3GPP TSG SA WG3 (Security) Meeting #80
S3-151952
Tallin, Estonia 24-28 August 2015

revision of S3-15abcd
Source:
Qualcomm Incorporated
Title:
Protection of Restricted Discovery messages on PC5 interface
Document for:
Discussion
Agenda Item:
8.5
Work Item / Release:
eProSe-ext/Rel-13
Abstract of the contribution: This contribution considers restricted discovery use cases in order to derive protection methods for the discovery messages sent on PC5. Several security measures are described to meet the various requirements on restricted discovery.
Introduction
Recall that restricted discovery has several security requirements. These are cited below (and labelling added in (boldface) ) from clause 7.3.1.3 of TR33.833 for convenience: 
(RA) ProSe Restricted discovery shall allow a UE to discover only other UEs which it is currently authorized to discover. That is, the identities announced on the air interface shall be able to be protected from being understood by currently unauthorized UEs. 

(RT) The possibility of tracking of UEs based on the content of their discovery messages over time should be minimized.

(RI) The system shall support the prevention of impersonation attacks.

(RR) The possibility of replay attacks on discovery messages sent over the air interface should be minimized.

(RIP) The system should support integrity protection and (RCP) confidentiality protection of Restricted Discovery ProSe Codes.

NOTE: Any structure present in the ProSe Code before any security processing should be preserved to enable checking for matches. Preserving the structure needs to be done in a way that does not affect the security.

NOTE: These requirements apply to both model A and model B restricted discovery.

The above requirements necessarily lead to separate security building blocks. These are identified and described in detail next, after clarifying the various types of use cases.

Discussion
1. Use cases 
We see several types of use cases for restricted discovery, relevant to both Public Safety and non-Public Safety, as well as both Model A and Model B (description focused on Model A; Model B is similar) :

UC1: Discovery of individual unrelated UEs: the announced ProSe Code contains a unique (UE App –specific) part on which the matching is expected to be done. The protection is ProSe Code specific (i.e. keys used are not also used by other UEs). The matching part may be the entire ProSe Code or only a portion of it, as for example is the case for Restricted Discovery with Application-controlled extension (RD-ACE). Furthermore, while the matching is enabled for a set of monitorers, another part of the ProSe Code can be further obfuscated and decryptable by only a subset of those monitorers. In this use case, the PC5 Discovery message has the following format:

[image: image15.png]



UC2: Discovery of groups, variant I: the announced ProSe Code contains a unique (UE App –specific) part on which the matching is expected to be done. The protection of the ProSe Code is shared between the UEs all belonging to this group (i.e. all UEs in a group use the same key). The matching part may be the entire ProSe Code or part of it, as for example is the case for Restricted Discovery with Application-controlled extension (RD-ACE). In this use case, the PC5 Discovery message has the following format:


[image: image2]
UC3: Discovery of groups, variant II: the announced ProSe Code contains a group-specific part (“Group ID”) on which the matching is expected to be done. The protection of the ProSe Code is shared between the UEs all belonging to this group. The matching part may be the entire ProSe Code or part of it, as for example is the case for Restricted Discovery with Application-controlled extension (RD-ACE). The Group ID may be followed by a “Member ID” part (shown in orange) which is pre-assigned, and other optional extension/part containing user-specific information. In this use case, the PC5 Discovery message has the following format:


[image: image3]
2. Security measures
Due to requirements that must be met by the use cases for Restricted Discovery outlined above, we identify three fundamental security building blocks or measures:

1. Simple scrambling: This is not message-specific and it involves at least the UTC-based counter (as from Rel. 12).  It covers the entire ProSe Code (including the MIC). It achieves replay protection and untrackability for general Restricted Discovery and integrity protection in some cases (see below table).
2. Message Integrity Check (MIC): This is message-specific integrity protection, and can work just like in Rel. 12, based on a key given by the network to the announcer. It covers the entire announced ProSe Code.
3. Message-specific confidentiality: this is applied to a part of the ProSe Code and takes into account message specific fields e.g. MIC.
These are summarized in the table below:
	Security measure
	Requirements met
	Applicable use cases
	Notes

	Simple Scrambling
	(RA), (RR), (RT), (RCP), (RI)*
	UC1, UC2, UC3
	*Scrambling provides integrity protection for parts of a message that do not vary for a particular scrambling key 

	Message Integrity Check
	(RIP), (RI)
	UC1, UC2, UC3
	Has two options: MIC checked at the UE side (e.g. for Public Safety discovery) or PF side

	Message-specific Confidentiality
	(RA), (RCP)
	Any UC where the Discovery Message contains bits that are not “match bits” but must be obfuscated
	This type of confidentiality protection may still be needed even with scrambling, in order to avoid keystream re-use – which can happen if two UEs use the same group key at the same UTC time (freshness input) to scramble/encrypt two different messages. 


Several aspects will be discussed next: 

2.1 Required vs. optional security measures
To decide on whether a security measure should be mandatory or not, two considerations are to be taken into account: extent of applicability to the use cases, and cost/complexity in terms of processing at the receiver and/or additional bits required in the PC5 message. As noted in the above table, simple scrambling provides integrity protection of all parts of a messages that are fixed for a given scrambling key. Hence it is not necessary to either apply or check integrity protection for the case of a scrambling key protecting only a fixed message. Similarly it is not always necessary to check integrity protection of a message, if the receiving UE is only interested in part of the message that is fixed, e.g. in UC1 above and the user is not one of the people allowed to undo the message specific confidentiality.
However, we note thatit is not a complex operation to apply and check a MIC on a matched code. 

In conclusion, we make the following proposals for the security.
Proposal 1a: MIC should be mandatory to include for all transmitted Restricted Discovery PC5 ProSe Codes.
Proposal 1b: MIC checking may only be omitted if scrambling provides integrity protection of the bits that are relevant to a UE.
Proposal 2: Simple scrambling should be mandatory for all Restricted Discovery ProSe Codes.
Proposal 3: Message specific confidentiality may be applied to Restricted Discovery ProSe Codes
Note: Simple scrambling is not applicable to all Public Safety Discovery uses cases.
2. 2. Order of application of security measures

The order of application of the three security measures is described next. The reason for the chosen order come from the goal of reducing complexity/cost of matching at the receiver and allowing for both UE-side MIC checking and PF-side MIC checking in a uniform fashion (e.g. as the last step). The ordering also allows the MIC to be an input into the message specific confidentiality. 

2.3. Key provisioning for different security measures

It is possible for the ProSe Function (or PKMF in the case of Public Safety) to provision a single “master” key to an announcing UE for a certain ProSe Code or Discovery Filter, from which the announcing UE/monitoring UE can derive specific keys for each of the security measures applicable to that ProSe Code.  However, it seems that provisioning separate keys for scrambling and Message Integrity, as well as confidentiality, is a more flexible approach without too much additional complexity. 

As an example, having separate keys for integrity and for scrambling and/or message-specific confidentiality allows for a Model B use case where the scrambling and confidentiality keys for the Response Code is group specific and the integrity key for the same code is individual (in particular for ProSe Function checking of the MIC). Another use case is where the scrambling key of the announcer is given to a (large) set of authorized monitorers, but the confidentiality key is given to only a subset of those monitorers, in order to allow them to decrypt (after matching) the part of the ProSe Code that contains further private information about the announcer (e.g. mood, exact location, etc). In this use case, a receiving UE will not be able to check the MIC as it can get retrieve the original message. This is not an issue if all the non-encrypted bits are fixed and scrambling is applied to this bits (see earlier discussion).  
Proposal 4: A sending UE using Restricted Discovery is provisioned with 
· a key to be used for Simple Scrambling (Discovery User Scrambling Key --DUSK), 
· another key for MIC calculation (Discovery User Integrity Key—DUIK) and, 

· if needed, another key for Message-specific confidentiality (Discovery User Confidentiality Key – DUCK).
3. Proposed solution
The sending UE receives the following security parameters with the ProSe Code:

DUSK – mandatory
DUCK – optional

                Encrypted_bits_mask (mandatory with DUCK)

DUIK – mandatory

The sending UE does the following steps:

1.
Form message (e.g. add Suffix if only Prefix was allocated). This corresponds to the “TempID” part of the ProSe code.

2.
Calculate MIC and add it to the message
3.
If DUCK received, add message specific confidentiality): 

4.
Add scrambling 

The receiving UE gets the following with the Discovery Filter containing a ProSe Code:

DUSK – mandatory 
DUCK – optional

                Encrypted_bits_mask (mandatory with DUCK)

DUIK or Indication to use PF MIC checking – optional
Note: Both UE and PF MIC checking may only be omitted when the scrambling provides integrity protection of the message bit relevant to the receiving UE.
The receiving UE does the following steps:
1.
If received DUSK, then undo scrambling (as in step 4 of Announcing UE)
2.
Check for partial match on bits not encrypted by any message specific confidentiality. If no match, then abort

3.
Undo message specific confidentiality (as in step 3 of Announcing UE)
4.
Check for full match if applicable. If not match then abort

5.
Check MIC directly if it received DUIK or via Match Report if receieved the Indication to use PF MIC checking
Description of Simple Scrambling
Announcer does the following:

1. Compute time-hash-bitsequence from DUSK and UTC-based counter passed through a keyed hash function.
2. XOR the time-hash-bitsequence with the entire “Message” (part of the Discovery Message being processed to get ready to send)

Monitorer does the exact same steps except applied to the received message being processed.


[image: image4]
Description of Message Integrity Check calculation
Announcer does the following

1. Compute output bitsequence from DUIK, Message, and UTC-based counter passed through a MIC calculation function.
2. Take the first 4 bytes of the output and set that as the value of the MIC for this Message.

Monitorer does the exact same steps but also does a comparison between the computed MIC and the received MIC.


[image: image5]
Description of Message-specific Confidentiality

Announcer does the following:

1. Compute the Key_calc_mask as the bits not covered by Encrypted_bits_mask, plus 4 bytes of 1s for MIC
2. Compute keystream from the DUCK, UTC-based counter, Key_calc_mask, Message and MIC  passed through a KDF. 
3. AND the keystream with the Encrypted_bits_mask.

4. XOR the result of step 3 above with the (unscrambled, but not containing the MIC) Message being processed for sending.
Monitorer does the exact same steps except applied to the received Message being processed.

[image: image6.emf] 



Conclusion 
Based on the above discussion it is proposed that the following changes are made to TR 33.833, and to the approval of CR to TS33.303 presented in S3-151950.

Proposed pCR

*** FIRST CHANGE ***

8.3.Z
Solution #8.3.Z Protecting a Restricted Discovery Message (Model A and Model B)

8.3.Z.1
General

This solutions describes how a discovery message is protected between two UE based on security information provided to the UEs by their respective HPLMN ProSe Function. A companion solution #8.3.9 describes the flows that allocate that security information. It is proposed to be a simpler alternative to the solution #8.3.11. The main difference is that the UE is directly supplied the keys need to provide the needed security protections rather than give a master key. Also the security procedures can be applied in one step. 

8.3.Z.2
Overview of solution

The applicable security measures are as follows:

1. Integrity of entire ProSe Code: If needed, this can be done via ProSe-Function-checked MICs just like for Open Discovery or by a locally checked MIC. In the former case, the ProSe Function needs to provide the rjust the sending UE with a key for integrity protection.. In the latter case, both UEs need to be provided with integrity key. The ProSe Functions indicate which kind of integrity will be used for each ProSe Code as part of the Discovery Request procedures. 
2. Scrambling the code to provide anti-replay/tracking/impersonation of the ProSe Code: Scrambling provides integrity protection for parts of a message that do not vary for a particular scrambling key and hence makes checking integrity of unnecessary in all cases. 

3. Message specific confidentiality of the user specific bits: If needed, this can be done via XORing the user specific bits with a keystream derived from a key given by the Prose Function as associated with the assigned Prefix. In the case of a discovery filter that finds only one UE, this can be done by the scrambling in 2 above (that is described below). Otherwise it is done as described below using a keystream that is specific for confidentiality and should be different for each UEs. 

A UE (that is either sending or receiving a discovery message) is provided with a following for an assigned ProSe Code for the sending UE and a discovery filter for the receiving UE as needed::

 
Discovery User Scrambling Key (DUSK), to calculate a time-hash bitsequence

 
Discovery User Integrity Key  (DUIK), to provide integrity protection

 
Discovery User Confidentiality Key (DUCK), to provide confidentiality of user specific bits.

The ProSe Function also provides an Encrypted_bits_mask if along with the DUCK. This selects which bits are protected by the message specific confidentiality. F

For MIC checking at the ProSe Function, the ProSe Function has the DUIK. In this case the UE is provided with an indication that it should use Match Reports for MIC checking.
8.3.Z.3
Security procedures

8.3.Z.3.1
UE checked integrity

The sending UE does the following

1. Compute output bitsequence from DUIK, Message, and UTC-based counter passed through a MIC calculation function.

2. Take the first 4 bytes of the output and set that as the value of the MIC for this Message.

The receiving UE does the exact same steps but also does a comparison between the computed MIC and the received MIC.

Both the UE sending and receiving discovery message or the ProSe Function checking the MIC calculate the MIC as shown in Figure 8.3.11.3.1-1:


[image: image7]
Figure 8.3.11.3.1-1: Calculating the MIC

8.3.Z.3.2
Scrambling time-hashing

The sending UE does the following:

1. Compute time-hash-bitsequence from DUSK and UTC-based counter passed through a keyed hash function.

2. XOR the time-hash-bitsequence with the entire “Message” (part of the Discovery Message being processed to get ready to send)

The receiving UE does the exact same steps except applied to the received message being processed.

This processing is shown in Figure 8.3.Z.3.2-1:

[image: image8]
Figure 8.3.Z.3.2-1: Processing of the Scrambling time hash (announcer).

We note that unlike the already-proposed solution where the time-hash depends on the Prefix and its length, this time-hash is based on a key with an appropriate length, not dependent on the Prefix length. 

8.3.Z.3.3
Message specific confidentiality

Sending UE does the following:

1.
Compute the Key_calc_mask as the bits not covered by Encrypted_bits_mask, plus 4 bytes of 1s for MIC

2.
Compute keystream from the DUCK, UTC-based counter, Key_calc_mask, Message and MIC  passed through a KDF. 
3.
AND the keystream with the Encrypted_bits_mask.

4.
XOR the result of step 4 above with the (unscrambled, but not containing the MIC) Message being processed for sending.

Monitorer does the exact same steps except applied to the received Message being processed.

The confidentiality calculation is shown in Figure 8.3.Z.3.3-1:

[image: image9.emf] 


Figure 8.3.Z.3.3-1: Processing of confidentiality protection.

Here we note that the sender UE (announcer) uses the bitsequence output of the AND operation to XOR into the Message that is formed by the application (prefix and suffix, unaltered). The receiver does the inverse operation.

8.3.Z.4
Processing of Discovery Message at the UEs

The UE sending the discovery message gets the following security parameters with the ProSe Code:

DUSK – mandatory

DUCK – optional

                Encrypted_bits_mask (mandatory with DUCK)

DUIK – mandatory

The sending UE does the following steps:

1.
Form message (e.g. add Suffix if only Prefix was allocated). 
2.
Calculate MIC and add to the message

3.
If DUCK received, add message specific confidentiality: 

a.
Compute Key_calc_mask = (Encr_bits_mask XOR 0xFF…F) || 0xFFFFFFFF

b.
Key_stream = FKDF (DCK, Time, (Key_calc_mask AND (Message+MIC))) AND Encrypted_Bits_Mask 

d.
XOR Key_stream into Message

4.
Add scrambling 

a.
Calculate time hash sequence

b.
XOR time-hash sequence into Message and MIC

The UE receiving the discovery message is provided the following with the Discovery Filter containing a ProSe Code:

DUSK – mandatory 

DUCK – optional

                Encrypted_bits_mask (mandatory with DUCK)

DUIK or Indication to use PF MIC checking – optional

NOTE: Both UE and PF MIC checking may only be omitted when the scrambling provides integrity protection of the message bit relevant to the receiving UE.
The receiving UE does the following steps:

1.
If received DUSK, then undo scrambling (as in step 4 of Announcing UE)

2.
Check for partial match on bits not encrypted by any message specific confidentiality. If no match, then abort

3.
Undo message specific confidentiality (as in step 3 of Announcing UE)

4.
Check for full match if applicable. If not match then abort

5.
Check MIC directly if it received DUIK or via Match Report if received the Indication to use PF MIC checking

*** END OF CHANGES ***

[image: image1][image: image10.png]DUIK

Message

MiC
Function

MIC

UTC-based
cntr




[image: image11.png]DUSK

UTC-based
ctr

Keyed
hash fct

Time-hash

Message

MIC

Announced TempID




[image: image12.png]DUIK

Message

mic

Function

Mic

UTC based
cntr




[image: image13.png]Group ID

Match bits



[image: image14.png]Unique ID Group )

Match bits





image1.png

DUCK

Key_calc_mask

unscrambld Message

MIC

e
v
=
o
m

Keystream

Encrypted_bits_mask

UTC-based
cntr

AND

(or_

Encrypted Message








