3GPP TSG SA WG3 (Security) Meeting #84
S3-161033
25-29 July 2016 Chennai (India)

revision of S3-13abcd
Source:
Huawei, HiSilicon, Deutsche Telekom AG
Title:
Service Layer Security Bootstrapping Mechanism for IoT Devices
Document for:
Approval

Agenda Item:
7.4
Work Item / Release:
7.4-Battery Efficient Security for very low Throughput Machine Type Communication Devices
Abstract of the contribution: This contribution proposes an IoT service layer security bootstrpapping solution for battery sensitive devices.
1. Introduction

It is anticipated that billions of Internet of Things (IoT) devices will be connected to the internet with many new IoT services. In an IoT context, one aspect of security is securing communication between IoT device and application server. In tranditional 3G/4G networks, a separate authentication and key agreement procedure is used. In the network layer, the UE and Core Network (CN) mutually authenticate each other based on the 3GPP Authentication Key Agreement (3GPP-AKA) procedure which is based on preshared symmetric keying material. At the application layer, End-to-End protocols like Transport Layer Security (TLS) protocol or its derivation Datagram TLS (DTLS) protocol provide one way of authenticating the UE and the application server while at the same time establish secure communication between the two entities. This implicitly requires that the UE and application server should be configured with credentials (certificates or pre-shared keys) in advance. But this is often not deployable in the IoT scenarios.

In TR22.891, massive IoT is considered as one of the key application scenarios in the future 5G network. Most IoT devices such as sensors are often resource constrained, low complexity, low powered and battery sensitive. TR22.891 states that the 3GPP system shall optimize the battery consumption of an IoT UE. Therefore, security mechanisms proposed to protect the communication between the IoT device and the application server should not severely impact the resource or the battery life of the IoT device.
2. Discussion
Security protocols such as (D)TLS at the application layer provides good level of security. However, there are obstacles for these protocols to choose keys and use certificates needed for authentication in the IoT scenarios. As in the case with TLS, the protocol often depends on the provisioning of certificate(s) that are distributed by trusted third parties. The management is usually arranged by Public Key Infrastructures (PKI). With billions of devices in the IoT scenarios, PKI needs to ensure that certificates are securely provisioned, updated and revoked for a tremendous number of IoT devices. This means that the management cost of these devices will heavily be increased which makes such a solution less attractive. As an alternative to certificates, a manufacturer can deploy pre-shared credentials in the device. However, updating these types of (pre)provisionedcredentials after a breach can be very cumbersome and expensive.

Without provisioned crediatials in advance, one possible method to guarantee secure communication between UE and application server is to leverage the 3GPP credential to provide session keys for these two entities. This proposal presents a simplified framework to establish keys for UE and application server.

Existing solution such as Generic Bootstrapping Architecure (see 3GPP TS 33.220) proposes a way to leverage the existing 3GPP network authentication framework that is an inherent part of cellular networks. GBA provides a mechanism for generating session keys for the UE and the application server.

However, one of the drawbacks of GBA is the amount of security related signalling that needed to be exchanged between the UE and the application server before any useful information can be sent. In GBA, the device needs to handle two independent AKA procedures and these signalling overhead will increase the energy consumption at the device. This may make the objective of having devices lasting for years with standard battery power unachievable.
3. Proposed Changes
The following part is intended to add to TR 33.863 after clause 6.9.
**** Start of First Change ****
6.10
Solution #10: A Method for IoT Service Layer Security Bootstrapping Solution

6.10.1
Introduction

This document proposes an IoT service layer security bootstrapping solution as described below. This solution provides a mechanism for deriving session keys between the IoT device and the application server with the following advantages.

Address all TR 33.863 Key Issues:

1. Key Issue No. 1: It provides integrity protection and confidentiality to all communications between the IoT device and the application server. Confidentiality is invoked as per the legal regulatory of the serving network.

2. Key Issue No. 2: Address the efficient user data protection challenges by allowing keys of at least 128 bits.

3. Key Issue No. 3: Address the legal regulatory by allowing confidentiality support to be invoked as per the legal regulatory of the serving network.

4. Key Issue No. 4: Provide an End-to-End secure solution between the IoT device and the IoT server, this solution can be extended to provide session key(s) that is specific per each IoT application.

Address main performance objective of the study:
5. Optimization of transmitted flows to reduce battery consumption by eliminating the need for another AKA procedure of GBA (see TS 33.220), i.e., GBA-AKA, and thus saves at least four message flows of the procedure, then reduces the power consumption at the IoT device.

6. Use existing 3GPP architecture and network entities/nodes with minimum changes to existing interfaces to accomplish the objectives of this study, TR 33.863.
6.10.2
Solution Description

6.10.2.1
Proposed Architecture

[image: image1.emf]UE E-UTRAN

LTE-Uu

MME

S1-MME

SCEF

SGSN

S3

HSS

Application

Server

T6a

T6b

S6t

Ua

S6a

Figure 6.10.2.1.1 Proposed Architecture for Solution #10

The key network element is:

· Service Capability Exposure Function (SCEF): This is the key entity within the 3GPP architecture for service capability exposure that provides a means to securely expose the services and capabilities provided by 3GPP network interfaces. It expected that the some signalling data relevant to the boostrapping service will terminate at this node. As defined in TS23.682, SCEF has interfaces to the MME/SGSN(T6a/T6b), the HSS(S6t), the application server. The HSE functionality could reside as needed with SCEF.

The functionality of relevant interfaces used in this solution are:

· T6a: An interface between the SCEF and the MME to allow the SCEF obtain the authentication result of the UE and return feedbacks to the MME.

· S6t: An interface between the SCEF and the HSS that allows the SCEF to obtain the session key for application and subscription and UE related information.

· S6a: Utilize this existing interface between the HSS and MME to allow HSS to provide an indication to MME that this UE supports current IoT security bootstapping and MME needs to push the network authentication result together with other subscriber information to SCEF.
· Ua: An interface between the UE and the application server that transfers user plane data.

6.10.2.2
Security Boostrapping and Key Refreshing
6.10.2.2.1
Overview

This clause describes how to derive session keys between the UE and the application server utilizing existing 3GPP interfaces and the fundamental 3GPP SCEF functionality which is designed to expose 3GPP services capabilities to trusted third parties, e.g., the application servers. This solution provides an option which allows HSS pushes the application layer key to SCEF serving the specific UE over the S6t interface.

6.10.2.2.2
Key Agreement and Boostrapping

New IoT application level master session key is agreed upon when the UE perform 3GPP-AKA procedure while accessing the network, i.e. at the phase when the UE and the network mutually authenticate each other. This proposal requires changes, as described in this document, at UE, MME and HSS while using 3GPP-AKA mechanism as detailed in TS33.102 and TS33.401.

Figure 6.10.2.2.2.1 shows the key agreement and boostrapping process

[image: image2.emf]UE MME HSS SCEF Application

Server

1. User Identity Request

2. User Identity Response

[IMSI]

3.Authentication Data Request

[IMSI]

4.Generate RAND, AUTH,

XRES, CK, IK, K

ASME

together with Ks

5. Authentication Data

Response [Authentication

Vector, Indication]

5.1. Push KeySet [Ks, RAND,

IMSI]

6. User Authentication Request

[RAND, AUTH]

8. User Authentication

Response [RES]

9. Check the given RES,

if it is correct

7.Check AUTH, compute

K

ASME

, and generate RES

10. Authentication Successful,

GUTI

11.Generate Ks, and then

generate Ks_AS

12. Application Request

[GUTI, msg]

13. Key Request [GUTI,AS_ID]

15. Key Response [Ks_AS]

16. Application Response

14. Check Authentication

Result. If it is successful, then

generate Ks_AS from Ks

10.1.Notification

[Authentication Result,

RAND, IMSI, GUTI]

Figure 6.10.2.2.2.1: Key Agreement and Bootstrapping Process
 The key steps are as follows:

1. MME starts access authentication request and requires the identity of the UE.

2. The UE responses MME with IMSI to identify himself.

3. The MME sends authentication data request to HSS to ask for materials to authenticate the UE mutually.

4. HSS receives the request and searches the root key shared with UE using IMSI. HSS generates one or more AV, RAND, XRES, AUTH, CK, IK, KASME as in TS33.401. In addition, HSS will generate Ks based on CK, IK for the application service. The key Ks is generated as Ks=KDF(CK||IK, “End-to-End_IOT”).

5. HSS responds to MME with the Authentication Vector. Authentication Vector (AV) consists of AV=(RAND, AUTH, XRES, KASME) as defined in TS33.401. HSS adds an indication to MME to indicate that MME needs to push the network authentication result and other subscribe information to SCEF.

5.1 HSS pushes to SCEF the KeySet which is later used to be delivered to the application server. The KeySet contains the RAND from AV, IMSI and the key Ks. This message is over S6t interface.

Note: If HSS sends multiple AVs to MME at a time, then HSS will pushes multiple RAND, Ks to SCEF (still with the same IMSI). SCEF will store all these information.

Note: It is recommended to distribute only one AV at a time as the frequency of AKA runs is very low in the IOT scenario.
6. MME sends user authentication request to UE, this request consists of RAND and AUTH as defined in TS33.102/33.401.

7. UE generates keys and check AUTH to authenticate the network, and computes response message RES. All the procedures are defined as in TS33.102/33.401.

8. UE sends the authentication response message RES to MME as defined in TS33.102/33.401.
9. MME checks RES by comparing RES and XRES as defined in TS33.102/33.401.
10. MME sends Authentication Successful to the UE together with GUTI generated by MME.

10.1 MME pushes the Notification message over the T6a interface to SCEF. The Notification message contains Authentication Result, RAND (from AV), IMSI and GUTI.
11. UE generates the master key Ks and then generates key Ks_AS for application service. Ks_AS is generated in the form Ks_AS = KDF(Ks, AS_ID), where AS_ID is the identity of the application server.

12. UE sends Application Request to the application server over the Ua interface. This message contains the GUTI received from MME in step 10, and msg. The content of msg depends on specific protocol.

13. Once receiving the Application Request, the application server sends Key Requset to SCEF with GUTI, AS_ID.

14. SCEF receives GUTI, searches the database and finds out the state of the Authentication Result according to this GUTI, If the state is Successful, then SCEF will find the application key Ks with RAND and IMSI. Then, SCEF generate application key Ks_AS based on Ks and AS_ID.
15. The SCEF responds to the application server with the application key Ks_AS.

16. The application server returns to the UE with Application Response.

6.10.2.2.2.1 Key Generation in Application Layer.

This proposal presents two options for the UE and Application to generate session keys depending on whether certificate is used or not. All the session keys is based on Ks_AS. In order to ensure the freshness of the session key, the UE will generate a random number as the input material of the session key.

Session Key Generation without Certificate: The UE generates a random number RAND_AS. In addition, the UE computes encryption key Ks_AS_enc and integrity key Ks_AS_int, respectively. The two keys are generated in the way Ks_AS_enc = KDF(Ks_AS, “enc”) and Ks_AS_int = KDF(Ks_AS, “int”). The UE computes the session key as K_app = KDF(Ks_AS_enc, RAND_AS), then to protect the integrity of GUTI and RAND_AS, UE generates the message authentication code t = MACKs_AS_int(GUTI, RAND_AS). The UE puts RAND_AS and t into msg in the Application Request. Once received Ks_AS, the application server generates Ks_AS_enc and Ks_AS_int and then verify the message authentication code t. If it is correct, then the application server computes the session key K_app.

Session Key Generation with Certificate: In this solution, the UE is configured with the certificate of the application server. This certificate contains the public key PK_AS of the application server. The UE generates a random number RAND_AS. In addition, the UE computes encryption key Ks_AS_enc and integrity key Ks_AS_int as the above solution. The session key K_app is also generated in the UE as K_app = KDF(Ks_AS_enc, RAND_AS). To protect GUTI and RAND_AS, the public key PK_AS is used to encrypt RAND_AS as C = EncPK_AS(RAND_AS) and the integrity is protected as t = MACKs_AS_int(GUTI, C). The UE puts C and t into msg in the Application Request (RAND_AS is not included in cleartext). Once received Ks_AS, the application server generates Ks_AS_enc and Ks_AS_int and then verify the message authentication code t. If it is correct, the application server uses the private key to decrypt C and get RAND_AS, then computes the session key K_app.

These two options ensure the freshness of the session key, this enables that two different sessions between the same UE and application server not to be the same. In addition, the certificate solution provides end-to-end security between the UE and the application server where the wireless operator has no access to the encrypted traffic.
6.10.2.2.3 Key Refreshing

In this proposal, the key refreshing could be triggle by both the UE and application server.
Initiated by UE: The procedure is described in Figure 6.10.2.2.3.1

[image: image3.emf]UE MME SCEF Application

Server

1.Refresh Request

2.Refresh Request

3. Bootstrapping

Renegotiation Request

4. Reauthentication

Request.

Figure 6.10.2.2.3.1: Key Refreshing Initiated by the UE

The steps are as follows:

1. UE initiates key refreshing by sending a Refresh Request to the application server. This message will contain the GUTI.

2. The application server forwards the Refresh Request to the SCEF.

3. A Bootstrapping Renegotiation Request is sent to MME by SCEF.

4. MME then will re-authenticate the UE by initiating a 3GPP-AKA procedure.
Initiated by application server: The procedure is decribed in Figure 6.10.2.2.3.2

[image: image4.emf]UE MME SCEF Application

Server

1.Refresh Request

2. Bootstrapping

Renegotiation Request

3. Reauthentication

Request.

Figure 6.10.2.2.3.2: Key Refreshing Initiated by the Application Server

The steps are similar to the case that the UE intiating procedure except that the application server start the Refresh Request.

6.10.3
Solution Evaluation

This solution creates an end-to-end key shared between UE, IoT Device, and the application server utilizing existing 3GPP architecture and interfaces, that can be used to provide confidentiality and integrity. This solution eliminates the need for GBA-AKA and optimizes the power usage at the IoT device. This contributes towards satisfying key issue #1, #2, #3, and #4.
**** End of First Change ****

UE
E-UTRAN
LTE-Uu
MME
S1-MME
SCEF
SGSN
S3
HSS
Application Server
T6a
T6b
S6t
Ua
S6a

UE
MME
HSS
SCEF
Application Server
1. User Identity Request
2. User Identity Response [IMSI]
3.Authentication Data Request [IMSI]
4.Generate RAND, AUTH, XRES, CK, IK, KASME
together with Ks
5. Authentication Data Response [Authentication Vector, Indication]
5.1. Push KeySet [Ks, RAND, IMSI]
6. User Authentication Request [RAND, AUTH]
8. User Authentication Response [RES]
9. Check the given RES, if it is correct
7.Check AUTH, compute KASME, and generate RES
10. Authentication Successful, GUTI
11.Generate Ks, and then generate Ks_AS
12. Application Request [GUTI, msg]
13. Key Request [GUTI,AS_ID]
15. Key Response [Ks_AS]
16. Application Response
14. Check Authentication Result. If it is successful, then generate Ks_AS from Ks
10.1.Notification [Authentication Result, RAND, IMSI, GUTI]

UE
MME
SCEF
Application Server
1.Refresh Request
2.Refresh Request
3. Bootstrapping Renegotiation Request
4. Reauthentication Request.

UE
MME
SCEF
Application Server
1.Refresh Request
2. Bootstrapping Renegotiation Request
3. Reauthentication Request.

