.

1.4 Compatibility Issues

Other specifications exist that define rich management models for both text, particularly styling and rendering.

a) The specification should show its relation to existing standards for styles, in particular the style definitions from W3C (CSS or XSL, for example).

b) Terminals will have a parsing system for XML as SMIL is already specified. If any text is to be parsed, then XML is the preferred format. This suggests that XSL is preferred over CSS.

c) Terminals will also have a rendering system; care should be taken that the same rendering system can be used by text, without undue computation or other complexity.

1.5 Functional Issues

Some of the requirements of 3G text are unique. These needs should be supported in a direct fashion.

a) Ticker-tape and credits are scrolled. This scrolling behavior should be directly specified, not achieved through scripting, or complex animation constructs. If the format is XML-based without explicit scrolling support, this can be achieved through extra 3G-specific keywords from a separate namespace.

b) There is a direct need for Karaoke support. It should be possible to supply the text string, and the definition of the character ranges to highlight, with their timing, so that Karaoke can be done simply and locally at the terminal (not requiring either scripting, or replacing the text using different style runs at each highlight event).

c) It is important that hyperlinks be directly supported; if a textual format is used, the <a> syntax used in W3C is preferred. Any binary format should be a direct translation of this. Scripting or other more complex sub-systems should not be used to achieve hyper-linking.

1.6 Non-needs

It is worth pointing out some of the features which can be found in text systems which are probably either un-needed or actively undesirable at this time.

a) Text should probably be rendered over a static background color, or at most over a static picture. The composition of text over moving video involves multiple-buffering and is probably too expensive for a wireless terminal.

b) Other ‘fancy’ features such as text-on-a-path are not needed either.

2 A simple binary approach

The format presented in Erlangen S4(01)0496 has the advantages of significant simplicity. No text parser is needed, and the structures are simple. Binary codes are fixed-length and byte-aligned. Features are managed with flags. As a binary, record-based format it is compact.

In some respects it fails to meet the above criteria. However, we believe that a simple, short-term format could be derived based on this approach. In particular:

a) Style definitions should be moved out of the sample and into the sample description, when possible. They should be assigned style names or other identifiers, and then used by reference.

b) Explicit support for text language and writing direction should be supplied. If the writing direction is not indicated, the specification should state explicitly that it is derived from the selected font.

c) Some specification or statement should be made about predictable rendering. We are already aware that, for example, Times-Roman has different metrics on different systems. Since this format currently permits wrapping, this has caused some problems. Either the font-set allowed should be specified (which would allow terminals to embed the precise set of fonts), or some metrics indication should be added to the input format.

d) The scrolling is currently absolutely specified. A language expert should advise, but it should probably be relative to the writing direction (e.g. for left-right languages, ‘normal’ horizontal scroll is right to left).

e) There is no provision for shared text strings. This is desirable but not essential.

3 A more textual approach

An approach based on W3C standards is attractive, but will require some careful work to (a) eliminate those parts of the W3C specifications which are undesirable and (b) add tags or other constructs needed to support 3GPP’s needs.

W3C has a number of standards which are applicable. In style management, CSS and particularly XSL come to mind. The SVG specification has a very carefully defined text and font management specification, which explicitly addresses some of the more subtle and troublesome issues such as text writing direction.

However, it is possible to provide the outline of a solution here. This sketch is based on XSL and SVG (both subsetted to meet 3GPP’s needs).

The stream setup (sample description, or decoder-specific information) would contain the logical equivalent of an SVG 'defs' element, inside an atom. (A defs element supplies un-rendered shared material, such as styles or pre-defined graphics elements for an SVG document.)

Each sample consists of the rendered part of an SVG document. Logically, what is rendered in the text track at any time is formed by rendering the SVG document composed by:

· forming a standard SVG header (<?xml, !DOCTYPE and so on)

· wrapping in an SVG element, whose width and height are the track width and height:

· the definitions from the sample description (stream setup);

· the XML from the sample.

Logically, the resulting SVG document is then rendered.

Note that SVG also defines animation within the context of a picture.

We would need to add XML definitions for Karaoke highlighting, and for scrolling. We'd need to restrict what elements may be used (probably in the style of SVG Mobile).

4 RTP Format

This section provides a start on some design ideas for a custom text RTP format.

Within RTP, the sample description information is conveyed ‘out of band’ e.g. within the SDP information. This should be encoded as base64 and supplied as the value of the ‘config’ parameter, following the practice for decoderSpecificInformation in MPEG-4. The track width and height, and matrix if is not the default identity matrix, are also supplied in SDP. (Note that the matrix provides a translation offset also; with the width and height, a bounding box is completely specified).

Each RTP packet consists of one or more text samples. Each sample is preceded by a long giving its time-stamp, relative to the time-stamp of the packet. The first sample must have a relative time-stamp of 0. The computed time-stamp of the last sample must be strictly less than the time-stamp of the next RTP packet. Each RTP packet can be rendered using only the stream setup information and the packet itself; there is no packet-packet dependency.

Packets may be repeated in the RTP stream, using the same RTP sequence number and time-stamp, if they are critically important. However, it is recommended that this is not done. If text and styles are set up thorough the stream setup, and care is taken, then lost packets should only result in lost sub-strings.

Tdoc S4-01062

Page: 1/1
Tdoc S4-01062

Page: 4/4

