

Scalable Polyphony MIDI
Specification

November 29, 2001

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�������	
����

The MIDI Manufacturers Association

Los Angeles, CA

PREFACE

The Scalable Polyphony MIDI Specification (SP-MIDI) provides the content creator with a mechanism to define the
MIDI playback at different levels of polyphony, and includes additional guidelines for tool development and
playback device behavior appropriate to scalable polyphony implementations.

This specification is derived from work of the MMA’s Scalable MIDI Working Group in cooperation with AMEI
and was created initially to address some unique requirements for using MIDI for ring tones in mobile phones.
However, scalable playback may be equally important in other applications of MIDI in mobile devices (such as
games), and so this specification is intentionally written to be as broad as possible.

What this specification does not include is a definition of all features (other than polyphony) that need to be
supported by a sound generator for Scalable Polyphony content to play predictably. However, the various MMA/
AMEI specifications in the “General MIDI” and “Downloadable Sounds” families are good candidates for that
purpose, when modified to accommodate SP’s requirements. AMEI/MMA may also create additional specifications
(or variations of existing specifications) to be used in conjunction with SP-MIDI to address various markets.

The AMEI/MMA’s initial recommendations for using SP-MIDI in 3GPP (3rd generation mobile phone) applications
are discussed in a separate document, titled “Scalable Polyphony MIDI Device 5-24 Note Profile for 3GPP.
Additional levels of polyphony (lower and/or higher) for 3GPP are expected to be jointly developed by
AMEI/MMA and 3GPP.Looking forward, the goal of the SMWG is to continue to extend the scalability of MIDI,
eventually leading to a mechanism for the layering of MIDI content not just for coexistent levels of playback
polyphony, but also for other synthesis features as well. These future scalability extensions will help support the
development of interoperable music applications and services for devices operating in a networked environment.

Scalable Polyphony MIDI Specification
RP-0nn

Copyright 2001 MIDI Manufacturers Association Incorporated

ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR TRANSMITTED
IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING INFORMATION
STORAGE AND RETRIEVAL SYSTEMS, WITHOUT PERMISSION IN WRITING FROM THE MIDI
MANUFACTURERS ASSOCIATION.

Printed 2001

MMA
PO Box 3173
La Habra CA 90632-3173

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page i November 28, 2001

����������������	���
THIS SECTION TO BE REMOVED PRIOR TO PUBLICATION

The document is derived from the “����������	
������document version .801.

�

�����
���������
October 28th,
2001

V0.800 Matti Hämäläinen - Changed the name of the specification to Mobile MIDI

- GMX�� changed to MM��

- Name of GMX System On message changed to Mobile MIDI System On

- Introduction of Mobile MIDI profiles in Appendix 13

- Several MIDI messages previously defined as [required] where changed
to be [recommended] containing only leaving only messages common to
all profiles defined as [required].

- Section 3: ����������� was modified to include the necessary references to
Mobile MIDI profile documentation.

- Section 4.9 	�
��������������������������������������
��� was
removed.

- Appendix C: Minimum sound set definition is given as recommendation of
minimum sound set.

October 29th,
2001

V0.801 Matti Hämäläinen - Corrected some typos

- Corrected page numbering.

- Added some editorial notes about open items for 3GPP review.

October 29th SP v.9 Tom White - Changed the name and reformatted document as the “SP-MIDI” document:

- Removed all device-related text except the minimum required device
definitions.

- Moved 3GPP recommendations to a separate document.

- Complete rewrite of all text.

Nov 4 SP v.92 Tom White - More moving sections around, rewrites, etc.

Nov 5 SP v.921 Tom White - Fixed broken links in 2.3.2. Changed caption of Figure 3. Rewrote text and
examples in Section 2.3.2 to highlight concrete uses. Replaced Figures 4 and 5
with modified Figure 2.

- Corrected broken links in 3.3. Added subheadings to 3.1. Rewrote 3.4 for
clarity. Changed caption on Fig 6 and all references to it. Added temp section
3.6-3.8.

- Added temporary new heading 4.1 to Section 4 Intro. Listed some questions for
Section 4.3 (was 4.2).

Nov 6 SP v.922 Tom White - Corrected typos and reworded a few phrases (RC).

- Added place holder in Terminology for relating “mobile terminal” to MIDI
terms.

Nov 13 SP v.93 Tom White - See redlined text.

Nov 14 SP v.93a Tom White - Inserted missing Figure 5

- Highlighted “16” Channels in Section 3.4

- Removed question to Rob about sustain pedal in 3.5

- Changed “voices” to “notes” throughout Section 2, and as instructed in Section
1 per Rob’s SMWG Email of 11/14 4:18am. Highlighted remaining voice/note
questions in Section 4 and in 2.1.1.

- Highlighted section 3.1 for consideration.

- Fixed a few typos

Nov 14 SP v.935 Tom White - Retained all changes from v.93a (not accepted yet)

- Removed highlighted text in Section 1.1 (Moved it to 3GPP Profile Document,
since it explains why 3GPP needs SP-MIDI.) Changed Section 1 text a little.

- Corrected References

- Added new definitions for note stealing

- Added text to Preface about future “profiles”to clarify

- Added Jim Wright’s Channel Masking Text in Section 2 (layout needs to be
verified)

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page ii November 28, 2001

Nov 15 SP v.935a Jim Wright - Overhauled Section 2 thoroughly.
Revised Channel Masking description.
Changed layout. Revised first paragraph; moved some text from old section
2.1.1 to become 2nd paragraph of section 2.
Applied requested changes from Tom White and Chris Grigg (changes must be
verified)

- Added subsection on Dynamic Channel Masking and Controller State as
section 2.3.2, in response to SMWG discussion (should be checked by SWMG)

Nov 16 SP v.936 Tom White - Enabled Word’s footnoted “Comments” mode to mark areas that need
changes/discussion.

- Removed Section 3.8 placeholder (now covered in Section 2). Removed visible
comments attached to Section 3.7, put in footnote comment instead. Removed
(accepted deletion of) Jim’s old Section 2 text and figures for easier reading in
redline view (is replaced with Jim’s new text and figures). Accepted all edits
from “voice” to Notes”. Accepted deletion of Section 1 long paragraphs.

- Added Note to MIP syntax regarding 16 Channels per Section 3.1.2 text.

- Added section 3.8 on “Profiles”, and Profile Interoperability, then adjusted
Preface and Intro text accordingly.

- *** Please turn on menu item “View | Comments” in Word to see the
remaining issues.

Nov 27 SP v.937 Rob Rampley - Removed “Released Note Stealing” definition.

- Removed questions for further definitions for terminal and Sound Generator

- Updated terms in Figures 2,5,6,7

- Complete replacement of Section 3.1 and subsections, Section 3.3, and Section
3.5 and subsections

Nov 28 SP v.938 Tom White - Inserted definition for Sound Generator and Player

- Removed unneeded Word-Comments (no tracking). Updated all TW
comments. *** EVERYONE PLEASE READ THEM AND REPLY ***.

- Edited Rob’s Section 3.1 text for clarity (I thought <g>).

- Rewrote Section 3.2 (no requirement for 2nd Drum Channel)

- Deleted Section 3.6, 3.7 and all of Sections 4 and 5.

- Note: Section cross references will not work right until track changes are
removed in the final version.

- Changed all “channels” to Channels when they are referring to MIDI Channels.

Nov 28 SP v.939 Tom/Matti - Merged edits from Matti’s v.938:
1) removed “SMF” from bullet 2 Section 1.2
2) added “in some instances to bullet 6 in Section 1.2, instead of Matti’s
deleting the bullet
3) Changed Section 2.2 to allow less-than-16 Channels
4) Changed algorithm 1 and text to allow for less-than-16 Channels
5) Section 3.2 now has two versions… Q: Is Channel 10 required?
6) Minor changes to references etc.
7) Matti’s edits to Section 4 are not made, as there is no Section 4

Nov 29 SP v940 Matti Hämäläinen - Version for 3GPP SA4#19 proposal

- Section 3.1.2. definition for Rhythm Channels was updated.

- Comments were removed.

- Check of layout.

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 1 November 28, 2001

��������
�������

���� ���������
�
The Scalable Polyphony (SP) specification defines a mechanism for the flexible presentation of MIDI
data to a wide range of playback devices. The specification is intended for mobile phones, PDAs, palm-
top computers and other personal appliances that operate in an environment where users may create,
purchase and/or exchange MIDI music with other users having different device capabilities, specifically
in terms of available polyphony.

This scalable polyphony approach is an alternative to the more typical approach taken in AMEI/MMA
specifications, such as General MIDI Lite (GML) [6], where device compatibility is assured by specifying
a fixed polyphony. Scalable MIDI provides flexibility to the system operator and mobile terminal
manufacturer to address differing customer needs, rather than forcing all customers to adopt the same
requirements. For example, lower-cost phones may be offered that have only 8-note polyphony, vs. higher
priced models that have 32-note polyphony, yet the same content will play on either phone. Customers in
that scenario can upgrade their phones and still play all of the content that they have obtained previously,
and they can share content with friends and relatives who may have different configurations.

Scalable MIDI can also help to mitigate some unique situations that might occur in wireless and battery
powered systems. For example, a multi-purpose Scalable Polyphony MIDI phone or PDA could
automatically drop back from 16-notes to 4-notes when more power was needed for some other
application, such as decoding a video stream. Similarly, reducing polyphony would be a reasonable
means for conserving battery power in some implementations.

The Scalable Polyphony MIDI specification only defines those MIDI messages that need to be supported
by the playback device to provide scalable playback. In order to also provide compatibility of content
with devices (interoperability), additional specifications must be used in conjunction with this one, to
define all required MIDI messages and how the MIDI device will respond to them. (See Section)

�������	����	��
For the implementation of scalable-polyphony systems the following fundamental aspects have to be
satisfied:

• The content creator has to be able to create MIDI content with embedded information about
polyphony rendering requirements. Different playback devices can thus play the content in
accordance with the composer’s requirements.

• The MIDI messaging solution for polyphony requirements has to be supported for both locally
played and streamed MIDI.

• The playback device has to be able to interpret the polyphony requirement of the content and play
the content according to the polyphony requirements at the highest polyphony level it can
support.

• Priority must be specified for MIDI Channels so that note generator allocation can be prioritized
between Channels.

• Scalable MIDI has to be able to support several coexistent levels of polyphony so that a range of
devices with different polyphony capabilities can be supported with the same content format.

• The note generator allocation for both melodic and rhythmic instruments has to be scalable,
requiring more than one Rhythm Channel in some instances.

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 2 November 28, 2001

�� � !	����������
���
 is used to refer a note that begins with a Note On MIDI message and ends with a Note Off MIDI
message.

���
��
�
����� refers to rendering hardware or software needed to play one note, e.g. to respond to
one Note On message and the corresponding Note Off message.

���
���
�	����refers to terminating a Note and reallocating its sound generator(s) before the
corresponding Note Terminating Message is received.

���
��
�����������
����
: a Note Off message or message with corresponding effect, e.g. Note On
with velocity 0, All Notes Off, or Hold 1(Damper) with damper values between 0 and 63)

�����
	����������defines the priority order of MIDI Channels for Channel Masking and dynamic
Note allocation.

��	��������
�
	�defines the maximum number of Notes that a Scalable Polyphony synthesizer can
play simultaneously.

�����
	���������means muting (i.e., masking, or ignoring) a number of lowest-priority MIDI
Channels during playback, and only playing the highest-priority Channels. The number of Channels
to play is decided before playback, based on the MIP information included in the Scalable Polyphony
song.

�� ��!�����������
�!����	�������"���# specifies the total number of Notes required for proper
playback of the respective MIDI Channel together with all the higher-priority MIDI Channels (see
Channel Priority). The MIP table, consisting of 16 individual MIP values, represents a cumulative
polyphony requirement for the corresponding Channel Priority order defined in the Channel Priority
table.

��!�$���$!	
�refers to a sound-generating device that receives MIDI data in real time, typically
from a %�	
��	��
� (MIDI sequencer). In mobile phone systems, for example, the terminal (handset)
will contain the equivalent of a Sound Module, and might also contain a File Player.

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 3 November 28, 2001

���"�#��������������	��������$�����%"��&�
An important goal of the SP-MIDI design is to minimize the occurrence of Note Stealing and the resulting
partial randomization of the music playback. The mechanism for accomplishing this is called Channel
Masking, the operation of which is controlled by the Maximum Instantaneous Polyphony (MIP) message.
The MIP message is a MIDI System Exclusive message for use in song data for SP-MIDI devices,
indicating note usage and priority for each MIDI Channel. SP-MIDI devices use this information when
processing subsequent MIDI events, to adapt to the Sound Module’s current polyphony (total number of
simultaneously available notes). The message indicates those layers of a song that the composer has
defined as optimal for playback with different levels of polyphony. Thus it is possible to incorporate
multiple versions of the same high-polyphony piece of music inside the same MIDI file. For instance, the
composer can arrange a Scalable Polyphony MIDI file having maximum polyphony of 24 so that it can be
played correctly, on 8, 16, and 24 note polyphony devices.

In SP-MIDI players, Channel Masking functionality filters MIDI events on a Channel-by-Channel basis
in such a way as to lock out Channels which could not be played properly with the Sound Module’s
Polyphony Level. This Channel filtering is controlled by the MIP table (see Section 2.2), which may be
shaped by the composer/arranger’s taste. This is in contrast to conventional Note Stealing allocation,
where notes are arbitrarily "stolen" without respect to the composer/arranger’s wishes. If the SP-MIDI
content and the MIP table are properly created, Note Stealing can be avoided.

����"���"	����	�'����#�
&'��()*�+��*)+����)��,��)��)���'��()-�
F0 7F <device ID> S1 S2 {cc vv} {cc vv} {cc vv} ... {cc vv} {cc vv} F7

 F0 7F Universal Real Time SysEx header

 <device ID> ID of target device (7F = all devices)

 S1 sub-ID#1 = tbd

 S2 sub-ID#2 = tbd

 cc MIDI Channel number (0x00 = ch1, 0x01 = ch2 etc.)

 vv Maximum Instantaneous Polyphony (MIP) value of the

previous cc value

 F7 EOX

����"���"	����	�(���	�
The MIP message contains both a MIDI Channel Priority table and a MIP table. The MIDI Channel
Priority is given by the order of the Channels in the MIP message.

The MIP value attached to each Channel is cumulative. For example, the MIP value attached to the
second MIDI Channel is the total maximum instantaneous polyphony for both the first and second
Channels combined. Technically, then, the MIP table represents the cumulative polyphony of all MIDI
Channels containing MIDI data.

It is essential that the MIP message defines MIP table values for all Channels containing MIDI data. If the
MIP message does not define MIP values for all of the player’s MIDI Channels then the SP-MIDI player
masks the Channels that were not received in the MIP message, i.e., sets those Channels to muted
state.The content creator is responsible for defining the MIDI Channel Priority table, computing the
respective polyphony as each additional MIDI Channel is used, and embedding the MIP message in the
beginning of the Scalable Polyphony MIDI file. However, in practice this might also be accomplished
semi-automatically using, e.g., some content creation software.

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 4 November 28, 2001

During playback, the number of Channels to be played is decided with the help of the MIP table and
MIDI Channel Priority table. The recommended Algorithm for muting and un-muting MIDI Channels
according to the MIP table is shown in Figure 1.

This algorithm works by traversing through all the Channels in priority order, muting all Channels with
MIP greater than the supported polyphony, and un-muting all other Channels.

In the pseudo-code, vector indexing is one-based: for example, the MIP table is stored in mip[1]–mip[
mip_length].

Inputs

polyphony: the maximum number of Notes the player can play
simultaneously

mip_length: the number of entries in the MIP table

mip[]: a vector filled with MIP values

pri[]: a vector of the MIDI Channel numbers in
priority order

Outputs

mute[]: a vector of 16 Boolean values specifying
whether to mute the corresponding MIDI Channel

Temporary variables

i: index variable

ch: Channel number

for i := 1 to 16 do

 mute[ch] := TRUE

end

for i := 1 to mip_length do

 ch := pri[i]

 if mip[i] <= polyphony then

 mute[ch] := FALSE

 end if

end for

%��!�
�./������
	���������+	��������

The intention of the MIP mechanism is to give the composer better control over the playback of the music
on various platforms. The composer can now more freely decide how different SP�� synthesizers should
react to the content. He could, e.g., put four piano Notes to MIDI Channel 1, four percussion Notes to
MIDI Channel 10 etc. A 4-note polyphonic synthesizer would then play only the piano part, an 8-note
polyphonic synthesizer would play the piano plus drums, and so on. If the MIP table were made correctly,
potentially disturbing Note Stealing will not take place at all.

������)#��$�	�"���*�����������

An example of how to compute the MIP can be made using the case of a composition using MIDI
Channels 1–11. It should be noted that the following MIP example is provided to illustrate the
functionality of the polyphony scalability, and that the actual utilization of scalability is dependent on the
musical content and interoperability requirements for supported applications or services.

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 5 November 28, 2001

In this example, the MIDI Channel Priority for the first eleven Channels is {1, 10, 2, 3, 4, 11, 5, 9, 6, 8, 7}
and the corresponding MIP figures are {4, 9, 10, 12, 12, 16, 17, 20, 26, 26, 26}, as shown in the following
table.

���
� �����
	� �!��
���0����
��"��
�����
����

Piano 1 4 Notes 3 Notes 4

Drums 10 2 Notes� 5 Notes� � 5 Notes� 9

Bass 2 1 Note 1 Note 10

Guitar 3 � 2 Notes� � 3 Notes� 12

Synth pad 4 3 Notes� � � 4 Notes� � 12

Percussion 11 � � 4 Notes� 16

Orch hit 5 � � 1 Note� � 17

Guitar 2 9 � 3 Notes� 20

Organ 6 � � 6 Notes� 26

Alien FX 8 3 Notes� � � � � 26

– 7 (none)� 26

… … …� …

%��!�
�1/�) ���	
��� ��!�����������
�!����	�������"���#�2�	2!	�����3�

When this MIDI file is played on a 4-polyphony device, only Channel 1 is played: an 8-polyphony device
also plays only Channel 1; a 16-polyphony device plays Channels 1–4 and 10-11; a 24-polyphony
synthesizer plays Channels 1–5, 9 and 10–11; and finally, a 32-polyphony device plays all the Channels.

Note that the playback device should play as many Channels as it can support according to the MIP table.
Therefore, using the above example, a 12-note synthesizer should play the Channels 1–4 and 10 instead of
playing only the Channels 1, 10, 2, and 3, although both of these combinations have a Maximum
Instantaneous Polyphony of 12 notes.

Figure 3 helps to illustrate how different Scalable Polyphony devices will play the example.

4 9 10 12 12 16 17 20 26 26 26 26 26 26 26 26

⇐ ����������	��
� �	������	��
� ⇒

SP4
SP8

SP24
SP16

SP32

1 10 2 3 4 5 9 6 8 7 12 13 14 15 16 �������

���

11

�
�

%��!�
�4/�5�6�$�00
�
����2�	��	
���	�������$
��2
���	�����
�
 ���	
�0����%��!�
�13�

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 6 November 28, 2001

The actual MIP (Real Time System Exclusive) message that would be constructed from the above MIP
table is given here in hexadecimal format:

F0 7F 7F 09 04 00 04 09 09 01 0A 02 0C 03 0C 0A 10 04 11 08 14 05 1A 07 1A 06
1A 0B 1A 0C 1A 0D 1A 0E 1A 0F 1A F7

������ "������"���*������+������

The MIP values in the example of Figure 2 were computed by counting the highest number of
simultaneous Notes for each of the possible Channel combinations. This could easily be done by a content
creation application, but may not result in maximizing the playback ability of target devices, so
composers should also consider manual MIP customization.

As was shown in Figure 3, an 8-note polyphonic synthesizer playing the content in Figure 2 would ignore
all but Channel 1, and thus not play the content any differently than a 4-note synthesizer. If the composer
could expect an 8-note synthesizer to be a common target, then it might make more sense to adjust the
MIP value for Channel 10 to “8”. This would allow the 8-note synthesizer to play Channel 10, using its
own note-stealing algorithm to reconcile the measure where 9 notes will be called to play. Editing the
MIP values by hand and then playing the content on a Scalable Polyphony device (at different polyphony
levels) can verify a suitable MIP value.

In Figure 4, the asterisks show how the MIP values might be changed specifically to optimize the
playback for 8, 16 and 24-note polyphonic synthesizers.

���
� �����
	� �!��
���0����
��"��
�����
����

Piano 1 4 Notes 3 Notes 4

Drums 10 2 Notes� 5 Notes� � 5 Notes� 8*

Bass 2 1 Note 1 Note 16*

Guitar 3 � 2 Notes� � 3 Notes� 16*

Synth pad 4 3 Notes� � � 4 Notes� � 16*

Percussion 11 � � 4 Notes� 16

Orch hit 5 � � 1 Note� � 17

Guitar 2 9 � 3 Notes� 20

Organ 6 � � 6 Notes� 26

Alien FX 8 3 Notes� � � � � 26

– 7 (none)� 26

… … …� …

%��!�
�7/�����(�	!
�����!�		��8�����9
$�":#�0���;<���
���$�.=<���
�����
��
��2
��

It is also possible to group sequential Channels together in a ‘cluster’ so that either all or none of them are
played at specific target polyphony levels. For example, in Figure 4, the Channels {2, 3, 4, 11} are
clustered together by means of setting the same MIP level for both of them. During playback, if there is
not enough polyphony available in order to play Channel 11, Channels {2,3,4} are not played either.

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 7 November 28, 2001

�� � *����	��"���������$�	�	��������*����
	��������
Channel Masking functionality as defined in section 2.2 must be implemented in all SP-MIDI devices.
Channel Masking should be performed between the Player (MIDI Sequencer) and Sound Module
(Synthesizer/Tone Generator), as shown below:

MIDI Sequencer ’Channel Masking’
Synthesizer

(Tone Generator)
Song
Data

MIDI

synthesizer
capabilities

%��!�
�>3������
����
$��	��
������!�$���$!	
�

Figure 5 (above) shows an integrated SP-MIDI device containing both Player and Sound Module
elements. The device implementation might involve a Player program running on a CPU of some kind
and a Sound Module implemented using an ASIC. Alternatively, the Sound Module might be
implemented as a DSP program (or however the designer prefers). In either case, Channel Masking
would probably be implemented as an extension of the Player element. However, it is also possible to
implement a Player and Sound Module as distinctly separate units. A MIDI Player and Sound Module
are considered to be implemented separately only if there is a means provided through which other
sources (e.g. other MIDI players, devices, or programs) can send MIDI messages to the Sound Module.
Special care is required for such designs, as discussed below.

�� ��� '	$����	���$�	�	���������,�����	����
�'���
�"�
��	�

As shown in Figure 6 (below), Channel Masking functionality must be implemented by the Sound
Module when the MIDI Player and Sound Module are implemented separately:

MIDI Sequencer
’Channel
Masking’

Synthesizer
(Tone Generator)

Song
Data

Player-to-Sound Module Transmission Channel (Player sends all messages to Sound Module)

%��!�
�=3��
�����
��	��
����$���!�$���$!	
�"?���2��	��
�#��

This is required so that the Sound Module will continue to function correctly even when a nonconformant
Player is connected to the Sound Module. (Note: this requirement also applies to an integrated SP-MIDI
device with a Sound Module that accepts MIDI messages from other sources, as discussed in the
preceding paragraph.)

Furthermore, it is recommended (but not required) that a separately-implemented MIDI Player should
also implement Channel Masking functionality, as shown in Figure 7�

MIDI
Sequencer

’Channel
Masking’

Synthesizer
(Tone Generator)

Song
Data

’Channel
Masking’

Player-to-Sound Module Transmission Channel (Player only sends unmasked messages)

%��!�
�@3��
�����
��	��
����$���!�$���$!	
�")����2
$��	��
�#

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 8 November 28, 2001

The reason for implementing Channel Masking in both the MIDI Player and the Sound Module, per
Figure 7, is to avoid potential timing errors caused by unnecessary message traffic to the Sound Module.
(Since Channel Masking is computationally inexpensive, this should have little or no cost impact.)
Noticeable timing errors can occur if the message rate exceeds the capacity of the Player-to-Sound
Module transmission channel. For example, some low-polyphony designs may have a very low-
bandwidth connection between the Player (implemented as software on a single-chip CPU) and the Sound
Module (implemented as a separate ASIC connected to a low-speed serial channel). When a number of
messages are scheduled to occur at the same time, the Player must send them sequentially rather than
simultaneously. The resulting inter-message timing skew can produce audible errors, depending on the
peak message load and the transmission channel capacity. Reducing message traffic (by masking
irrelevant messages) is an effective way to minimize such potential timing errors.

It is worth noting that timing errors are often most apparent with percussive sounds. Therefore, it is also
recommended (but not required) that messages for percussion Channels (e.g. Channels 10 and 11) be
transmitted from the Player to the Sound Module before transmitting any messages for other Channels
that are scheduled to occur at the same time.

Finally, when Player and Sound Module are implemented separately, the Player must always forward
MIP messages to the Sound Module, even when the Player implements Channel Masking. This is
required so that the Sound Module can correctly implement Channel Masking (e.g. to terminate any
sounding notes on a previously-unmasked Channel which has just been masked).

�� ��� ��������*����	��"���������
�*�������	��'���	�

It is possible that previously-masked Channels may become active (unmasked) in the middle of a
particular piece of music content. This could be caused by reception of a new MIP message, or even by
reception of a Program Change message (because the effective available polyphony of a Sound Module
may increase above the stated minimum Polyphony Level when a less-complex sound program is
requested).

Unfortunately, such dynamically unmasked Channels may not be rendered as expected by the content
author. This occurs when the sonic character of the rendered material depends on controller messages
that were ignored because they occurred while the Channel was masked. When Channels are unmasked
because of an authored MIP message, the content author can compensate for this by sending the current
values of the appropriate controllers along with the MIP message. However, when Channels are
unmasked because of an increase in effective available polyphony, no such remedy is possible.

To avoid such problems, it is strongly recommended that an SP-MIDI device should always retain and
update the values of relevant controllers, even for Channels that are currently masked. Then, when a
Channel is unmasked dynamically, the device can automatically send appropriate controller messages for
that Channel to the Sound Module.

Alternatively, the Player element could quickly scan or “chase” the unmasked Channel(s) to establish the
current effective controller state, and then send appropriate messages to the Sound Module to re-establish
the intended controller state. (Note that when multiple messages of a given type and Channel (e.g.
volume on Channel 1, expression on Channel 5) are detected within the scanned region, only the last
message detected for each type and Channel should be sent to the Sound Module). However, this
approach may be impractical due to processing time or memory constraints (e.g. if content data is
discarded after it is played). Therefore, maintaining current controller state for all Channels, masked or
unmasked, is often more practical.

It is not necessary to track (chase or maintain the state of) all possible MIDI controllers, since many are
often unused. At minimum, it is strongly recommended that all controllers required by a particular SP-
MIDI profile (or device specification) should be tracked. It is also recommended that other controllers in
common use should be tracked, at the discretion of the manufacturer. (However, content authors are
strongly advised not to count on the availability of any controllers not specified as part of the target
profile.)

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 9 November 28, 2001

 ��-	.���	�	����,���'������	�����$������	���	���

 ��� -	�$���	����"���"	����	�
A Scalable Polyphony device updates its internal Channel Priority and MIP Tables in response to a MIP
Message. A device must wait until receiving an EOX (0xF7) for the MIP message before committing the
update as it is necessary to first validate the contained Channels and contents of the MIP message.

Upon receiving a MIP Message, the Channel Priority and MIP Tables are updated. If the device is
currently playing notes when the MIP Message arrives, it should mask and unmask Channels and restore
controller states as specified in Section 2.3.2, and release notes as specified in Section 3.5.3.

The MIP message should not result in a full reset of an SP-MIDI device. Instead, each SP-MIDI device
should reset only when it has received an appropriate device Reset Message (see Section 3.1.2.).

 ����� ��������+	
�'���	��,�"�����
�*����	��!���	��

When a Scalable Polyphony device is powered on or reset, it will initialize all of its MIP Table values to
be equal to the device’s maximum polyphony. For example, a device capable of 24 note polyphony would
set each MIP Table value to 24. This effectively bypasses any MIP limitations per Channel and allows a
device to allocate note generators according to its own Channel prioritization methods.

The initialized (default) state of an SP-MIDI Device’s Channel Priority table is defined by the Profile or
Device Specification, not the SP-MIDI Specification. For example, an SP-MIDI device based upon GM2
will set its Channel priorities however it chooses (if at all), because GM2 does not specify Channel
priority. In this example, , the device may decide to ignore Channel priority altogether until receiving its
first MIP message.

 ����� �	���	�-	�	��

All SP-MIDI content should begin by sending an appropriate device Reset Message.

The appropriate Reset Message and its behavior are defined within each SP-MIDI Profile or Device
Specification. For example, a device Profile based upon GM2 would specify the GM2 System On
message for performing a device reset.

When a Scalable Polyphony device is reset, the device must set its MIP and Channel Tables to an
initialized state as described in Section 3.1.1.

 ��� � '	��������	�"���!���	�

The playback device's Maximum Instantaneous Polyphony (MIP) values are set according to the ‘cc vv’
combinations of the message that are the MIDI Channels and corresponding MIP values in the order of
priority. The message is invalid if any of the following occurs:

• The number of MIDI Channels and MIP value number pairs is higher that the number of
supported MIDI Channels (i.e. 16, typically).

• Any of the 16 MIDI Channels is not presented exactly once
• Any MIP value is smaller than the previous MIP value (this condition doesn’t apply to the first

MIP value)

A Scalable Polyphony playback device shall implement the pseudo-code Algorithm 1 shown in Figure 1
for muting and un-muting MIDI Channels according to the MIP table. This shall be done each time the
MIP message is received. If the device cannot support one or more of the required Polyphony Levels, the
device should inform the user that the content containing the MIP message is incompatible content. How
(and if) the device will play incompatible content is left to the manufacturer to decide, unless otherwise
stated in some applicable specification.

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 10 November 28, 2001

 ��� /���	���,�-������*����	���
All Scalable Polyphony synthesizers shall support at least one Rhythm Channel, which is on Channel 10.
Scalable Polyphony Profiles may specify additional requirements with respect to the number of Rhythm
Channels. If a Profile requires two rhythm Channels, they are Channels 10 and 11, where Channel 10
defaults to Rhythm Channel and Channel 11 defaults to Melody Channel. If the Profile requires two
Rhythm Channels, Channel 11 can be set as a Rhythm Channel via a Bank Select and Program Change
messages, as defined in General MIDI 2. This allows SP-MIDI content to provide split percussion tracks
that work both on a low and a high polyphony SP-MIDI device.

The recommended mechanism for supporting a second Rhythm Channel is via a Bank Select message, as
described in the General MIDI 2 Specification.

 � �"�#�������
�"�����������$�����
Conceptually, there is no lower or upper limit for polyphony that SP-MIDI devices must support,
however polyphony range must be defined by a Device Profile. The level of polyphony supported by a
device is expressed in terms of "SPn" where n is the maximum polyphony. Since MIP values are
transmitted as 7-bit numbers, polyphony is represented in a range of 1-127. A MIP value of zero (0) is
reserved and must not be used.

 �0� /���	���,�"����*����	���
An SP-MIDI device must be able to respond on all 16 MIDI Channels (not necessarily simultaneously).
The actual Channels to be used in a specific instance are controlled with the MIP table.

 �1� /��	�2	�	�������������������
��	�������
In general, MIDI rendering devices respond to a Note On message by attempting to allocate a note
generator on which to play the new note. If any note generators are idle (currently unused) when the Note
On message is received, any idle note generator may be used for the new note. This section describes the
note generator allocation behavior requirements for SP-MIDI renderers in cases when no note generators
are idle (’note stealing’). These requirements apply only to those Note On messages that have not been
muted by the Channel Masking mechanism.

 �1��� /��	�'�	�������	�������

Under normal conditions with MIDI content which is carefully prepared for SP-MIDI renderers, note
stealing should occur relatively rarely, because one aim of MIP tables and Channel Masking is to reduce
the frequency of note stealing. However, if no note generators are idle when a Note On message is
received, the device may need to ’steal’ a note generator from one of the notes that have not finished
playing. The device must decide which one of those notes to steal, and there are many possible ways to
make this selection.

In SP-MIDI devices, the note stealing decision should always take into account the Channel Priority
Table and MIP Table from the most recently received MIP message. This is an essential aspect of the SP-
MIDI Channel priority concept, since new notes on low-priority Channels should not generally steal
active note generators from high-priority Channels. However, it is the responsibility of each SP-MIDI
device manufacturer to design an appropriate note stealing algorithm, and there are many possible ways
of using Channel Priority and MIP information in the note stealing algorithm.

The simplest recommended note stealing algorithm is as follows. First, use the Channel Priority Table and
MIP Table to identify which Channel it would be best to steal a note from. This can be determined by
selecting the lowest-priority Channel with active note generators in excess of its MIP value. Second,

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 11 November 28, 2001

select the best note to steal from within that Channel. Usually this will be the note whose disappearance
will be the least noticeable (it is up to the manufacturer to determine which note this is).

However some manufacturers may prefer to use a more advanced algorithm, where the Channel Priority
Table and MIP Table are used together with other factors to determine the best note to steal. These factors
may for example include the levels, ages, or held vs. released states of the other active notes. When using
such advanced algorithms, the Channel of the selected note might be different from the one selected by
the simpler algorithm described in the previous paragraph (e.g. in some cases the Channel priority table
may be overridden by other factors).

�

) ���	
�.�

%��!�
�;3����
���
�	����) ���	
�

The example above shows a Channel Priority Table and MIP Table indicating 15 notes of polyphony,
whereas the actual song contains areas using up to 19 note generators (including release periods after
Note Off messages). A device capable of less than 19 notes of polyphony would use the Channel Priority
and MIP Tables to determine which notes should not be played. It is recommended that the notes be
stolen from the lowest-priority Channel for which the number of active note generators exceeds the
Channel’s MIP Value. When multiple notes within a Channel are candidates for note stealing, it is left up
to the manufacturer to implement a suitable algorithm to steal the least noticeable note.

�����
	� ����(�	!
�
���
���2�!�		��

�	��������������
	�
���������
$�

���
��
���
��) 2

$����

����

1 3 4 3 1

10 6 3 6 0

2 9 2 8 0

3 12 6 12 2

4 15 4 15 1

… … … …

Total � .A� .>� 7�

Begin Note Stealing here

���������	��

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 12 November 28, 2001

Channel MIP

1

2

3

4

3

6

8

9

[A] 10 notes of polyphony.

[B] All Note Generators are in use, so this note event requires note stealing.
 Steal a note from Channel 2, it is the only Channel exceeding MIP.

3�(stolen note)�

&+-� &?-� &�-�

[C] All Note Generators are in use, this note event requires note stealing.
 Channel 3 is the lowest priority Channel exceeding MIP, so a note will be stolen from Channel 3.

3�(stolen note)�

) ���	
�1�

The example in Figure 9 shows a timeline of subsequent Note On events and how Channels are
prioritized for a synthesizer with 10-note polyphony. The Channels are listed in descending order of
Priority (Channel 1 being the highest, Channel 4 the lowest).

Point [A] is denoted to show where the synthesizer is using all 10 of its Note Generators, any additional
Notes after this point will require Note Stealing. Notice that even though Channel 2 is exceeding its MIP
value, the synthesizer has enough polyphony to play all of the notes in the sequence at this point.

At Point [B] a new Note On appears on Channel 3 and there are no idle Note Generators, so a Note
Generator must be stolen. With 2 notes on Channel 1 and 6 notes on Channel 2, Channel 2 is exceeding
its MIP limit by 2 notes and it is currently the only Channel exceeding MIP, so it is the only Channel
selected for Note Stealing. In this example, the oldest note was arbitrarily stolen, however it is expected
that a manufacturer will determine which note in the selected Channel is best to steal.

At Point [C] another Note On appears on Channel 3 and again, all Note Generators are in use, so a
Channel for Note Stealing must be selected. At this point, Channel 2 is exceeding MIP by 1 note and the
new Note On will cause Channel 3 to exceed MIP by 1 note. Channel 3 is the lowest priority of the two,
so Channel 3 is selected for Note Stealing. In this example, the oldest note was arbitrarily stolen,
however it is expected that a manufacturer will determine which note in the selected Channel is best to
steal.

%��!�
�./����
���
�	����) ���	
�0�����.B<���
���	������2������
��9
��

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 13 November 28, 2001

 �1��� "���"	����	�($
��	��	�������

If a MIP Message is received during song playback, some MIDI Channels that had not been muted before
receipt of the MIP Message may become muted when the MIP Message is processed. All note generators
that had been playing on the newly masked Channels should be immediately put into a "Release Note
State" so that the ends of the notes will continue to sound, as though corresponding Note Off messages
had been received. They should not be immediately returned to the idle or unallocated state. Notes
playing on all other MIDI Channels must not be affected by such behavior. Notes received after the
updated MIP message will be subject to normal Note Generator Allocation as described in section 3.5 and
3.5.1.

 �4� 5����	�6���,��	�7���
�'$	��,���������
This specification does not define all of the performance features of the MIDI sound generator necessary
to establish the rules for content compatibility. Instead, it is assumed that appropriate SP-MIDI
content/device specifications will be developed according to market requirements.

However AMEI/MMA already have any number of device/content specifications (such as GM2) that can
be used as the basis for a Scalable Polyphony content/device specification with a few modifications to
enable scalable playback. A specification that modifies another specification for scalable playback is
called an Scalable Polyphony MIDI ‘Device Profile’.

Specifications or Device Profiles referencing this specification must define at minimum the following:

• Minimum and maximum polyphony

• MIDI renderer specification and set of MIDI messages that must be supported. This may be
expressed as a reference to an existing renderer specification such as GM1, GM2, GML, etc., or
as an annotated list of MIDI messages.

• Melody and Rhythm Channel requirements and behavior

• Program Change and Bank Select requirements and behavior, including definition of required
instruments.

• Device Reset and System On message and behavior

 �4��� ���	��$	����������,����,��	��

Where more than one profile or specifications is intended to operate in the same market, care should be
taken to avoid conflicting requirements that would introduce interoperability problems.

For example, the
�� is expected to be extended to support
higher levels of polyphony, and to maintain upward compatibility of content, the rendering features and
supported MIDI messages of the higher-polyphony profile(s) should must be a superset of the lower-
polyphony profile. Observing this recommendation will allow scalable content to be created (content that
plays consistently and well on more than one Profile).

If a content creator wishes to create scalable content, it is their responsibility to make sure that the low
polyphony Channels that will be played on lower-polyphony profile players are free of messages not
supported by that profile.

Scalable Polyphony MIDI
DRAFT ONLY

Version .940 Page 14 November 28, 2001

0��-	,	�	��	��
[1] ����������������� �
!�����������"����#$����%�����������& February 1996, In “The Complete MIDI 1.0 Detailed
Specification, Document Version 96.1.” The MIDI Manufacturers Association., Los Angeles, CA, USA.

[2] ��������������
'���$�(������& 1994, MMA0007/RP003, In “The Complete MIDI 1.0 Detailed Specification,
Document Version 96.1.” The MIDI Manufacturers Association, Los Angeles, CA, USA.

[3] ��������������(������
!������������)*���$$�� � ���������+�& November 1999, RP-024, The MIDI
Manufacturers Association, Los Angeles, CA, USA.

[4] ��������������
'���$�(�����������!����#� �������& September 1996, The MIDI Manufacturers Association,
Los Angeles, CA, USA.

[5] �,-��.�$!��������������������� �
!�����������"����#$����%�������/0���& 1996, The MIDI Manufacturers
Association, Los Angeles, CA, USA.

[6] ��������������(���"�
!�������������������(������ ��#� �����������1��������2����3!!���������& October 5,
2001, RP-033, Version 1.0, The MIDI Manufacturers Association, Los Angeles, CA, USA.

[7] �
����2������'!-��'��������������������������������������& December 2001, RP-0XX, The MIDI
Manufacturers Association, Los Angeles , CA, USA.

