3GPP TSG-SA WG4 (Codec Working Group)
Tdoc S4 (01)0606
3GPP SA4 Meeting #19, Tokyo, Japan, 3-7 December 2001


Source:
Emblaze Systems

Title:
Guidelines for Tunneling RTSP/RTP over HTTP

Document for:
Discussion

1. INTRODUCTION

The need for tunneling RTSP and RTP through HTTP arises from the fact that many proxies, gateways and firewalls are set not to support the ports for RTSP messages or RTP packet data. Even if an organization configures its firewalls to support these ports, other traversed nodes may not do so. Hence there is a need for a method to convey RTSP and RTP data through HTTP (which is widely supported).

Long network delays, retransmission-induced jitter, the TCP congestion control mechanism and possible multi-TCP connections are all good reasons not to use HTTP for streaming data. However, when a client fails to start a “normal” streaming session for some timeout period, an automatic switch to using HTTP tunneled data may be desired.

Some attempts have been made in the past to tackle this issue. [ 
 
 ]

This document intends to highlight several options to tackle the tunneling issue. We plan to show some results of the verification tests, as well as recommendation for best practices, in one of the following SA4 meetings. It should be noted that the following proposals assume traversed application-level nodes (proxies, gateways and firewalls) that support HTTP/1.1.

1.1. Why Standardize

RTSP and RTP tunneling through HTTP requires an end-to-end approach, and choosing a specific method may have certain implications on both server and client sides. Such implications may include:

· Entity body encoding (e.g., Base64)

· Extended HTTP headers to signal tunneling

· Working properly with HTTP entity “chunks” (described below)

Standardizing these aspects will allow handsets and streaming servers from various vendors to communicate properly and smoothly even under tunneling condition, and will enhance interoperability.

1.2. General Requirements

When deciding on the selected method for tunneling, we need to consider several factors:

· The solution should be “standard” in the sense that every HTTP/1.1 compliant server/proxy will understand it.

· The solution should not be too complex for the handset to implement.

· The solution should use features that are widely supported by existing HTTP implementations (e.g., trimming an entity body before “Content-Length” is reached may work well with some HTTP servers and poorly with others).

· The solution should reflect the best user experience.

2. SUGGESTED OPTIONS

One of the main issues to handle is the “half duplex” nature of HTTP. Designed as a request-response protocol, it is not immediate to “pause” or “teardown” a stream of data received as a response. The method to tackle this issue is what differentiates among the options below.

Another related issue has to do with the way to construct an HTTP response such that it may be potentially “interruptible”. The method to tackle this issue is what differentiates between the sub-options below.

The following table summarizes the options stated below:

	
	Option A:

‘GET’ channel + pipelining
	Option B:

‘GET’ + ‘POST’ channels
	Option C:

‘GET’ channel + TCP management
	Option D:

‘GET’ channel + multiple requests

	Sub-option 1:

Response using “chunks”
	Solution A1
	Solution B1
	Solution C1
	Solution D

	Sub-option 2:

Response using dynamic truncate
	Solution A2
	Solution B2
	Solution C2
	


Certain characteristics are shared by all possible solutions:

· Appropriate headers for preventing caching should always be used (‘Cache-Control: no-cache’ and ‘Pragma: no-cache’).

· Since HTTP/1.1 assumes persistent connections, a ‘Connection: close’ header should be added when terminating the session at the client and the server (this would typically accompany the RTSP TEARDOWN message).

· Using the Base64 encoding scheme may be needed in order to prevent certain proxy implementations from looking into the entity body for what might look like mal-located HTTP headers.

In the following discussion RTSP, SDP and RTP are considered. The inclusion of RTCP reports is a trivial extension of these mechanisms.

2.1. Option A

Here we use a single GET request to establish a 2-way channel. RTSP requests are embedded as the entity body of the request, while RTSP responses and SDP data are part of the GET response message. Typically when sending RTSP messages or SDP data, one should use headers that support textual data transfer, whereas when sending RTP binary data, a binary header declaration should be used.

In this single channel we use HTTP pipelining to signal “non-synchronized” events (e.g., PAUSE while PLAY) and the server should be ready to intercept such requests and process them while the previous response is still served (note: this does not contradict RFC 2068 [ 
 ] demand for ordered pipelined response messages).

Session maintenance: No special effort is needed to maintain session state beyond the mechanism already provided by RTSP.

2.2. Option B

Here, two TCP connections are set up using GET and POST requests (see also [ 2 ]) and an additional header is needed to maintain the correlation between the GET and POST channels. This header may look ‘X-TunnelingSessionID: HDEW32482348023’ (some unique id).

In this scenario the client and server should maintain the “TunnelingSessionID” throughout the entire session, in order to associate between the two channels.

RTSP encapsulated data is sent via the POST channel, whereas RTP data is sent as a response via the GET channel. The POST channel acts as a “control channel” for the GET channel. If RTSP PLAY is sent via the POST channel and an RTSP PAUSE is needed, this request is sent again via the POST channel and some inter-process mechanism (at the server) signals the GET channel to stop sending data.

Session maintenance: No special effort is needed to maintain session state beyond the mechanism already provided by RTSP. It is possible during PLAY time to close the POST channel and to re-open it as needed.

2.3. Option C

Here we use a single GET connection for the client and server communications. However, unlike in Option A, we assume that the HTTP server cannot trivially notify the application of pipelined requests. If the client needs to send an RTSP PAUSE message during PLAY, the client can close the TCP connection. In this scenario, whenever needed, the client closes the TCP connection and then opens a new connection to serve the next requests.

Session maintenance: Session maintenance may be needed in the sense that some actions are non-traceable. Consider an RTSP PAUSE during PLAY. In this case, closing the TCP connection may lead to state loss, since the reference to the exact point of the last played media may not be correctly traced by the server. Hence, using Option C requires some mechanism to solve this.

2.4. Option D

Here we use a single GET channel, but invoking multiple GET requests for the RTP data. Each such request is for a limited amount of data (by using the RTSP PLAY ‘Range’ header). This way we can control the stream received, and can “insert” other messages (e.g., PAUSE during PLAY) in a relatively easy way.

Session maintenance: No special effort is needed to maintain session state beyond the mechanism already provided by RTSP. However, tracing the point of the last played media is done in a resolution of a single “range”.

2.5. Sub-options

Sub-option 1 implements an “interruptible” response by means of using “chunks” to construct the entity body. This is done by inserting the ‘Transfer-Encoding: chunked’ header, followed by chunks of data that can be generated dynamically. In this way no “Content-Length” should be known in advance. RFC 2068 (see also [ 3 ]) describes in details the use of chunks. All that is needed is to declare the chunk size (number of octets) and fill in the data. A chunk size of 0 is stated to terminate the response properly when requested (by one of the options described above).

Sub-option 2 implements a simple “truncate” technique. It makes use of a regular response, by declaring some large value for the ‘Content-Length’. Now we assume that the entity body that is generated dynamically can be truncated at any point, and that the client actually starts rendering the data before the entire “Content-Length” octets reach the terminal.

3. SUMMARY

We are now testing the various methods for their pros and cons, and plan to submit a summary of the findings in one of the following meetings.

We believe that standardizing RTSP and RTP tunneling through HTTP is beneficial, since the process involves both the terminal and the server sides. The selected method should ease client implementation, should be as standard as possible, must well traverse proxies and firewalls, and needs to yield the best user experience even though this way streaming is not performed over an optimized channel.

END OF DOCUMENT

� IETF Internet Draft ‘Tunneling RTSP in HTTP’,


� HYPERLINK "http://search.ietf.org/internet-drafts/draft-gentric-avt-rtsp-http-00.txt" ��http://search.ietf.org/internet-drafts/draft-gentric-avt-rtsp-http-00.txt�


� Apple – ‘Tunnelling RTSP and RTP through HTTP’,


� HYPERLINK "http://developer.apple.com/quicktime/icefloe/dispatch028.html" ��http://developer.apple.com/quicktime/icefloe/dispatch028.html�


� IETF RFC 2068. ‘Hypertext Transfer Protocol -- HTTP/1.1’


� HYPERLINK "http://www.ietf.org/rfc/rfc2068.txt" ��http://www.ietf.org/rfc/rfc2068.txt�





Page 3

